A New Construction of Multi-receiver Authentication Codes from Pseudo-Symplectic Geometry over Finite Fields

Xiuli Wang

(College of Science, Civil Aviation University of China, Tianjin, 300300, P.R.China.)

Abstract: Multi-receiver authentication codes allow one sender to construct an authenticated message for a group of receivers such that each receiver can verify authenticity of the received message. In this paper, we construct one multi-receiver authentication codes from pseudo-symplectic geometry over finite fields. The parameters and the probabilities of deceptions of this codes are also computed.

Keywords: pseudo-symplectic geometry; multi-receiver authentication codes; finite fields

2000 MR Subject Classification: 15A03; 94A60; 94A62

§1 Introduction

Multi-receiver authentication codes (MRA-codes) was introduced by Desmedt, Frankel, and Yung (DFY) [1] as an extension of Simmons' model of unconditionally secure authentication. In an MRA-codes, a sender wants to construct an authenticated message for a group of receivers such that each receiver can verify authenticity of the received message. There are three phases in an MRA-codes:

- 1. Key distribution. The KDC (key distribution centre) privately transmits the key information to the sender and each receiver (the sender can also be the KDC).
- 2. Broadcast. For a source state, the sender generates the authenticated message using his/her key and broadcasts the authenticated message.

Address: College of Science, Civil Aviation University of China, Tianjin 300300, P.R.China,

E-mail: xlwang@cauc.edu.cn, wangxiuli1999@tom.com

Supported by the NSF of China(61179026) and Fundamental Research of the Central Universities of China Civil Aviation University of Science Special (3122013k001).

3. Verification. Each user can verify the authenticity of the broadcast message.

Denote by $X_1 \times \cdots \times X_n$ the direct product of sets X_1, \dots, X_n , and by p_i the projection mapping of $X_1 \times \cdots \times X_n$ on X_i . That is, $p_i : X_1 \times \cdots \times X_n \to X_i$ defined by $p_i(x_1, x_2, \dots, x_n) = x_i$. Let $g_1 : X_1 \to Y_1$ and $g_2 : X_2 \to Y_2$ be two mappings, we denote the direct product of g_1 and g_2 by $g_1 \times g_2$, where $g_1 \times g_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is defined by $(g_1 \times g_2)(x_1, x_2) = (g_1(x_1), g_2(x_2))$. The identity mapping on a set X is denoted by 1_X .

Let C = (S, M, E, f) and $C_i = (S, M_i, E_i, f_i)$, i = 1, 2, ..., n, be authentication codes. We call $(C; C_1, C_2, \cdots, C_n)$ a multi-receiver authentication code (MRAcode) if there exist two mappings $\tau : E \to E_1 \times \cdots \times E_n$ and $\pi : M \to M_1 \times \cdots \times M_n$ such that for any $(s, e) \in S \times E$ and any $1 \le i \le n$, the following identity holds

$$p_i(\pi f(s,e)) = f_i((1_S \times p_i \tau(s,e)).$$

Let $\tau_i = p_i \tau$ and $\pi_i = p_i \pi$. Then we have for each $(s, e) \in S \times E$

$$\pi_i f(s,e) = f_i(1_S \times \tau_i)(s,e).$$

We adopt Kerckhoff's principle that everything in the system except the actual keys of the sender and receivers is public. This includes the probability distribution of the source states and the sender's keys.

Attackers could be outsiders who do not have access to any key information, or insiders who have some key information. We only need to consider the latter group as it is at least as powerful as the former. We consider the systems that protect against the coalition of groups of up to a maximum size of receivers, and we study impersonation and substitution attacks.

Assume there are *n* receivers R_1, \dots, R_n . Let $L = \{i_1, \dots, i_l\} \subseteq \{1, \dots, n\}, R_L = \{R_{i_1}, \dots, R_{i_l}\}$ and $E_L = E_{R_{i_1}} \times \dots \times E_{R_{i_l}}$. We consider the attack from R_L on a receiver R_i , where $i \notin L$.

Impersonation attack: R_L , after receiving their secret keys, send a message m to R_i . R_L is successful if m is accepted by R_i as authentic. We denote by $P_I[i, L]$ the success probability of R_L in performing an impersonation attack on R_i . This can be expressed as

$$P_{I}[i, L] = \max_{e_{L} \in E_{L}} \max_{m \in M} P(m \text{ is accepted by } R_{i}|e_{L})$$

where $i \notin L$.

Substitution attack: R_L , after observing a message m that is transmitted by the sender, replace m with another message m'. R_L is successful if m' is accepted by R_i as authentic. We denote by $P_S[i, L]$ the success probability of R_L in performing a substitution attack on R_i . We have

$$P_S[i, L] = \max_{e_L \in E_L} \max_{m \in M} \max_{m' \neq m \in M} P(R_i \text{ accepts } m' | m, e_L)$$

where $i \notin L$.

§2 Pseudo-Symplectic Geometry

Let F_q be the finite field with q elements, where q is a power of 2, $n = 2\nu + \delta$ and $\delta=1,2$. Let

$$K = \begin{pmatrix} 0 & I^{(\nu)} \\ I^{(\nu)} & 0 \end{pmatrix}, \quad S_1 = \begin{pmatrix} K \\ & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} K \\ & 0 & 1 \\ & 1 & 1 \end{pmatrix}$$

and S_{δ} is an $(2\nu + \delta) \times (2\nu + \delta)$ non-alternate symmetric matrix.

The pseudo-symplectic group of degree $(2\nu + \delta)$ over F_a is defined to be the set of matrices $Ps_{2\nu+\delta}(F_q) = \{T|TS_{\delta}^{\prime}T = S_{\delta}\}\$ denoted by $Ps_{2\nu+\delta}(F_q)$.

Let $F_q^{(2\nu+\delta)}$ be the $(2\nu+\delta)$ -dimensional row vector space over F_q . $Ps_{2\nu+\delta}(F_q)$ has an action on $F_q^{(2\nu+\delta)}$ defined as follows

$$F_q^{(2\nu+\delta)} \times Ps_{2\nu+\delta}(F_q) \to F_q^{(2\nu+\delta)}$$
$$((x_1, x_2, \dots, x_{2\nu+\delta}), T) \to (x_1, x_2, \dots, x_{2\nu+\delta})T.$$

 $((x_1, x_2, \dots, x_{2\nu+\delta}), T) \to (x_1, x_2, \dots, x_{2\nu+\delta})T$. The vector space $F_q^{(2\nu+\delta)}$ together with this group action is called the pseudo-symplectic space over the finite field F_q of characteristic 2.

Let P be an m-dimensional subspace of $F_q^{(2\nu+\delta)}$, then $PS_{\delta}^{\prime}P$ is cogredient to one of the following three normal forms

$$M(m, 2s, s) = \begin{pmatrix} 0 & I^{(s)} \\ I^{(s)} & 0 \\ & & 0^{(m-2s)} \end{pmatrix}$$

$$M(m, 2s+1, s) = \begin{pmatrix} 0 & I^{(s)} & & & \\ I^{(s)} & 0 & & & \\ & & 1 & & \\ & & & 0^{(m-2s-1)} \end{pmatrix}$$

for some s such that $0 \le s \le \lfloor m/2 \rfloor$. We say that P is a subspace of type (m, 2s + τ , s, ϵ), where τ =0,1 or 2 and ϵ =0 or 1, if

- (i) $PS_{\delta}^{t}P$ is cogredient to $M(m, 2s + \tau, s)$, and
- (ii) $e_{2\nu+1} \notin P$ or $e_{2\nu+1} \in P$ according to $\epsilon = 0$ or $\epsilon = 1$, respectively.

Let P be an m-dimensional subspace of $F_q^{(2\nu+\delta)}$. Denote by P^{\perp} the set of vectors which are orthogonal to every vector of P, i.e.,

$$P^{\perp}=\{y\in F_q^{(2\nu+\delta)}|yS_{\delta}^{\ t}x=0\,for\,\,all\,x\in P\}.$$

Obviously, P^{\perp} is a $(2\nu + \delta - m)$ -dimensional subspace of $F_a^{(2\nu+\delta)}$.

More properties of pseudo-symplectic geometry over finite fields can be found in [2].

In [3], Desmedt, Frankel and Yung gave two constructions for MRA-codes based on polynomials and finite geometries, respectively. There are other constructions of multi-receiver authentication codes are given in [4–7]. The construction of authentication codes is of combinational design in its nature. We know that the geometry of classical groups over finite fields, including symplectic geometry, pseudo-symplectic geometry, unitary geometry and orthogonal geometry can provide a better combination of structure and can be easy to count. In this paper, we construct one multi-receiver authentication codes from pseudo-symplectic geometry over finite fields. The parameters and the probabilities of deceptions of this codes are also computed. We realize the generalization of the results of the article [8] from symplectic geometry to pseudo-symplectic geometry over finite Fields.

§3 Construction

Let \mathbb{F}_q be a finite field with q elements and $e_i(1 \le i \le 2\nu + 2)$ be the row vector in $\mathbb{F}_q^{(2\nu+2)}$ whose i-th coordinate is 1 and all other coordinates are 0. Assume that $2 < n + 1 < r < \nu$. $U = \langle e_1, e_2, \cdots, e_n \rangle$, i.e., U is an n-dimensional subspace of $\mathbb{F}_q^{(2\nu+2)}$ generated by e_1, e_2, \cdots, e_n , then $U^{\perp} = \langle e_1, \cdots, e_{\nu}, e_{\nu+n+1}, \cdots, e_{2\nu+2} \rangle$. The set of source states $S = \{s \mid s \text{ is a subspace of type } (2r-n+1, 2(r-n), r-n, 1) \text{ and } U \subset s \subset U^{\perp}\}$; the set of transmitter's encoding rules $E_T = \{e_T \mid e_T \text{ is a subspace of type } (2n, 2n, n, 0) \text{ and } U \subset e_T\}$; the set of i - th receiver's decoding rules $E_{R_i} = \{e_{R_i} \mid e_{R_i} \text{ is a subspace of type } (n+1, 0, 0, 0) \text{ which is orthogonal to } \langle e_1, \cdots, e_{i-1}, e_{i+1}, \cdots, e_n \rangle \}$, $1 \le i \le n$; the set of messages $M = \{m \mid m \text{ is a subspace of type } (2r+1, 2r, r, 1) \text{ and } U \subset m\}$.

- 1. Key Distribution. The KDC randomly chooses a subspace $e_T \in E_T$, then privately sends e_T to the sender T. Then KDC randomly chooses a subspace $e_{R_i} \in E_{R_i}$ and $e_{R_i} \subset e_T$, then privately sends e_{R_i} to the i-th receiver, where $1 \le i \le n$.
- 2. Broadcast. For a source state $s \in S$, the sender calculates $m = s + e_T$ and broadcast m.
- 3. Verification. Since the receiver R_i holds the decoding rule e_{R_i} , R_i accepts m as authentic if $e_{R_i} \subset m$. R_i can get s from $s = m \cap U^{\perp}$.

Lemma 3.1 The above construction of multi-receiver authentication codes is reasonable, that is

- (1) $s + e_T = m \in M$, for all $s \in S$ and $e_T \in E_T$;
- (2) for any $m \in M$, $s = m \cap U^{\perp}$ is the uniquely source state contained in m and there is $e_T \in E_T$, such that $m = s + e_T$.

Proof. (1) For any $s \in S$, $e_T \in E_T$, Because s is a subspace of type (2r - n, 2(r-n), r-n, 1) and $U \subset s \subset U^{\perp}$, we can assume that $s = \begin{pmatrix} U \\ Q \\ e_{2\nu+1} \end{pmatrix} \begin{pmatrix} n \\ 2(r-n) \\ 1 \end{pmatrix}$

and
$$\begin{pmatrix} U \\ Q \\ e_{2\nu+1} \end{pmatrix} S_2 \begin{pmatrix} U \\ Q \\ e_{2\nu+1} \end{pmatrix} = \begin{pmatrix} 0^{(n)} & 0 & 0 & 0 \\ 0 & 0 & I^{(r-n)} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, e_T = \begin{pmatrix} U \\ V \end{pmatrix}_n^n$$

and

$$\left(\begin{array}{c} U \\ V \end{array} \right) S_2^{\ t} \left(\begin{array}{c} U \\ V \end{array} \right) S_2^{\ t} \left(\begin{array}{c} U \\ V \end{array} \right) = \left(\begin{array}{cc} 0 & I^{(n)} \\ I^{(n)} & 0 \end{array} \right) \ .$$

Obviously, for any $v \in V$ and $v \neq 0, v \notin s$, therefore,

$$m = s + e_T = \begin{pmatrix} U \\ V \\ Q \\ e_{2v+1} \end{pmatrix},$$

and

$$\begin{pmatrix} U \\ V \\ Q \\ e_{2\nu+1} \end{pmatrix} S_2 \begin{pmatrix} U \\ V \\ Q \\ e_{2\nu+1} \end{pmatrix} = \begin{pmatrix} 0 & I^{(n)} & 0 & 0 & 0 \\ I^{(n)} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I^{(r-n)} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} .$$

From above, m is a subspace of type (2r+1,2r,r,1) and $U \subset m$, i.e., $m \in M$.

(2) For $m \in M$, m is a subspace of type (2r + 1, 2r, r, 1) and $U \subset m$, so there is a subspace $V \subset m$, satisfying

$$\left(\begin{array}{c} U \\ V \end{array} \right) S_2 \ \left(\begin{array}{c} U \\ V \end{array} \right) = \left(\begin{array}{cc} 0 & I^{(n)} \\ I^{(n)} & 0 \end{array} \right) \ .$$

Then we can assume that $m = \begin{pmatrix} U \\ V \\ Q \\ e_{2\nu+1} \end{pmatrix}$ and satisfying

$$\begin{pmatrix} U \\ V \\ Q \\ e_{2\nu+1} \end{pmatrix} S_2 \begin{pmatrix} U \\ V \\ Q \\ e_{2\nu+1} \end{pmatrix} = \begin{pmatrix} 0 & I^{(n)} & 0 & 0 & 0 \\ I^{(n)} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I^{(r-n)} & 0 \\ 0 & 0 & I^{(r-n)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Let
$$s = \begin{pmatrix} U \\ Q \\ e_{2\nu+1} \end{pmatrix}$$
, for s is a subspace of type $(2r-n+1,2(r-n),r-n,1)$ and $U \subset$

 $s \subset U^{\perp}$, i.e., $s \in S$ is a source state. For any $v \in V$ and $v \neq 0, v \notin S$ is obvious, i.e.,

$$V \cap U^{\perp} = \{0\}$$
. Therefore, $m \cap U^{\perp} = \begin{pmatrix} U \\ Q \\ e_{2\nu+1} \end{pmatrix} = s$. Let $e_T = \begin{pmatrix} U \\ V \end{pmatrix}$, then e_T is a

transmitter's encoding rule and satisfying $m = s + e_T$.

If s' is another source state contained in m, then $U \subset s' \subset U^{\perp}$. Therefore, $s' \subset m \cap U^{\perp} = s$, while dims'=dims, so s'=s, i.e., s is the uniquely source state contained in m.

From lemma 3.1, we know that such construction of multi-receiver authentication codes is reasonable and there are n receivers in this system. Next we compute the parameters of this codes.

Lemma 3.2 The parameters of this construction are

$$|S| = N(2(r-n), 2(r-n), r-n, 0; 2\nu + 2); |E_T| = q^{n(\nu-n+1)}; |E_{R_i}| = q^{\nu-n+1}.$$

Proof. Since $U \subset s \subset U^{\perp}$, s has the form as follows:

$$s = \left(\begin{array}{ccccc} I^{(n)} & 0 & 0 & 0 & 0 & 0 \\ 0 & B_2 & 0 & B_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right),$$

where B_2 , B_4 is a subspace of type (2(r-n), 2(r-n), r-n, 0) in the pseudosymplectic space $F_q^{(2\nu+2)}$. So $|S| = N(2(r-n), 2(r-n), r-n, 0; 2\nu + 2)$.

Since
$$e_T$$
 is a subspace of type $(2n, 2n, n, 0)$, e_T has the form as follows:
$$e_T = \begin{pmatrix} I^{(n)} & 0 & 0 & 0 & 0 & 0 \\ 0 & R_2 & I^{(n)} & R_4 & R_5 & R_6 \end{pmatrix}.$$

For e_T is a subspace of type (2n, 2n, n, 0), so $R_4 = 0$ and $R_6 = 0$, R_2 , R_5 arbitrarily. Therefore $|E_T| = q^{n(\nu - n + 1)}$.

For any $e_{R_l} \in E_{R_l}$, e_{R_l} is a subspace of type (n + 1, 0, 0, 0) which is orthogonal

Since e_{R_i} is a subspace of type (n + 1, 0, 0, 0), so $H'_8 = 0$ and $H'_{10} = 0$, H'_3 , H'_9 arbitrarily. Therefore, $|E_{R_i}| = q^{\nu-n+1}$.

Lemma 3.3 (1) The number of e_T contained in m is $q^{n(r-n+1)}$;

(2) The number of the messages is $|M| = q^{2n(\nu-r+1)}N(2(r-n), 2(r-n), r-n)$ $n, 1; 2\nu + 2$).

Proof. Let m be a message, from the definition of m, we may take m as

follows:

if $e_T \subset m$, then we can assume that

$$e_T = \begin{pmatrix} I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & R_2 & 0 & I^{(n)} & 0 & 0 & R_7 & 0 \end{pmatrix} ,$$

where R_2 and R_7 is arbitrarily. Therefore the number of e_T which contained m is $a^{n(r-n+1)}$:

(2) We know that a message contains only one source state and the number of the transmitter's encoding rules contained in a message is $q^{n(r-n+1)}$. Therefore we have $|M| = |S||E_T|/q^{n(r-n+1)} = q^{n(\nu-r)}N(2(r-n), 2(r-n), r-n, 0; 2\nu + 2)$

Assume there are n receivers R_1, \dots, R_n . Let $L = \{i_1, \dots, i_l\} \subseteq \{1, \dots, n\}, R_L = \{R_{i_1}, \dots, R_{i_l}\}$ and $E_L = E_{R_{i_1}} \times \dots \times E_{R_{i_l}}$. We consider the *impersonation attack* and *substitution attack* from R_L on a receiver R_i , where $i \notin L$.

Without loss of generality, we can assume that $R_L = \{R_{i_1}, \dots, R_{i_l}\}, E_L = E_{R_{i_1}} \times \dots \times E_{R_{i_l}}$, where $1 \le l \le n-1$. First, we will proof the following results:

Lemma 3.4 For any $e_L = (e_{R_1}, \dots, e_{R_l}) \in E_L$, the number of e_T containing e_L is $q^{(\nu-n+1)(n-l)}$.

Proof. For any $e_L = (e_{R_1}, \dots, e_{R_l}) \in E_L$, we can assume that

$$e_{L} = \begin{pmatrix} I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_{3} & I^{(l)} & 0 & 0 & R_{7} & 0 \end{pmatrix}.$$

Therefore, e_T containing e_L has the form as follows:

$$e_{T} = \begin{pmatrix} I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & R_{3} & I^{(l)} & 0 & 0 & R_{7} & 0 \\ 0 & 0 & H_{3} & 0 & I^{(n-l)} & 0 & H_{7} & 0 \end{pmatrix},$$

where H_3 , H_7 arbitrarily. Therefore, the number of e_T containing e_L is $q^{(\nu-n+1)(n-l)}$.

Lemma 3.5 For any $m \in M$ and $e_L, e_{R_i} \subset m$,

- (1) the number of e_T contained in m and containing e_L is $q^{(r-n+1)(n-l)}$;
- (2) the number of e_T contained in m and containing e_L , e_{R_l} is $q^{(n-l-1)(r-n+1)}$.

Proof. (1) From the definition of m, we may take m as follows:

If $e_L \subset m$, then e_L has the form as follows:

If $e_T \subset m$ and $e_T \supset e_L$, then

where H_3 and H_9 arbitrarily. Therefore, the number of e_T which contained in mand containing e_L is $q^{(r-n+1)(n-l)}$.

(2) Similarly, by computation, we can proof that the number of e_T contained in m and containing e_L , e_R , has the following the form:

where H_3'' , H_9''' and H_3''' , H_9'''' arbitrarily. Therefore, the number of e_T contained in m and containing e_L , e_{R_i} is $q^{(n-l-1)(r-n+1)}$.

Lemma 3.6 Assume that m_1 and m_2 are two distinct messages which commonly contain a transmitter's encoding rule e_T . s_1 and s_2 contained in m_1 and m_2 are two source states, respectively. Assume that $s_0 = s_1 \cap s_2$, dim $s_0 = k$, then $n \le k \le 2r - n$. For any e_L , $e_{R_i} \subset m_1 \cap m_2$, the number of e_T contained in $m_1 \cap m_2$ and containing e_L , e_{R_i} is $q^{k(n-l-1)}$.

Proof. Since $m_1 = s_1 + e_T$, $m_2 = s_2 + e_T$ and $m_1 \neq m_2$, then $s_1 \neq s_2$. For any $s \in S$, $U \in s$, obviously, $n \leq k \leq 2r - n$. Assume that s_i' is the complementary subspace of s_0 in the s_i , then $s_i = s_0 + s_i'$ (i = 1, 2). From $m_i = s_i + e_T = s_0 + s_i' + e_T$, we have $m_1 \cap m_2 = s_0 + e_T$.

From the definition of the message, we may take m_i , i = 1, 2 as follows:

l n-l r-n v-r l n-l r-n v-r 1 1

Let

From above we know that $m_1 \cap m_2 = s_0 + e_T$, then $dim(m_1 \cap m_2) = k + 2n - n = k + n$, therefore,

$$dim \left(\begin{array}{cccc} P_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) = k + n - (2n + r - n) = k - r.$$

For any e_L , $e_{R_i} \subset m_1 \cap m_2$, we can assume that

$$l \quad n-l \quad r-n \quad v-r \quad i \quad i-l-1 \quad 1 \quad n-l \quad r-n \quad v-r \quad 1 \quad 1$$

If $e_T \subset m_1 \cap m_2$ and containing e_L , e_{R_l} , so e_T has the form as follows:

where every row of

$$\left(\begin{array}{cccc} H_3'' & 0 & 0 & H_{11}'' & 0 \\ H_3''' & 0 & 0 & H_{11}''' & 0 \end{array}\right)$$

is the linear combination of the base of

$$\left(\begin{array}{ccccc} P_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right).$$

So it is easy to know that the number of $e_T \subset m_1 \cap m_2$ and containing e_L, e_{R_l} is $q^{(k-r)(n-l-1)}$.

Theorem 3.7 In the constructed multi-receiver authentication codes, the largest probabilities of success for *impersonation attack* and *substitution attack* from R_L on a receiver R_i are

$$P_I[i,L] = \frac{1}{q^{(n-l)(v-r)+(r-n+1)}}, \qquad P_S[i,L] = \frac{1}{q^{r-l}}$$

respectively, where $i \notin L$.

Proof. Impersonation attack: R_L , after receiving their secret keys, send a message m to R_i . R_L is successful if m is accepted by R_i as authentic. Therefore

$$P_{I}[i, L] = \max_{e_{L} \in E_{L}} \left\{ \frac{\max_{m \in M} |\{e_{T} \in E_{T} | e_{T} \subset m \text{ and } e_{T} \supset e_{L}, e_{R_{i}}\}|}{|\{e_{T} \in E_{T} | e_{T} \supset e_{L}\}|} \right\}$$

$$= \frac{q^{(n-l-1)(r-n+1)}}{q^{(v-n+1)(n-l)}} = \frac{1}{q^{(n-l)(v-r)+(r-n+1)}}.$$

Substitution attack: R_L , after observing a message m that is transmitted by

the sender, replace m with another message m'. R_L is successful if m' is accepted by R_l as authentic. Therefore

$$P_{S}[i, L] = \max_{e_{L} \in E_{L}} \max_{m \in M} \left\{ \frac{\max_{m' \in M} | \{e_{T} \in E_{T} | e_{T} \subset m, m' \text{ and } e_{T} \supset e_{L}, e_{R_{i}}\} |}{| \{e_{T} \in E_{T} | e_{T} \subset m \text{ and } e_{T} \supset e_{L}\} |} \right\}$$

$$= \max_{n \leq k \leq 2r - n} \frac{q^{(k-r)(n-l-1)}}{q^{(n-l)(r-n+1)}} = \frac{1}{q^{r-l}}.$$

From above we see, substitution attack from R_L on a receiver gets to the maximum when l = r - 1.

References

- [1] Safavi-Naini R, Wang H. Multi-receiver Authentication Codes: Models, Bounds, Constructions and Extensions, *Information and Computation*, 151(1):148-172, 1999
- [2] WAN Zhexian. Geometry of Classical Groups over Finite Fields (2nd Edition), Science Press, Beijing/New York, 2002
- [3] Y. Desmedt, Y. Frankel and M. Yung, Multer-receiver/Multi-sender network security: efficient authenticated multicast/feedback, *IEEE Infocom'92*: 2045-2054, 1992
- [4] G.J.Simmons. Message authentication with arbitration of transmitter/receiver disputes, Proc. Eurcrypt 87. Lecture Notes in Computer Science, 304:151-165, 1985
- [5] Safavi-Naini R, Wang Huaxiong. New results on multi-receiver authentication/codes, Lecture Notes in computer science, 1403:527-541, 1998
- [6] Satoshi Obana and Kaoru Kurosawa. Bounds and combinatorial structure of (k,n) multi-receiver A-Codes, *Designs, codes and cryptography*, 22:47-63, 2001
- [7] Li Xiyang, Qin Cong. New Constructions of Multi-receiver Authentication Codes, *Calculator Engineering*, 34(15):138-175, 2008
- [8] Chen Shangdi, Zhao Dawei. Two Constructions of Multireceiver Authentication Codes from Symplectic Geometry over Finite Fields. Ars Combinatoria, XCIX, April:193-203, 2011