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Abstract

A magic square of order n is an n X n array of integers from
1,2,...,n% so that the sum of the integers in each row, column and
the diagonal is the same number. Two magic squares are said to be
equivalent if one can be obtained from the other by rotation or reflec-
tion. If every entry a of a magic square M of order n is replaced by
n?+1—a, then we obtain the complement of M (which is also a magic
square of order n). A magic square is said to be self-complementary
if it is equivalent to its complement. In this paper, we prove a struc-
tural theorem which characterizes self-complementary magic squares.
Further, we present a method of construction for self-complementary
magic squares of even order. This construction, together with the
structural theorem and some known results on magic squares im-
ply the existence of self-complementary magic squares of order n for
every n 2 3.

1 Introduction

A magic square of order n is an n x n array of integers from 1,2,...,n2

so that the sum of the integers in each row, column and the diagonal is
the same number. The common sum is called the magic sum. It is easy
to see that the magic sum of a magic square of order n is S, = ﬂ%l
Magic squares are old mathematical objects and because of their enticing
nature, not only they have been the subject of much discussion in recre-
ational mathematics, but they have also been explored by the professional
mathematicians.

Two magic squares M; and M are said to be equivalent if one can
be obtained from the other by rotation or reflection. This is equivalent to
saying that o(M;) = M, for some ¢ € D4 where D, denotes the dihedral
group of order 8.
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Let M be a magic square of order n. If every entry a of M is replaced
by n? + 1 — a, then the resulting square is denoted by M and is called the
complement of M. It turns out that M is also a magic square of order n.
This is easy to see since the sum 3_(n?+ 1 —a), when taken over all entries
a in a row or column, or diagonal is equal to the magic sum S,,.
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(a) (b)

Figure 1: A magic square of order 4 and its complement

Figure 1(a) demonstrates a magic square of order 4 whose complement
is depicted in Figure 1(b). Note that, for any magic square of order =,
M + M is the matrix (n? + 1)J, where J, denotes the n x n matrix in
which all the entries are equal to 1.

A magic square M is said to be self-complementary if M is equivalent to
its complement. Hence, one can say that M is a self-complementary magic
square of order n if there exists a mapping o € Dy such that M + o(M) =
(n? + 1)J,,. In this case, o(M) is the complement of M. For example, the
magic square of Figure 1(a) is not self-complementary whereas the magic
square M, of Figure 2(a) is self-complementary since it is equivalent to its
complement (which is shown in Figure 2(b)).
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Figure 2: A self-complementary magic square M; of order 4

The magic square M, depicted in Figure 3 is another example of a
self-complementary magic square. Note that, for the magic square M;, we
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have p(M;) = My where p denotes the central vertical reflection of M,
whereas for the magic square My, we have 7(Mjy) = M, where 7 denotes a
180-degree rotation.
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111825 2 (9

Figure 3: A self-complementary magic square M; of order 5

In Section 2, we shall show that all self-complementary magic squares
have these properties (see Theorem 2). That is, if M is a self-complementary
magic square of order n, then either M is the reflected copy (vertically or
horizontally) of M or else M is a 180-degree rotation of M.

In Section 3, we shall present a construction for self-complementary
magic squares of order n where n is even. This construction, together with
the characterization theorem of Section 2 (Theorem 2) and some known
results on magic squares imply the existence of self-complementary magic
square of order n for every n > 3.

2 Characterization

We begin, in this section, by describing two types of magic¢ squares of order
n and show that any self-complementary magic square of order n must
belong to one of these two types.

Let M = (a;,;) be a magic square of order n where a;; denotes the
integer at the (%, j) position (or the (¢, j) — cell).

Under a 180-degree rotation =, the position (,5) of M is mapped to
the (n —i + 1,n — j + 1) position. We shall call (n —i+1,n— 37+ 1)
the w-rotation position of (i,j). Then M is said to be ro-symmetrical if
whenever two entries are in their w-rotation positions, then their sum is
equal to n? + 1. That is, a;j + @n—it1,n—j+1 =n2+1forall 1 < 4,5 < n.
As such, for a ro-symmetrical magic square M of order n where n is odd,
the integer @ must be at the central cell of M. Moreover we see that
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M + m(M) = (n? + 1)J, and this means that 7(M) is the complement of
M which in turn implies that M is self-complementary.

Under a central vertical reflection p, the position (%, j) of M is mapped
to the (¢,n — j + 1) position. We shall call (¢,n — j + 1) the p-reflection
position of (i,7). Then M is said to be ref-symmetrical if whenever two
entries are in their p-reflection positions, then their sum is equal to n? + 1.
That is, a;j + @in-j+1 =n’+1forall 1 <i,j <n.

Note that in the above definition, we could use a central horizontal
reflection instead. In this case, the horizontal reflection position of (3, j) is
the position (n — i + 1, ).

Since M is a ref-symmetrical magic square of order n and M + p(M) =
(n? + 1)Jy, it follows that p(M) is the complement of M and M is self-
complementary.

The preceding observations lead to the following theorem.

Theorem 1 Let M be a magic square of order n. If M is ro-symmetrical
or ref-symmetrical, then M is self-complementary.

The rest of this section is to prove that the converse of Theorem 1 is
also true.

Theorem 2 Let M be a magic square of order n.

(i) Suppose n is odd. Then M is self-complementary if and only if M
is ro-symmetrical.

(it) Suppose n is even. Then M is self-complementary if and only if
either M is ref-symmetrical, or else M is ro-symmetrical in which
case n = 0(mod 4).

PROOF: Let M(k x k) denote the central k x k subsquare of M.
Let ¢ be a mapping defined by

p(z) =T

forall z € {1,2,...,n%}, where T =n?+ 1 — z. Also, let (M) = M.
Since M is self-complementary, there exists o € D4 such that o(M) =

p(M).
(i) Suppose n is odd.
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Then k is odd. As such, since cp(“—zzi'—l) = %l, we see that the integer
2241 nmust be at the (2,2)-cell of M(3 x 3) for any o € Dj.

Next, we shall look at the entries in the corner cells of M(3 x 3).

Suppose a is the entry at the (1,1)-cell of M(3 x 3). Since o(M) =
w(M), @ must be at the corner cell of M(3 x 3). There are only two cases
to be considered.

Case (1) @ is at the (1,3)-cell or the (3,1)-cell of M(3 x 3).

Without loss of generality, assume that @ is at the (1, 3)-cell of M(3x3).
In this case, if b is the entry at the (3,1)-cell of M(3 x 3), then b can only
be at the (3,3)-cell of M(3 x 3). But this implies that ¢ has to be the
reflection along the central vertical line of M.

Now suppose z is the entry at the (1,2)-cell of M(3 x 3). Since T can
neither be at the (2, 1)-cell nor at the (2, 3)-cell of M(3 x 3), it follows that
T can only be at the (3,2)-cell of M(3 x 3). But then o(M) # o(M), a

contradiction.

Case (2) ais at the (3,3)-cell of M(3 x 3).

In this case, if b is the entry at the (1,3)-cell of M(3 x 3), then b can
only be at the (3, 1)-cell of M(3 x 3). But this implies that & has to be a
180-degree rotation on M.

It follows that if z and y are the entries at the (1,2)-cell and (2, 1)-cell
of M(3 x 3) respectively, then T and 7 could only be at the (3, 2)-cell and
(2, 3)-cell of M(3 x 3) respectively. Hence M (3 x 3) takes the following
form:

a T b

2 -
y |27
b z a

Now, if w is the entry at the (¢, 7)-cell of M, then @ must be at the
(n—1i41,n— j+ 1)-cell of M because o is a 180-degree rotation on M.
But this means that M is a ro-symmetrical magic square.

(ii) Suppose n is even.
Consider M (2 x 2), the central 2 x 2 subsquare of M.

Suppose @ is the entry at the (1,1)-cell of M(2 x 2). Since o(M) =
(M), @ must be at the corner cell of M(2 x 2). There are only two cases
to be considered.
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Case (1) @ is at the (1,2)-cell or the (2,1)-cell of M(2 x 2).

Without loss of generality, assume that @ is at the (1,2)-cell of M(2x2).
In this case, if b is the entry at the (2,1)-cell of M (2 x 2), then b can only
be at the (2,2)-cell of M(2 x 2). But this implies that ¢ has to be the
reflection along the central vertical line of M.

Now, if w is the entry at the (%, j)-cell of M, then @ must be at the
(i,n — j + 1)-cell of M because o is the reflection along the central vertical
line of M. But this means that M = (M) is obtained from M by a central
vertical reflection. That is, M is a ref-symmetrical magic square.

Case (2) @ is at the (2,2)-cell of M(2 x 2).

In this case, if b is the entry at the (1, 2)-cell of M (2 x 2), then b can
only be at the (2, 1)-cell of M (2 x 2). But this implies that o has to be a
180-degree rotation on M.

Moreover, if w is the entry at the (%, 5)-cell of M, then @ must be at
the (n — i+ 1,n — j + 1)-cell of M because o is a 180-degree rotation on
M. But this means that M is a ro-symmetrical magic square. It is well-
known that a ro-symmetrical magic square of order n exists if and only if
n # 2 (mod 4). (See page 203 of [1]). Hence n = 0 (mod 4). O

Remark 1: We now know that for a self-complementary magic square of
order n, any two integers a and b from {1,2,...,n%} which add up to be
n? + 1 must always be either at their 7-rotation positions or else at their
p-reflection positions depending on whether it is ro-symmetrical or ref-
symmetrical. Therefore, in describing a self-complementary magic square
of order n, we need only to describe the locations of those positive integers
a<| 5,;] since the rest will be uniquely determined by their corresponding
positions. This is illustrated by the example shown in Figure 4 which is a
ref-symmetrical magic square of order 6.

3 15 16
1 9 10
11 2 |12
8 6 17
7 5 18
131 4|14

Figure 4: A ref-symmetrical magic square of order 6
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3 Construction

Note that, in the literature, ro-symmetrical magic squares are also called
symmetrical or associative (or regular) magic squares. It is well-known
that De la Loubére’s method produces a magic square of order n which is
ro-symmetrical if n is odd. If n = 0 (mod 4), then the method described
on pages 199-200 of [1] produces a ro-symmetrical magic square of order
n. As far as we know, the construction of ref-symmetrical magic squares of
order n seems to be unknown. The purpose of this section is to present a
method of construction for ref-symmetrical magic squares of order n when
n 2> 4 is even,

Theorem 3 If there is a ref-symmetrical magic square of order m, then
there is a ref-symmetrical magic square of order n + 4.

Proor: By construction. Let M denote a ref-symmetrical magic
square of order n whose vertical reflection is M. Then n is even by Theo-
rem 2. We shall construct a ref-symmetrical magic square of order n + 4
using M.

For this purpose, let M* denote an (n+4) x (n+4) square that has been
partitioned as shown in Figure 5. Place the integers 3n+1,3n+2,...,3n+8
in M* as shown.

Now, add 4n + 8 to each entry of M and place the resulting square
(denoted by M + (4n + 8)) at the central n x n subsquare of M*.

Arrange the 2n integers 1,2,...,2n into four columns c;,cg,c3 and cq4
having equal number of integers such that the sums of numbers in ¢; and

ca (respectively c3 and c4) are equal.

Then put those integers in ¢, (respectively c) in the column L, (respec-
tively R;) such that no integers from ¢; and ¢, are put in those positions
which are p-reflectional to one another. Do the same to the integers in
c3 and ¢4 by putting them in the columns L, and R; respectively. One
easy way of doing this is to put all of the integers from ¢; (respectively c3)
in the upper half of L; (respectively L2) and all of the integers from ¢,
(respectively c4) in the lower half of R, (respectively Rs).

For each i = 1,2,...,n, let A; = {2n + ¢,4n + 9 — i} and put the
two integers from A; in the same column that belongs to T, T, By, or B
such that no two integers from two different A}s are put in those positions
which are p-reflectional to one another. One easy way to do this is to
put Aj, Az,...,Ag in the 7 left-hand most columns of T; and T and put

2
Ag+1,Ag42,..., A, in the § right-hand most columns of B; and Bs.
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3n+1 | 3n+4 Ty
T 3n42 3n+3
M* = L Lo M+ (4n + 8) Ry Ry
n+8 3n+5 B>
B, 3n+7 3n+6

Figure 5: The square M* and its partition

It is then routine to check that the resulting square is a ref-symmetrical
magic square of order n + 4 whose vertical reflection is its complement. O

Remark 2: In the above construction, we may adopt the following ar-
rangements for ¢, ¢g, ¢3, ¢4 (although other arrangements are also possible).

When n = 0 (mod 4), let

C1 C2 C3 C4
1 2 3 4
8 7 6 5

2n—-7 2n—-6 2n—-5 2n-4
2n 2n—1 2n—2 2n-3
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and we see that all the ¢}s have equal sum ﬂ?-’;—"'ﬂ. Alternatively, we may
adopt the following arrangement

(4] c2 Cc3 Cq
1 2 5 6
4 3 8 7

2n—7 2n—6 2n-3 2n-2
2n—-4 2n-5 2n 2n -1

in which case, we see that ¢; and c; (respectively c3 and c4) both have sum
2 5
equal to 22737 (respectively 2nF5%),

When n = 2 (mod 4), let

2 A 3 Cq
1 2 3 4
8 7 6 5
9 10 11 12

2n—-11 2n-10 2n—-9 2n-8

2n—-4 2n-5 2n-6 2n-7

n-3 2n-2 2n-1 2n
and let ¢; = c’l, cq = c; Further, let c2 and ¢3 be obtained from c; and c;
respectively by lntercha.ngmg exactly one pair of integers of the form 8i —
and 8 — 2 (from ¢, and ¢y respectively) (for example 7 and 6 or 15 and

14). Then it is easy to see that ¢; and ¢ (respectively ¢3 and ¢4) both have
sum equal to —”‘"—' (respectively ——ﬂ'ﬁ).

The following examples serve to illustrate the proof of Theorem 3.
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13[(16] 9 |10
24123 14 | 15

31 28141 2
32 30 517
20 | 17 11| 12
221211918

13116 9 |23

1211114 |15

20|17 1 24 21
10 22119118

Figure 6: Two self-complementary magic squares of order 8.

Example 1: Let M denote the ref-symmetrical magic square of Figure 2.
Then n = 4 and we may arrange the integers 1,2,...,8 into four columns
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c1, ¢, c3,¢4 in the following way.

Also, A1 = {9,24}, Ay = {10, 23}, A3 = {11,22} and A, = {12,21}. With
these we can obtain several ref-symmetrical magic squares of order 8. Two
such squares are shown in Figure 6. Here, the square bounded by the thick
lines is the square M + 24.

Example 2: Let M denote the ref-symmetrical magic square of Figure 4.
Then n = 6 and we may arrange the integers 1,2,...,12 into four columns
¢1,¢2,C3,¢4 in the following way.

1 C2 €3 ¢4

1 2 3 4
8 6 7 5
9 10 11 12

Also, A, = {13,32}, A, = {14,31}, A3 = {15,30}, A, = {16,29}, 45 =
{17,28} and Ag = {18,27}. With these we can obtain several ref-symmetrical
magic squares of order 10. One such square is shown in Figure 7.

Remark 3: (i) Note that, when n = 0, the square M* of Figure 5 is a
ref-symmetrical magic square of order 4. Here M is an empty square.

(ii) The method of construction in the proof of Theorem 3 is inde-
pendent of the magic square M of order n. Moreover, when a central
vertical reflection is made to the central square M, we obtain another ref-
symmetrical magic square of order n + 4.

(iii) Since there is a ref-symmetrical magic square of order 4 (for exam-
ple the square mentioned in Remark 3(i)) and one of order 6 (for example
the square of Figure 4), by Theorem 3, we can use these squares to construct
ref-symmetrical magic squares of any even order at least 4.

(iv) Since ro-symmetrical magic squares of any odd order and any order
a multiple of 4 can be constructed, Theorems 2 and 3 lead to the following

result.
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19122113 (1415
3213130 20| 21
1] 3 35 47 48
8|7 33 41 42
9 |11 43 | 34 | 44
40 38 49 412
39 37 50 516
45|36 |46 12 [ 10
26 | 23 16 | 17 | 18
29 (28 | 27|25 ( 24

Figure 7: A ref-symmetrical magic square of order 10

Corollary 1 For every integer n > 3, there is a self-complementary magic
square of order n.
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