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Abstract

Let G be a simple graph. The incidence energy ( IE for short ) of G is
defined as the sum of the singular values of the incidence matrix. In this
paper, a new lower bound for IE of graphs in terms of the maximum
degree is given. Meanwhile, an upper bound and a lower bound for IE
of the subdivision graph and the total graph of a regular graph G are
obtained, respectively.
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1 Introduction

Let G = (V(G), E(G)) be a graph with vertex set V(G) = {v1,va,...,v,}
and edge set E(G). All graphs considered here are simple and undirected.
Denote by A(G) and D(G) the adjacency matrix and the diagonal matrix
with the vertex degrees of G on the diagonal, respectively. The matrix
L(G) = D(G) - A(G) (resp., L*(G) = D(G) + A(G)) is called the Lapla-
cian matrix (resp., signless Laplacian matrix [2, 3, 4, 5]) of G, for details
on those matrices see (17, 18]. The multiset of eigenvalues of A(G) (resp.,
L(G), L*(G)) are called the adjacency (resp., Laplacian, signless Lapla-
cian) spectrum of G. Since A(G), L(G) and L*(G) are all real symmet-
ric matrices, their eigenvalues are real numbers. So we can assume that

*This work was supported by the National Natural Science Foundation of China (No.
10971086 and No. 11201201) and the Youth Science Foundation of Lanzhou Jiaotong
University (No. 2013025).

E-mail address: jdslxywwz@163.com (W. Wang).

ARS COMBINATORIA 114(2014), pp. 427-436



M(C) = X5(G) 2 -+ 2 Mn(G) (resp., p1(G) = 12(G) > -+ > pn(G),
(@) 2 uF (G) = - 2 ut(G)) are the adjacency (resp., Laplacian, sign-
less Laplacian) eigenvalues of G. It is well-known that all Laplacian (resp.,
signless Laplacian) eigenvalues of G are non-negative. If the graph G is
connected, then y;(G) >0 fori=1,2,...,n—1and un(G) =0 [17]. f G
is a connected non-bipartite graph, then u}(G) >0 fori=1,2,...,n [2].

One of the most remarkable chemical applications of graph theory is
based on the close correspondence between the graph eigenvalues and the
molecular orbital energy levels of m-electrons in conjugated hydrocarbons.
For the Hiichkel molecular orbital approximation, the total m-electron en-
ergy in conjugated hydrocarbons is given by the sum of absolute values
of the eigenvalues corresponding to the molecular graph G in which the
maximum degree is not more than four in general. In the 1970s I. Gutman
[6] extended the concept of energy to all simple graphs G, and defined the
energy of G as

E@G) =) _ MGl )
i=1

Research on graph energy is nowadays very active, as seen from the recent
papers [7, 9, 12, 13, 15, 16, 20, 24] and the references quoted therein.

The singular values of a real matrix (not necessarily square} M are the
square roots of the eigenvalues of the matrix M M* , where M* denotes the
transpose of M. The energy E(M) of the matrix M is then defined as the
sum of its singular values [19]. Obviously, E(G) = E(A(G)).

Let I(G) be the (vertex-edge) incidence matrix of the graph G. For a
graph G with vertex set {vy,v2,...,vn} and edge set {e;,ez,...,en}, the
(i, 5)-entry of I(G) is O if v; is not incident with e; and 1 if v; is incident
with e;. Jooyandeh et al. [14] introduced the incidence energy /E of G,
which is defined as the sum of the singular values of the incidence matrix
of G. Gutmann et al. [10] shown that

IE = IE(G) = 3 /#f (@), @)

i=1

Some basic properties of I E were established in [10, 11, 14].

From the Equation (2), one can immediately get the incidence energy
of a graph by computing the signless Laplacian eigenvalues of the graph.
However, even for special graphs, it is still complicated to find the signless
Laplacian eigenvalues of them. Hence it makes sense to establish lower and
upper bounds to estimate the invariant for some classes of graphs. Zhou
[23] obtained the upper bounds for the incidence energy using the first
Zagreb index. Gutman et al. [11] gave several lower and upper bounds for
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IE. In particular, an upper bound for IE of the line graph of a regular
graph was established [11]. Similar to graph energy, it appears to be much
more difficult to find lower bounds than upper bounds for IE.

The rest of this paper is organized as follows. In Section 2 we give a
new lower bound for IE of graphs in terms of the maximum degree. An
upper bound and a lower bound for IE of the subdivision graph and the
total graph of a regular graph G are obtained in Section 3.

2 Lower bounds for incidence energy

In this section, we will give a lower bound of IE of a nonempty graph.
Denote by K, the complete graph with n vertices. If G = K, we have
nothing to discuss. So we assume that G # K throughout this paper. The
following fundamental properties of the JE were established in [14].

Lemma 2.1 [14] Let G be a graph with n vertices and m edges. Then
(i) IE(G) 2 0, and eguality holds if and only if m = 0;
(¢3) If the graph G has components G, ..., Gy, then IE(G) = Y P IE(G;).

From Lemma 2.1 (ii), when we study the incidence energy of a graph
G, we may assume that G is connected.
The following Lemmas will be used later.

Lemma 2.2 [22] Let G be o simple and connected graph with n > 1 ver-
tices, then u'l" > A+ 1, equality holds if and only if G is a star with n
vertices.

Lemma 2.3 [11] Let ¢1,¢3,...,c: be positive integers. Then

Saz [ Sl -
i=1 Z:r-l c‘!
and the equality holds if and only ifc; =2 = -+ = ¢;.

The first Zagreb index Zg(G) of a graph G is defined as

2,

w€V(G)

where d,, denotes the degree of vertex u in G. This quantity found many
applications in chemistry (8].
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Theorem 2.4 Let G be a connected graph with n vertices, m > 1 edges
and mazimum degree A. Then

2m
TB(@) 2 2my e m @

and the equality holds if and only if G =2 K.
Proof. Note that

Zg(G)= ) d<A ) dy=4A(2m) < nAl (5)
ueV(G) w€V(G)

and the equality holds if and only if either d, = A for all u € V(G), i.e.,
G is A-regular, or d,, = 0 for all u € V(G). The latter case is impossible
since m > 1. Hence, Zg(G) = nA? if and only if G is A-regular.

Note that ", uf = 2m and 30, (1F)? = Zg(G) + 2m. It follows
from (2), (3) and (5) that

N[ (2m)3 2m
IE(G)‘g W 2\ Zg(G) +om 2 ™\ nAT ¥ om

and the equality holds if and only if all nonzero signless Laplacian eigen-
values are equal.

From the argument above, it is clear that the equality in (4) holds if
and only if G is a regular and all nonzero signless Laplacian eigenvalues are
equal. If G is a connected bipartite graph, then uf = ud = ... = |,
and u} = 0. Therefore G is a A—regular graph and L*(G) has two distinct
eigenvalues uf,0. It follows that G is a regular graph with two distinct
eigenvalues (of the adjacency matrix) uj — A and —A with multiplicities
n — 1 and 1, respectively. Notice that the sum of the eigenvalues of G is
equal to zero. Then, by Lemma 2.2, A = (n — 1)(uf — A) > (n—1) > A.
Thus 4] = A+1. By Lemma 2.2 again, we have that G is a star. Since G
is a regular graph, G = K. If G is a connected non-bipartite graph, then
wi >0,i=1,2,...,n. It follows that G is a A—regular graph and L*(G)
has n equal signless Laplacian eigenvalues. Therefore,

this contradicts with the Lemma 2.2.
Hence, we complete the proof of Theorem 2.4. ]

Recall from [11] that a lower bound for I E was given as follows.
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Lemma 2.5 Let G be a graph with n vertices and m edges. Then

IE(G) > 2\—/—'1‘”. (6)

with equality if and only if G = K,, or G = K».

Remark 1 For m,n 2> 1, the two lower bounds in (4) and (6) of IE are
not comparable. Indeed, let G be the cycle with 5 vertices. Thenn =5,
m =5, A = 2 and the bound in ({) is %@, but the bound in (6) is 2V/5.
Let G be the star with 5 vertices. Thenn =5, m =4, A = 4 and the bound
in (4) is <, but the bound in (6) is Jz.

Combine Theorem 2.4 with Lemma 2.5, we have

Proposition 2.6 Let G be a graph with n vertices, m > 1 edges and maz-
imum degree A. Then

IE(C) > max {2m\/ ?@2%75’ 27"‘_7;} )

and the equality holds if and only if G = K.

3 Incidence energy in subdivision and total
graphs of a regular graph

In this section, we will explore the incidence energy of the subdivision
graph and total graph of a regular graph. The following result is well
known [2, 17, 18].

Lemma 3.1 The spectra of L(G) and L*(G) coincide if and only if the
graph G is bipartite.

We first consider the case for subdivision graphs. The subdivision graph
of a graph G, denoted by s(G), is the graph obtained by replacing every
edge in G with a copy of P, (“subdividing” each edge).

Theorem 3.2 Let G be a regular graph of n vertices and of degree d. Then
(6) IE(s(G)) > L208=2) 4 n/T¥3;
(i) IE(s(G)) < (n— 1)Vd + VZF2 + L29=2  the equality holds if
and only if G = K.
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Proof. Note that the subdivision graph s(G) of a simple graph is bi-
partite graph. It follows from Lemma 3.1 that ui(s(@)) = pf(s(G)),
i =1,2,...,m +n. By virtue of (2) and Theorem 3.4 [21] we have in
fact already established the statements in the theorem. O

Next we consider the case of the total graphs. The total graph of a
graph G, denoted by t(G), is the graph whose vertices correspond to the
union of the set of vertices and edges of G, with two vertices of {(G) being
adjacent if and only if the corresponding elements are adjacent or incident
in G. Complete information about the spectrum of t(G) is provided by D.
Cvetkovié [1] in terms of the adjacency eigenvalues of G.

Lemma 3.3 [1] If G is a regular graph of degree d > 1 with n vertices and
m edges, then t(G) has m —n eigenvalues equal to —2 and the following 2n
eigenvalues

%(2/\,~(G)+d—2:i: O TEFD (=1,2...,n). (8)

If G is regular, then ¢(G) is also regular. In particular, ¢(G) is a regular
graph of order ﬂ%ﬂ and of degree 2d, where n and d are the order and
degree of G, respectively. It follows from Lemma 3.3 and L*(#(Q)) =
D(t(G)) + A(t(G)) that the signless Laplacian eigenvalues of ¢(G) are
pfE(@) = 24+ X(HG)), 5 = 1,...,n,n+1,...,m +n, ie, the sign-
less Laplacian spectrum of ¢(G) is

(w—z pHEO) BFEG) o BEGG) mt(HG) ) ©)

ne-2) 1 1 o 1 1
where
5d — 2+ 2X:(G) + /d2 + 4+ 4N(G
it () G+ i
and
' 5d — 2 + 2X(G) — /d? + 4 + 4)(G
HHE) = G v L
are the signless Laplacian eigenvalues of t(G), 1 =1,2,...,7n.

The following result gives the bounds of the incidence energy of the
total graph of a regular graph.

Theorem 3.4 Let G be a regular graph of n vertices and degree d. Then
() TEHG)) > Y282 /TT 4 (n + 1)Vd + V3d =2, the equality
holds if and only if G = Ky;
(44) IE(t(G)) < L2E=D /T~ + 2nv/d + n/3d— 2.
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Proof. Note that the total graph of K3 is K3. If d = 1, then G is a disjoint
union of copies of K3 and hence t(G) is a disjoint union of copies of K3, i.e.,
if G = 3Ky, then t(G) = £ K3, where n is even. It follows from Lemma

2.1 (i4) and IE(K3) = 4 that
IE(t(G)) = 2n.

In this case, that is d =1,
l/_-gf_(g_:?l\/m+2n\/a+nm=3n>2n

and
ﬂ"g_:?l\/H+(n+1)\/3+\/3d——2=n+2s2n,

the equality holds if and only if n = 2, that is, G = K.
Assume that d > 2. It follows from (2) and (9) that

1Bee) = 422 aEm +Z(\/ui'(t(0))+\/ul+(t(0)))

i=1

_ ﬂtﬁ«m+zﬁ+m
+Z(\/5d 242N\ +¢E’+T+4A‘

i=2

2

+\/5d—2+2)\,~ —\/2?+4+4',\",~)

Note that —d < M(G) < d, i = 2,8,...,n, by Perron-Frobenius theo-
rem. Consider the function .

g(t)_‘/sd—2+2t+\/d2+4+4t+ 5d—2+2t—VETAT &

2 2 ’

where —d < t < d. In what follows we shall show that g(¢) is increasing
for —d <t < d. Let fi(t) = VdZ + 4+ 4¢, f2(t) = 10d — 4 + 4. Then the
derivative function of g(t) is

J(t) = (f1(®) +1)\/f2(t 2f1(t) + (f1(t) — 1)/ fa(t) +2f1(t
(t)V/ f2(t) + 2f1(t)+/ f2(t) — 2f1(2)
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where —d < t < d. In order to prove that g’(t) > 0, we need only to show
that

(F1(8) + 1) V f2(t) — 2/1(8) + (f1(t) — 1) V 2(2) + 2£2(2) > O,

ie.,

10 (VRE -2 + VRO F2RO)
V() +2£1(t) — V() - 2/1(t)
Further, we need only to indicate that
f2(t) + V(f2(t) + 2H()(f2(t) - 2A(2)) > 2,

ie.,

10d — 4 + 4t + /96d? — 80d + 80td — 48t + 16t2 > 2.

Let f(t) = 10d — 4 + 4t + /9642 — 80d + 80¢d — 48t + 16¢2. Then the
derivative function of f(t) is
‘ 80d — 48 + 32¢
t)=4 .
£ + 21/96d2 — 80d + 80td — 48t + 162
It follows from (10) that f(t) is increasing for —d <t < d,d > 1. Therefore,
the minimum of f(t) on [—d,d) is f(—d) = 6d — 4 + /32d? — 32d > 2.
Bearing in mind the above fact that g(t) is increasing for —d <t < d,
we can deduce that

IE@#(G)) > ﬁ"(Td’i)\/d' T4 2vA+VEIZ4 Y g(-d)
i (11)
- _@%:_2_)\/&‘- T+(n+1)Vd+v3d—2

(10)

and

IE#(@) < ﬁ"—(;’l’2—)¢d'-' T+2Vd+V3d-2+ zn: a(d)

i=2
= \/_2_n(;il2_)‘/d_ 1+2nvVd+nv3d—2.

The equality in (11) holds if and only if G is a regular graph and A, (G) =

d, 22(G) = -+ = M(G) = —d. It follows that G is 1-regular. This is
impossible since d > 2.
Hence, we complete the proof of Theorem 3.4. m]
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