Long Paths containing k-ordered vertices in Graphs!
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Abstract
Let G be a graph on n vertices. If for any ordered set of vertices S =
{v1,v2,...,vk}, that is, the vertices in S appear in order of the sequence
v1,V2,. .., Uk, there exists a v; — v; (hamiltonian) path containing S in the

given order, then G is k-ordered (hamiltonian) connected. In this paper
we will show that if G is (k + 1)-connected and k-ordered connected, then
for any ordered set S, there exists & v; — vx path P containing S in the
given order such that |P| > min{n, 02(G) — 1} where 62(G) = min{dg(u)+
de(v) : u,v € V(G);uv ¢ E(G)} when G is not complete, otherwise set
02(G) = oo. Our result generalizes several related results known before.

Keywords: long paths, k-ordered sets, k-ordered connected, k-ordered
hamiltonian connected

1. Introduction

All graphs considered in this paper are finite, simple and undirected.
For any graph G, we use V(G) or just V to denote its vertex set and E(G)
or just E to denote its edge set. Let |G| or |V| denote the cardinality of
V. Let H and S be subgraphs of G or vertex subsets of G and v € V(G).
We denote the set of vertices in S that are adjacent to some vertices in H
by Ng(H). Likewise, Ng(v) will denote the set of vertices in S that are
adjacent to v. Hence the degree of v with respect to S is [Ns(v)| and is
denoted by ds(v). We denote the degree of v with respect to G by dg(v) or
d(v). Let 6(G) = min{dg(v) : v € V(G)}. For a graph G of order n > 3, we
define 02(G) = min{dg(u)+dg(v) : u,v € V(G);uv ¢ E(G)} when G is not
complete, otherwise set 02 (G) = co. A cycle (path) containing all vertices of
G is called a hamiltonian cycle (path). A graph G is said to be hamiltonian
if it possesses a hamiltonian cycle and to be hamiltonian connected if for
any distinct vertices z, y in G there is a hamiltonian path connecting z and
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y.
Various degree conditions have been studied for the hamiltonicity and

the hamiltonian connectivity of graphs. Two well-known results regarding
the hamiltonian graphs are due to Dirac and Ore.

Theorem 1 (Dirac (1952) [1]). Let G be a graph of order n > 3. If

6(G) 2 %, then G is hamiltonian.

Theorem 2 (Ore (1960) [6]). Let G be a graph of order n > 3. If
02(G) 2 n, then G is hamiltonian.

By increasing the lower bound for g2(G) in Theorem 2 by just one, Ore
proved the following:

Theorem 3 (Ore (1963) [7]). Let G be a graph on n vertices. If 02(G) >
n + 1, then G is hamiltonian connected.

Very recently, people became interested not only in finding long paths
and cycles in graphs, but also in finding long paths and cycles contain-
ing any ordered set of k vertices. A vertex set S = {vi,v,...,vx} is
said to be an ordered set if the vertices in S appear in the order of the
sequence v, vg,...,Vk. A graph G is said to be k-ordered (hamiltonian)
if for every ordered set of vertices S such that |S| = k,(k < n), G con-
tains a (hamiltonian) cycle C encountering S in the given order. A graph
G is said to be k-ordered (hamiltonian) connected if for every ordered set
of vertices S = {vy,v2,...,vx} such that |S| = k,(k < n), G contains a
vy — v (hamiltonian) path P encountering S in the given order. We de-
fine a requisite path as a v; — v path containing S in the given order.
Let p(S) be the length of the longest requisite v; — v path containing
S. Set po(G) = min{p(S) : S is an ordered set with |S| = k}. Of course,
if a graph is hamiltonian (hamiltonian connected), then it is obviously k-
ordered hamiltonian (k-ordered hamiltonian connected) when 2 < k < 3.
This observation led Ng and Schultz to investigate the degree conditions of
k-ordered hamiltonian graphs and they obtained:

Theorem 4 (Ng and Schultz (1997) [5]). Let G be a graph of order
n > 3 and let k be an integer with 3 < k < n. If 02(G) 2 n + 2k — 6, then
G is k-ordered hamiltonian.

Faudree et al. improved Theorem 4 as follows:

Theorem 5 (Faudree et al. (2003) [2]). Let k be an integer with
3 <k < % and let G be a graph of order n. If 02(G) 2 n + g_:skz_—gl’ then G
is k-ordered hamiltonian.

In the same paper, Ng and Schultz considered the k-ordered hamiltonian
connectedness of graphs under the same conditions as in Theorem 4 but for
k > 4 and got the following:
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Theorem 6 (Ng and Schultz (1997) [5]). Let G be a graph of order
n 2> 4 and let k£ be an integer with 4 < k < n. If 02(G) > n + 2k — 6, then
G is k-ordered hamiltonian connected.

Corollary 1 (Ng and Schultz (1997) [5]). Let G be a graph of order
n > 4 and let k be an integer such that 4 <k < n. If §(G) > § +k -3,
then G is k-ordered hamiltonian connected.

By assuming that n is sufficiently large, Faudree et al. reduced the lower
bound for o2(G) in Theorem 6 and proved the following result:

Theorem 7 (Faudree et al. (2003) [3]). Let G be a graph of sufficiently
large order n and k > 3. If 02(G) > n + 358, then G is k-ordered hamil-
tonian connected.

The purpose of this paper is to investigate the minimum ordered path
length for any (k+ 1)-connected and k-ordered connected graph of order n.
Our result is as follows:

Theorem 8. Let G be a (k + 1)-connected (k > 2) graph on n vertices. If
G is k-ordered connected, then po(G) > min{n — 1,02(G) — 2}.

Notice that Theorem 8 gives a lower bound for the length of any longest
path connecting two distinct vertices and containing S (]S| = k) in the given
order for a k-ordered connected graph. Theorem 8 generalizes Theorem 3
if we take k = 2. Since a graph G is k-ordered connected if G is k-ordered
hamiltonian, by Theorem 5 and the fact that 62(G) > n + %58 implies G
is (k + 1)-connected for k > 3, one can easily check that Theorem 8 also
generalizes Theorem 7.

We will first construct the following graphs to demonstrate the sharpness
of the bounds of Theorem 8 and then show several lemmas in Section 2.
The proof of Theorem 8 will be given in Section 3.

That the lower bound for p,(G) in Theorem 8 is best possible is shown
by the following example. The graph G is composed of 3 subgraphs. The
first subgraph is a clique on k vertices less the edges of a cycle on k vertices
K} — E(Ck). The next subgraph is a clique Kj—;. The last subgraph is a
set of independent vertices, M. Let S = {v1,vs,..., v} be the vertices of
Ky - E(Ck) and E(Ck) = {vlvg,'vgva, vee ,vk_lvk,vkvl}. Let V(Kk_l) =
{z1,22,...,2k-1} and V(M) = {uy,ua,...,us} where s > k. All possible
edges exist between M and K, and all possible edges exist between Ki_;
and Ky — E(Cy). The vertices of M are adjacent to only those vertices in
Ky — E(Cy) that possess an odd index. For k > 7, we have 02(G) =
d(u;) + d(u;) < 2((k—1)+k—‘2tl) =3 —1=n-s+k. Since s > k,
02(G) < n. Note that between every pair of consecutive vertices in S
on P, there must be an element of K;_;. Since P begins and ends in S
and |S| = k, P must miss some u; € M and |[P| < n—1. In this case,
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20(G) = 8k — 3 = min{n — 1,02(G) - 2}.

Also consider the following example which indicates that the connec-
tivity condition k + 1 in Theorem 8 is best possible. Let G be a graph
composed of 3 cliques: K, K,, and K, and Ky — E(C}) as in the previous
example. Let k —2 < s<2k—-T7and k-2 <t < 2k—7. All possible
edges exist between the vertices of K; and K, K, and K; and K} and
Ky — E(Cx). Let V(Ki) = {z1,2Z2,...,2zx} and V(K;) = {t1,t2,...,t:}.
Let S = {v1,v2,...,vx} be the vertices of K — E(Ci). It is easy to
check that G is k-connected. Since t > k—2 and s > k—2, we can
choose two nonadjacent vertices in K — E(Cy) to be those in the min-
imum degree sum. Then 02(G) = 2(k — 3) + 2k = 4k — 6. Then a
longest requisite path P must miss all the vertices of either K; or K.
Thus p,(G) < 2k + maz{s,t} - 1 < 4k — 8 = min{n - 1,02(G) — 2}.
Actually, G can be generalized by adding more copies of K, to a graph of
arbitrarily large order.

2. Several Lemmas

For a path P with a given orientation and u € V(P), let u* denote
the first successor of u on P and u~ denote the first predecessor of u on
P. Also, if v € V(G) then N} (v) and N (v) denote the set of vertices
succeeding the neighbors of v on P and the set of vertices preceding the
neighbors of v on P respectively. For u,v € V(P), P[u,v] denotes the
subpath of the path P from u to v in the given direction. For P[u*,v] we
write P(u,v]. Similarly, for Plu,v™], we write Plu,v). We use Plu,v] to
denote the subpath of P from u to v in the reverse order.

In this section, we assume that p,(G) < n —1 and let P be a longest
requisite path for any ordered set S = {vy,vs,...,v} with |P| < n, then
there exists some component H C G — P. Let Np(H) = {z1,22,..., %}
in order along P and set P; = P(z;,zi+1) where 1 < i <t—-1. We will
first investigate some properties of P. For u,v € V(P), we call any P(u,v)
a good segment of P if V(P(u,v)) NS = @. Since G is (k + 1)-connected,
t > k+ 1. Since |S| = k and the endpoints of P are by definition the
first and last vertex in the ordered set S, by the pigeonhole principle, at
least two of those segments of P defined by Np(H) are good. Let P; for
some 1 €7 <t—1, be a good segment. A vertex v in V(F;) is said to be
insertible on P if v is adjacent to two consecutive vertices in V(P — F;).
For any two vertices u,v in G and a subgraph H of G, we use uPyv to
denote a longest path connecting » and v with all internal vertices in H.
We will first present several lemmas regarding P.

Lemma 1. Let u,v € V(P). If Nt (z) N N(z) N Plu,v] = 0, then
dppu (@) < Jﬁli'zzll*'_l.



Lemma 2. For every component H C G — P, N5 (H)n N(H) = 0.

Proof: Suppose there exist u,v € V(H) such that without loss of
generality N7 (v) N N(u) # 0. Then by inserting uPyv, we get a requisite
path that is longer than P; a contradiction. ]

The following two lemmas give some structural properties for the ver-
tices in a good segment.

Lemma 3. Let P; (1 < <t) be a good segment and = € V(F;).

(i) If for every y € V(P(zi,z)), vy is insertible, then all vertices in
P(z;,z) can be inserted into V/(P) — V(B,).

(ii) If for every y € V(P(z,zi+1)), ¥ is insertible, then all vertices in
P(z,z;41) can be inserted into V(P) — V(F,).

Proof: We only prove (i) here and (ii) can be easily checked by a
symmetric argument to that of the proof of (i).

The proof of (i) is by induction. If |[V(P(xz;,z))| = 1, then the result
holds by the definition of an insertible vertex. Suppose that |V (P(z;,x))| =
2 and assume that the result holds for all integers p when |V (P(z;, z))| < p.
Now we consider |V (P(xz;,z))| = p+ 1. Since z~ is insertible, there are two
consecutive vertices say w and wt in V(P — P;) such that z-w € E(G)
and z~wt € E(G). When N(y) N {w,w*} =0 for any y € V(P(zi,z7)),
as |V(P(z;,27))| = p and =~ can be inserted using w and w*, the result
holds by the induction hypothesis. When N(y) N {w,w*} # 0 for some
y € V(P(z;,z7)), then choose the first such vertex, say y,, in V(P(z:,z7))
and we can insert all vertices in P[y;,z~] into V(P) — V(P;) using w and
wt. Since |V(P(zi,1))| < p, by the induction hypothesis and the choice
of y1, all vertices in P(z;,y;) can be inserted into V(P) — V(F;). Hence (i)
holds. (]

Lemma 4. Let P; be any good segment and u; # u. be two vertices in
V(P;) with u} € V(P[ui,zi+1)) such that all vertices in V(P(z;,u;)) U
V(P(u}, zi+1)) are insertible.

(i) If there is a vertex z in N(y) N V(P — Plz;,zi41]) for some y in
V(P(as, w]), then N(y/) N {z*,2~} = 0 for any y/ € V(P[u, zi41)).

(i) All vertices in V(P(z;,u;)) U V(P(u},zi4+1)) can be inserted into a
path containing Plvy, ;] U Plzit1, vk).

Proof: By contradiction, suppose there are some z € V(P-P[z;, i+1]),
y € V(P(zi,u;]) and ¢’ € V(P[ul,zi+1)) such that {z*,z"} N N(y') # 0@
and zy € E(G). Choose such y and ¢’ with |V(P(z;, y))|+ |V(P{¥', ziy1))|
as small as possible (that is, N(z)NV (P(z;,y)) = @ and (N(z*)UN(z~))n
V(P(Y', zit1)) = 0). If z € V(Plvy, z;)), then we can find a requisite path
P’ = Pv,z)zyP(y,y")y'z* P(z*, 2:)z: PaTis1 P(zi41, 0] when zty’ €
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E(G) (see Figure 1) and
P’ = Plv,z7 )~y Py, y)yzP(z, z;)2i Puziy1 P(ziy1,vk) When 27y €
E(G) (see Figure 2).

Figure 1 Figure 2

If £ € V(P(zi+1,vk)), then we can find a requisite path
P' = Plvy,z;)zi Puziy1P(zit1,2)cyP(y, ¥’ )y'z* P(zt,vi), when zty’ €
E(G) (see Figure 3) and
P’ = Plvy, %)z Paziss P(Tig1,27 )2~y P(y', y)yzP(z, ve) when 27y’ €
E(G) (see Figure 4).

In either case, by the choice of y, ¥’ and Lemma 3, we can find a requisite
path longer than P by inserting all vertices in V(P(z;,y)) UV (P(¥', zi+1))
into P’, contradicting the choice of P.

(ii) By Lemma 3 and Lemma 4(i), we can easily verify (ii). (|

Next, we will use the parameter D(G) as defined by Fraisse and Jung
in [4]. For any 2-connected graph G, let D(G) be the maximum integer
m such that for any two distinct vertices u, v in G, there is a path of
length at least m connecting u and v. For a complete graph K, (n > 2),
set D(K,) = n — 1. If G has connectivity one, set D(G) = max{D(G’) :

H

Figure 3

Figure 4

442



G' is an endblock of G}. For an arbitrary graph, set D(G) = max{D(G’) :
G’ is a component of G}.

Lemma 5 (Fraisse and Jung (1989) [4]). Let G be a noncomplete
connected graph. Then there exist nonadjacent vertices v; and vy in G
such that v; is not a cut vertex of G and D(G) > d(v;) (i =1,2).

Thus for a complete graph, d(v) < D(G) for all v € V(G). If G is not
2-connected, let G; and G2 be distinct endblocks of G. Then for any vertex
v; € V(G;) that is not a cut vertex, there exists a path P[v;,v;] such that
|P[’U¢,'Uj]| > D(Gl) + D(Gz) +1.

Let B, be an endblock of H with D(B,) = D(H). If H is 2-connected
or |H| £ 2, set By = H. Let ¢; be the unique cut vertex of H in B; when
H is not 2-connected and |H| > 3. Otherwise, let ¢; be an arbitrary vertex
of H. Set B= B; — {01}.

Lemma 6. Let P(u,v) be a good segment of P. Let y; # y2 € V(H)
with {y1,y2} NV(B) # 0 and uy; € E and vy, € E. Then there exists a
good segment P(u/,v’) C P(u,v) such that V(P(u',v')) N Np(H) = @ and
|P(v,v')| > D(H) + 1.

Proof: Without loss of generality let y; € V(B). Let v’ be the last
vertex in V(P[u,v)) such that v'y; € E(G). Since vy, € E, choose v/
to be the first vertex in V(P(v/,v]) such that v'yj € E(G) for some y} €
V(H) — {y1}. Since P(u,v) is a good segment, P(u’,v') is a good segment
such that P(v/,v") C P(u,v) and V(P(vw',v')) N N(H) = 0. Since P is
maximal and D(B;) = D(H), this implies that |P(uv’,v')| > D(B1)+1 =
D(H) +1. o

Lemma 7. If G is (k + 1)-connected and |P| < g2(G) — 1, then for every
component H C G — P there exists a vertex v € H such that dg(v) <
02250 !.

Proof: Let L = 9129 Suppose that there exists a component H C
G — P such that for every vertex v € H, dg(v) > L. Since [P| < 2L -1
and by Lemma 2 we may assume |B;| > 2. We first claim that |B;| > 3.

Otherwise, assume |B;| = 2. Then for any vertex z in B; we have
|Np(z)| = dg(z) =1 > L—1. Hence, we have |[Np(z)] = L — 1 and
|Np(H)| = |Np(2)] 2 k+ 1 as G is (k + 1)-connected. By Lemma 2, we
know for any i, |P;| > 1 where 1 <4 <t — 1. Since |S| = k and the longest
requisite path P begins at v; and terminates at vy where v; and v are
the first and last vertices of the ordered set S respectively, there exists 7;
and iy such that V(P,,) NS =0 and V(P,)NS = 0. Thus |P,| > 2 and
|P;;| > 2. Since for any ¢ # 4,42 with 1 < ¢ < L — 2 we have |[B;| > 1.
Thus |P|> L -1+ L—2+2=2L - 1; a contradiction. Hence |B;| > 3.
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Next we will show the following claim which is useful in our later proofs.

Claim 1: If |[P| < 2L - 1, then there exists 1 < ¢; < ip < ... < igp41 <t
such that

(2) Hzin e >xik+1} n NP(B)I 2k

(i1) For any i, # is, there exist distinct vertices v,v’ € V(H) such that
zi,v € E(G), z;,v' € E(G), and {v,v'} N V(B) # 0, that is [vPyv'| >
DH)+1.

In fact since |B;| = 3, we have |B| > 2. Define X = {z; : dp(z;) >
2,z; € V(P)}. Then we have X C Np(B) and ¥ cy () dv(p)-x(y) =
|Nv(p)_x(B)| <t- in Hence

IBIL< ) de()
yeV(B)

< Y (da () +dx@) + (¢ - IX])
yeV(B)

< |BI(IB] + 1X]) + ¢ = |X].

If | X| > k, since G is (k + 1)-connected, Claim 1 holds by the definition
of X. Assume |[X| < k-1 andset r =k +1—|X| (r > 2). Notice that
by Lemma 2, k + 1 < t < L which implies t — L < —1. From the above
inequality, we have

(IB|- 1)L < |B|(|1B| + |X]) +t - |X| - L
=[BI(IBl +[X|+1) - |B| - |X]|+t - L
< |Bi(I1Bl +|X]+ 1) - (IB] + [X] +1)
= (1Bl = 1)(IB| + X[+ 1).

Since |B| > 2, we obtain (|By]| + |X|) > L > k+2 which implies
that |[B;| 2 k+2-|X| =7+ 1. Since |P|-|X|>2t-1-|X| >t~
| X|>k+1—|X|=rand G- (X U{e1}) is (r — 1)-connected, there exist
distinct vertices z1, z2,...,2,-1 in V(B) and y1,¥2,...,¥r—1 in V(P) - X
such that z;y; € F(G) (1 <i<r—-1). SetY = {y1,¥2,.-.,9r—1} and
Z = {z1,22,...,2r—1}. Notice that | XUY|=k+1-r+r—-1=k%.
Similarly, | X U Z| = k. Because G is (k + 1)-connected, there exists some
2, € V(H) — Z and y, € V(P) — (X UY) such that 2,y, € E(G). By the
definition of X, we can easily check that X UY U {y.} is a set that satisfies
(7) and (%).

Now we turn to prove Lemma 7. By Lemma 5, there exists v € V(H)
such that dy(v) < D(H). Since G is (k + 1)-connected, |S| = k, and
P is a v; — v path which has at least two good segments. Thus, by



Claim 1 and Lemmas 5 and 6, we have |P| > 2|Np(v)| — 1+ 2(D(H)) >
2dp(v) — 1+ 2dg(v) > 2L - 1; a contradiction. 0

Lemma 8. If |P| < 02(G) — 1, there is only one component H of G — P.

Proof: Suppose there are at least two components H,H' C G — P.
Then by Lemma 7, we can take v € H such that d(v) < “—’ggl and v’ € H'
such that d(v') < ”—’-ggl Since v and ' are nonadjacent, this implies
02(G) < d(v) + d(v") < 02(G), a contradiction. o

So for every longest requisite path P, if |P| < 02(G) — 1, then G - P
has only one component, H. Recall N(H) = {z,,z2,...,:} in order along
P and P; = P(z;,z;41) where 1 < ¢ < t—1. The following corollary is a
consequence of Lemmas 7 and 8 and the definition of o2(G).

Corollary 2. For any v € V(P) — Np(H), dg-p(v) = 0 and dg(v) >
a2(G)

.
Lemma 9. If |P| < o05(G) — 1, then for every good segment P; where
1 < i<t -1, there exist at least two noninsertible vertices in P;.

Proof: Suppose there is a good segment P; with no noninsertible ver-
tices, then we can find a requisite path P’ = Plvy, z;)z; Py zit1 P(Tit1, vk)-
Since every vertex in P; can be inserted into P’ by Lemma 3, we can find
a requisite path that is longer than P, contradicting the choice of P.

Suppose there exists some good segment, P, with only one noninsertible
vertex v. Then applying Lemmas 3 and 4 we can insert all vertices in
V(P;) — {v} into V(P — P,) to get a requisite path P’ including all vertices
in V(P) - {v} and at least one vertex in H. Thus |P’| > |P|. Since v is the
only noninsertible vertex in P; and by Corollary 2, dg—p(v) =0, v is itself
a component of G — P’. And since dg(v) > "—"g-@, this component contains

no vertex y such that d(y) < :'_2%92 which contradicts Lemma 7. O

3. Proof of Theorem 8

By contradiction, assume that p,(G) < min{n — 1,02(G) — 2}. Let P
be a longest requisite path for some ordered set S = {v;,v2,..., v} with
|P| < min{n,o2(G) — 1}. By Lemma 8 there exists exactly one component
H C G- P. Let Np(H) = {z1,z2,...,2:} in order along P. Since G is
(k + 1)-connected we know that P contains at least two good segments P,
and P; with i < j such that there exist distinct vertices w,, wj € V(H)
(g =1, ) with zqw, € E(G), zg+1w, € E(G) and |w, Pyw}| > D(H) + 1 by
Claim 1, and V(P;)NNp(H) =0 and |P| > D(H) + 1 by Lemma 6 . Then
by Corollary 2, for any vertex z € V(P;) U V(P;), we have that dg_p(z) =
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0. By Lemma 9, we know that there are at least two noninsertible vertices
in P; and P; respectively. Choose u, and u; (g = 1,7) to be the first and
last noninsertible vertices in P, respectively. Notice that a path containing
the vertex set V(P) — (V(P;) UV(P;)) in the same order as that in P is a
requisite path. We consider the following two cases:

Case 1: N(u;)NV(Pj)=0or Nu)nV(P;) =0
Since u; is noninsertible and N(u;) C V(P), by applying Lemma 1
to P — (P U P;), we have dp_(p,up,)(ui) < E=BEPAES ang dp () <
|Pi| = 1. As dp;(u;) = 0, d(u;) = dp_(pup;)(u:i) + dp,(u;). Choose h €
V(H) such that dy(h) < D(H). Then by Lemmas 1 and 2, dp(h) <
|P=(P,UP;) |43
5 .

o2(G)

Z

ow

< du) +d(h)
= |P- (PUI’:,)|+|P|+D(H)+2

Since [P;| > D(H) + 1, 02(G) < |P| +1; a contradiction. Thus N(u;)N
V(P;) # 0. Symmetrically, N(u}) NV (F;) # 0.

Case 2: N(u;)NV(P;) #0 and N(u}) NV (P;) # 0.

Case 2.1 There are some z # w in V(P;) such that N (2)NV (P(z;, w;]) #
0 and N(w) N V(P[u},zi41)) # 0.

Choose such z and w with |P(z,w)| as small as possible and, subject to
that, choose b; € Np(z) N P(z;,u;] and b € Np(w) N Plu}, zi41) such that
|P(zi, bi]] + | P[b}, Ti+1)]| is as small as possible.

Define P’ = Plv1,z;)z: Pyziv1P(Tiy1,2)2bi P(b;, b;)b’wP(w vg] when
z € P(zj,w) or P’ = Plv1,z:)zi Pazis1 P(zis1, wywbP(b}, b;)b;2P(z, vi]
when w € P(z;, z), see Figure 5.

xi bi bi

Xisl

Figure 5

It is easy to check that P’ is a requisite path. By the choices of
w, 2, b;, b} and Lemmas 3 and 4, N(u;) N V(P(w, 2)) = @ and all vertices in
V(P(z;,b;))UV(P(b}, z;+1)) can be inserted into P’. Thus by the maximal-
ity of P, we can conclude |P(w, z)| > D(H) +1 (or |P(z,w)| > D(H) +1).



As in Case 1, we choose h € V(H) such that dy(h) < D(H). Then

02(G) < d(u;) + d(h)
P— P.uP wal+d | \pl_q 4 [P-(P;UP2(w ,2))|+3 + D(H)

|P - (P U P(w,2))| + |P| + D(H) + 2.

I IA

Thus, 02(G) < |P] + 1; a contradiction.

Case 2.2 There is only one vertex, say z, in V(P;) such that zu; €
E(G), zu € E(G) and N(y)N(V(P;)—{z}) = D forevery y € V(P(z;, u;))U
V(P(u, Zit1))

Symmetrically, we may assume that there is only one vertex, say m, m

V(FP;) such that mu; € E(G), mu; € E(G) and N(y')N(V(P;) —{m}) =
for every y' € V(P(z;,u;j)) U V(P( v Zj41))-

If |P;| > D(H) + 2, then, 1gnormg z, we still have D(H) + 1 available
vertices all of which are not adjacent to both v; and u{. By using the same
method as that in Case 1, we can get |P| > 02(G) — 1, a contradiction.

If | P;| = D(H) + 1, symmetrically, we may assume that |P;| = D(H) + 1.
This implies that u; and u are the first and last vertices in P;, respec-
tively. Similarly, u; and  are the first and last vertices in P;, respectively.
Consider P| = Plv1, u;)uizP (2, uj)uimP(m, z;)z; Pyz;s1 P(€j41,vx] and
P} = Plvy, m)mu;P(uj, z)zuiP(uj, 2;)2; Py 41 P(zj+1,vi]. See Figure
6. Clearly, P{ and P; are both requisite paths. From P], we see that
| P(us, m)| + | Pluj, 2)| > D(H) + 1, otherwise |P{| > |P|. From P}, we see
that |P(m,u)| + |P(2,u;]| 2 D(H)+ 1, otherwise |P;| > |P|. Including
m and z in our calculation, we have that |P;| + |P;| > 2D(H)+2+2 =
2D(H) + 4 which contradicts the fact that |P;| = |P;| = D(H) + 1. o

Figure 6 H
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