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Abstract

The paper begins with a simple circular lock problem that shows how
the Combinatorial Nullstellensatz relates to the discrete Fourier Transform.
Specifically, the lock shows a relationship between detecting perfect match-
ings in bipartite graphs using the Combinatorial Nullstellensatz and detecting
a maximum rank independent set in the intersection of two matroids in the
Fourier transform of a specially chosen function. Finally, an application of
the uncertainity principle computes a lower bound for the product of perfect
matchings and the number of independent sets.

1 Introduction

Imagine an n x n circular lock consisting of n equal-sized wheels placed one on
top of the other where each wheel has n cells. All of the cells are the same size
and are filled with a complex number. Each wheel rotates independently, both
clock-wise and counter-clockwise, but only in discrete intervals corresponding to
the cell sizes so that, after rotations are complete, cells align forming columns. A
setting of the lock is such a rotation of the wheels. Because a setting of the lock
means that the cells align, each setting determines (up to a rotation of all wheels
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Figure 1: A setting on a circular lock and the corresponding matrix.

by the same number of cells) an n x n matrix whose ijth entry is simply the entry
of the jth cell of wheel . A setting of a 4 x 4 circular lock is shown in Figure 1.

A circular lock is unlocked or opens if its wheels are placed into a setting
in which the corresponding matrix has nonzero determinant; otherwise, the lock
remains closed. This raises a few questions. Can a given lock be opened at all? If
so, which setting opens it? How many settings are there that open it? Is there a
small set of “master” settings to open all locks?

As we shall see, the first two “circular-lock™ questions arise naturally from the
consideration of a polynomial designed to detect perfect matchings in bipartite
graphs and its Fourier transform which detects maximum cardinality independent
sets in the intersection of two specific types of matroids. The circular locks this
paper investigates are the ones whose rows are coefficients of polynomials with
zeros that are all nth roots of unity. The third question is discussed in the paper in
the last section while the fourth question is an area of future research.

The motivation to study perfect matchings in bipartite graphs in this setting
arose from our frustration in applying the Combinatorial Nullstellensatz to a host
of famous open problems. The Combinatorial Nullstellensatz is a tool that detects
the existence of a combinatorial object by showing that a certain polynomial does
not vanish over some domain.

The most applicable version of the Combinatorial Nulistellensatz is

Theorem 1 (Combinatorial Nullstellensatz [1]) Let F be an arbitrary field, and
let f be a polynomialin F[zy, ..., x| Suppose the degree of f is 3 .-, ti, where
each t; is a nonnegative integer. If the coefficient of []i., z¥ in f is nonzero,
then for any subsets S1,8Ss,...,Sy of F satisfying |S;| > t;, there are elements
s1 € 81,82 € Sy,...,8, € Sy, such that

f(slys21'--33n) %0.

The Combinatorial Nullstellensatz is closely related to Fourier transforms over
a finite group and this relationship will be explored later in this paper. The Com-
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binatorial Nullstellensatz has been employed successfully in a variety of circum-
stances, but there is still no clear understanding of which circumstances are favor-
able to its application despite the many problems that are apparently prime can-
didates. One of the main purposes of this paper is to show how it can be applied
to the problem of detecting perfect matchings in bipartite graphs. Other problems
for which it seems aptly suited include: the problem of showing that every tree
has a p-valuation (see [S]), showing that every odd order latin square has a latin
transversal [6], and proving the existence of a hamiltonian cycle in middle levels
of the boolean lattice, just to name a few of the highly symmetric, famous and still
open problems.

In each of these problems it is straight forward to construct polynomials that
vanish completely on some appropriate domain if and only if the desired com-
binatorial object does not exist. The main source of our frustration is the real-
ization that the polynomials in question are presented in compact, factored form;
determining whether a nonzero coefficient appears in its expansion (modulo an
appropriate ideal) is a formidable problem (in general, this problem is NP-hard).
Most successful applications of the nulisteliensatz technique so far, when applied
to problems with more than one instance of each size, have been to problems
with the special property that all instances of a given size determine a collection
of polynomials that have a common monomial with a nonzero coefficient; thus
proving the monomial is nonzero for one canonical instance shows it is nonzero
for others. Many natural problem formulations do not share this property. The
natural formulation of the p-valuations-for-trees problem, for example, does not
have this property. Similarly, the natural formulation of the perfect-matching-in-a-
bipartite graph problem also does not, as we shall see. Because this latter problem
is easy from a complexity point of view (which is why we chose it for investiga-
tion), one would expect a polynomial-time algorithm to find a nonzero coefficient
in the expansion of the corresponding encoding polynomial, if such a coefficient
exists. The matroid-intersection algorithm suffices for this purpose, as we shall
see in the second section.

We hope that further investigation will provide a sharpened form of the Combi-
natorial Nullstellensatz, perhaps incorporating elements of the matroid-intersection
algorithm. It seems very likely a nice formulation along these lines awaits dis-
covery. This paper demonstrates that such a formulation applies in the perfect-
matching-in-a-bipartite graph problem. Formulating and solving this problem in
the nullsellensatz fashion has shed some light on the relation between the number
of perfect matchings and the number of maximum independent sets in the inter-
section of certain matroids via the uncertainty principle, as formulated through the
Fourier transform on a finite group. We explain this in the last section.

463



2 Circular Locks from Bipartite Graphs

In this section we formalize our “Combinatorial Nullstellensatz” approach to de-
tecting perfect matchings in bipartite graphs. It should be noted that other ap-
proaches are possible (for example using other polynomials or domains), but the
approach we take leads naturally to the discrete Fourier transform and so shares
many of its desirable qualities.

Let C denote the field of complex numbers and w = €2™/™ where i = /—1.
For a positive integer n, let 2, = {w?,...,w™ 1}, be the set of nth roots of unity.

Consider a bipartite graph G with vertex set AUB, where A = {0,...,n—1}
and B = §,,, and edge set E C {{a,b} : a € A,b € B}. Recall that a marching
in a graph is a collection of disjoint edges. A matching is perfect if every vertex
of the graph is contained in an edge of the matching. A classical problem in graph
theory is to characterize bipartite graphs that have a perfect matching. Numerous
theorems (e.g. Hall’s theorem) and algorithms (e.g. the alternating path algorithm)
have been developed to solve this problem.

Fori=0,...,n — 1, introduce a variable z; and a univariate polynomial
gi(z)= [ (m:i-u),
{iwi}¢E

where it is understood that the product is 1 if vertex ¢ is adjacent to all vertices
in B. The polynomial G; has degree at most n — 1 as long as vertex ¢ is not an
isolated vertex; however, as an isolated vertex does not admit a perfect matching
the results contained in this paper will not apply. We will assume there are no
isolated vertices for the rest of this paper.

Recall the Vandermonde identity,

n—1
V(z) = V(zo,...,@n-1) = ] (@j—z) = sign(m) [] 7,

0<i<j<n TESH =0

where S, is the set of permutations of 0,...,n — 1.
There exists a perfect matching in G if and only if the polynomial

n—-1
fe(@o,..szn1) = [l (&5 - =) [] 9i(es)
0gi<j<n i=0
is nonzero for some input from 7. We shall use f(z) as an abbreviation for
fe(zo,..-,zn—1) or for clarity about which graph is being discussed, fc(z).
Following common usage, for any & € Z7, we shall use  as an abbreviation for
H:ol T3
Expand the polynomials g; into sums,

n—1
gi(z)= ] (@i —w?) = iz,

{iw/}€E j=0
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Figure 2: A circular lock derived from its bipartite graph.

and let Lg = [¢;;] be the n x n matrix of coefficients. We view L¢ as the circular
lock derived from G and correspondingly G, is the graph related to the lock L.
Given any a € Z7, let L[] denote the matrix obtained from L by rotating, for
eachi =1,...,n, row ¢ to the left a; units with wrap around.

Observe that G, does not depend on the setting of the lock Lg because, for
all¢,j € {0,...,n — 1}, the value w7 is a root of g;(z;) if and only if w7 is a root
of z¥g;(z;) modulo z? — 1, for all integers k. Though many locks determine the
same bipartite graph by rotating the rows, each bipartite graph G on the vertices
{0,...,n—1}UR, can be associated with a canonical circular lock. This lock is
the one in which, before rotation, the entries of the cells on wheel  correspond to
the coefficients of the polynomial having precisely those elements of §2,, as roots
that coincide with the neighbors of vertex ¢ in G (see Figure 2).

Define Z, to be the ideal in C|zo, ..., Z,—1] consisting of those polynomials
that vanish on all inputs from the nth roots of unity; that is f € Z,, if and only if

n—1

f(a) =0, forall a € Q7. In [6] Kézdy and Snevily show that Z,, = (z} — 1)7/.
Theorem 2 A circular lock Lg opens if and only if G, has a perfect matching.
Proof. Recall that there exists a perfect matching in G = G, if and only if the

polynomial

n—1
fo(z) = V(z) [] 9s(z:) (1)
=0
is nonzero for some input from Q). Now consider the polynomial
g(z) = fe(z) modulo Z,,.
We first prove that

g9(@) = ) det(Lla))z* @

a€Ln

465



To prove (2), it suffices to prove that, for all @ € Z7,, the constant coefficient
of z=%g(zx) modulo Z,, is det(L[c]) (all exponents are reduced modulo n). Now
the computation

n—-1
z™%g(z) V(z) (H z7 ™ gi(zi)) modulo 7, 3)

=0

shows that multiplying g(z) by == has the effect (modulo Z,) of shifting, for all
1, the coefficients of each g;(z;) to the left by o; units in the matrix L. To obtain
the constant coefficient of £~%g(z), observe that the Vandermonde polynomial

expands into sign(m) TT"! zr® so0, in order to obtain a constant coeffi-
P TESy g i=0 ““i

cient, a monomial must be chosen from each of the factors z;** g;(x;) that appear
in (3) in such a way that no two monomials have the same exponent; that is, we
must select a transversal in the matrix L[c]. This, along with the weighting of per-
mutations by signs that appears in the expansion of the Vandermonde polynomial,
means that the constant coefficient of z~g(z) modulo Z,, is det(L[a]).

Because g(x) is equivalentto f(z) which has the form 1, itis clear that g(a) #
0, for some a € 7, if and only if G, has a perfect matching. On the other hand,
form 2 of g(z) shows that g # 0 modulo Z,,, if and only if det(L{a]) # O, for
some a € Z7; the theorem follows. o

As an example of Theorem 2, the circular lock depicted in Figure 1 corre-
sponds to the complete bipartite graph K 4 minus the edges of a perfect match-
ing; so it opens. Indeed, the setting obtained by rotating the bottom two rows by
two units to the right opens the lock. Many other settings open the lock too. |

3 Matroids and Matroid Intersection

Theorem 2 gives an efficient means to test whether a given circular lock opens,
but gives no efficient means to find which setting opens a circular lock that does
open. Efficiently finding such a setting can be accomplished by employing ma-
troid intersection.

For our purposes it suffices to mention two fundamental examples of ma-
troids. First, if E is a set of vectors over a field F, and Z contains the empty
set together with those subsets of E that form linearly independent sets of vec-
tors over F, then (E,T) is a matroid; such a matroid is called a vector ma-
troid. Second, if E is a finite set with a partition into subsets Fj,...,E; and
I={ACE:|ANE; <1, foralli=1,...,t}, then (E,T) is a matroid; such
a matroid is called a partition matroid.

The matroid intersection algorithm, as can be seen in [9], computes the maxi-
mum cardinality of an independent set common to two matroids. The classic book
by Lawler [7] and the more recent book by Cook, Cunningham, Pulleyblank, and



Schrijver [2]) contain introductions to polynomial-time matroid intersection algo-
rithms which we use here.

Theorem 3 Let G(A, B; E) be a bipartite graph and f¢ its corresponding poly-
nomial as defined in (1). The settings that open the circular lock L¢ correspond
to nonzero coefficients in the polynomial fc and such a setting (if it exists) can be
found in polynomial time via matroid intersection.

Proof. Consider a circular lock L = Lg, and its corresponding polynomial
fe(z) as in equation (1). As in the proof of Theorem 2 is suffices to show it
is true for the equivalent equation g(z) of the form given in equation (2). The
coefficients of g correspond to determinants arising from rotations of the rows of
L. Letry,...,r, be the row vectors of L. Define E; as the set of the n vectors
obtained from r; by cyclically permuting coordinates. Now define two matroids,
M, and M on the common ground set E = U?_, E;. The matroid M, is the
vector matroid on E in which a set of elements is independent if and only if they
are linearly independent (over C). The matroid M, is the partition matroid on E
in which a set of elementsS C FE is independent if and only if [SN E;| < 1,
forall j = 1,...,n. Now there is some o € Z[ such that det(L[a]) # 0 if
and only if there exists a common independent set in M; and M> with cardinality
n. Detecting the existence of such an independent set (and constructing such a
set, if it exists) can be accomplished in polynomial time by Edmond’s Matroid
Intersection Algorithm., °

Theorem 3 gives an efficient means of finding a nonzero coefficient in the
expansion of g(z). Detecting perfect matchings in bipartite graphs via matroid
intersection is not particularly novel. However, the interesting aspect of Theorem
3 is that it shows the connection between the coefficients of g that correspond to
cardinality n sets in the intersection of M; and M, and the valuations of g over
§27 that correspond to perfect matchings in G .

4 The Fourier Transform on )"

This section provides background material and formulas that will be important
for the result in the next section. In particular, equation (5) is necessary for a
short proof of Theorem 4. In [11], Terras provides much more background on this

subject.
The Fourier matrix of order n is the n X n matrix
1 1 1 cen 1
. 1 E 62 e En—l
111 g ¢4 52(71—1)
F vn : : : :
1 g1 gn=1 ... gla-D)(n-1)
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where £ = 2"/ and i = /=1. Observe that F, is symmetric and invertible.
The inverse of F, is its conjugate transpose, denoted F,;, and can be obtained
from F, by replacing £ with w = e27i/",

The Vandermonde matrix is defined as

1 1 1 e 1
Zg 21 29 v Zpn—-1
2 2 2
V(Zo, ey Zpel) = <] 4 23 Zpn-1
n—-1 n—1 n—1 n—1
%0 Z ) Tt Zp

The Fourier matrix F,, can be written as F, = n~/2V(¢0,¢!,..., 67" 1) by
making the appropriate substitutions in the Vandermonde matrix.

It is well known that if p(z) = E;.‘;Ol a;27 is a polynomial of degree at most
n — 1, then p(z) is determined uniquely by its value at » distinct points. In partic-
ular, if these points are the nth roots of unity, then

ag P(wf)
12 F a:l _ P(w )
Gt plw™1)
from which it follows that
ao p(w°)
a _ n'l/ZFn P(‘f’l) @
an.—l P(w;‘-l)

Let G = V (A, B; E) be a bipartite graph, where A = {0,1,...,n—1},B =
Q... Recall from Section 2 that

n—1
fo(zo,...,en1) = [[ (&5 — =) [] gi(es)
0gi<j<n =0

is nonzero for some input from Q7 if and only if there is a perfect matching in G.
Now the Fourier transform of f = fg : Q% — C is the function

o)=Y fle)x(a),

acQp

where x is an element of the dual of Q7. Because 7 is abelian, the dual of
Q7 is isomorphic to itself. If @ = (@1,...,as) and x = (x1,...,Xn) Where



xi = w" (¥, then
n
x(e) = [T ™.
i=1
Simplifying the Fourier transform reveals a result that will prove useful later
in the paper. Define P, as

o)1 if 7(z) = 4,
Pr=Ipisl = {0 otherwise.
Then,
fx) = ) fle)x(@)
agNn
= Z det(V(aa,...,an)) (Hgi(a,-)) (H a{r(i))
aEQn i=1 i=1
= Y det(V@™,...,w™) (H<w"*)-f“)g,~<w"*>)
TESH i=1
TESH i=1
= 3 det(n'/?Fy) det(Pr) (ﬁ(w"‘)-"“gi(w"*))
TESH i=1
= p/? det(F,) Z det(Py) (ﬁ(w"‘)”(i)gi(w"‘)) .
TESy i=1
Because the remaining sum is a determinant,
- det(Pr) (H(w"‘)-'(*’gi(w"*)) =
TESn i=1
(WO)—r(l)g1 (wO) e (wO)-—r(n)gn(wO)
W) Mgwl) - (W), (wh)
det W) Mg w?) . - (W) Mg, (w?)
(w"'l)"(i)gl(w""l) (wn—l)—r(r;)gn(wn—l)
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and because det(AB) = det(A) det(B),

@) Wg(w?) (@) T Mgn(w?)

@) W) o @) (w)

fix)=n"?|det | F (W?) Mgy (w?) (W?) "M gn(w?)
@) e @) g

Now from (4) the main observation follows:
F(x) = n" [det(L{r(z) + 1)) ®)

where L is the n x n matrix defined in section 2 and L[g] is L with the approriate
row rotations.

5 Bounds from the Uncertainty Principle

The uncertainty principle states roughly that, “a nonzero function and its transform
cannot both be highly concentrated.” Applied to Fourier analysis over a finite
group, this principle has been interpreted in this way. Let G be a finite abelian
group and f a nonzero function f : G — C. Donaho and Stark [4] proved that

supp(f)supp(f) > |G, (6)

where supp(f) denotes the support of the function f, and £ is the transform of £.
Matolcsi and Sziics [8] (see also Diaconis and Shashahani [3]) obtained a similar
formula for a compact group G and a nonzero mapping f, namely,

supp(f) (Z dim? p) >6l,

where the sum is taken over irreducible representations p of G that have a nonzero
coefficient in the unitary representation of f.

In this section we exploit the connection established between opening settings
of the lock Lg and the Fourier transform of f¢ to give bounds on the number of
perfect matchings in G. Note that computing the number of perfect matchings
in a bipartite graph is a # P-complete problem as shown by Valiant ([12]) and is
equivalent to a permanent computation. Thus providing bounds on the number of
perfect matchings amounts to bounding a permanent.

There are other known bounds for the number of perfect matchings in cer-
tain classes of graphs, such as the bound proven by Voorhoeve in [13] for cubic
bipartite graphs which was improved by Schrijver in [10] for k-regular bipartite
graphs on 2n vertices. The bound in this paper is different because it works for
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all bipartite graphs that have at least one perfect matching. However, finding a
bound is not the main focus of this paper. In proving the main result of this paper
it shows how the Combinatorial Nullstellensatz and the discrete Fourier transform
can be used together to solve problems for which the Combinatorial Nullstellesatz
seems applicable, such as bounding the number of perfect matchings in bipartite
graphs. The hope of the authors is that similar methods will work for the problems

discussed in the first section.
Once again, consider a bipartite graph G(A, B; E) with vertex set AU B,
where A = {0,...,n — 1} and B = Q,,, and edge set

E C {{a,b}:a€ Abe B}
whose elements are the edges of G.

Theorem 4 Let L be a circular lock derived from a bipartite graph G. If G has
at least one perfect matching, then the product of the number of perfect matchings
in G times the number of rotations that open the lock L is at least n™.

Proof. Apply the uncertainty principle for abelian groups to the function f¢ and
its transform over the group Q25;. Simply observe that the definition (1) of fg gives

supp(fe) = number of perfect matchings of G,

and observation (5) shows that

supp(fe) = number of rotations that open L.
Because 27} is an abelian group of order n™, the result follows from Donaho and
Stark’s version of the uncertainty principle (6). o

Let m(G) denote the number of perfect matchings in the bipartite graph G
and 7(G) the number of rotations that open the lock Lg. Theorem 4 states that
m(G)r(G) > n™, provided that m(G) # 0. Clearly equality is achieved when
G is just a perfect matching. As another example, if G is the bipartite graph in
Figure 2, then m(G) = 2 and 7(G) = 192 and 2 x 192 = 384 > 256 = 44.

6 Determinants and Rotations

While working on the results presented in the previous sections, a related side
result was discovered. In this section we investigate linear dependencies among

the determinants
{det(A[8)) : B € Z3},

for a generic matrix A in which each cell contains a variable distinct from those in
other cells. Our main theorem states that, for any vector a € Z?, the determinant
of A[a] is an integer linear combination of the n! determinants in the set

{det(A[B)):B€ Z; : Bi<n—i, foralli =0,...n — 1}.

471



In particular, this shows that, to verify whether the polynomial given in (1) is in
the ideal Z,,, one need not compute all of the coefficients, but rather at most n!
determinants.

Define J,, to be the ideal in C[zo, ..., Zn—1] consisting of those polynomi-
als that vanish on distinct nth roots of unity; that is, f € Jn if and only if
flwo,...,wn-1) = 0 for all (wo,...,wn_1) € S satisfying w; # wj, for
0<i<j<n.

Lemma 1 Foranyg =Y, caz® € Jn and any n x n matrix A,

Z ca det(Ala]) = 0.

Proof. Suppose that

9,0 ap,1 e ag,n—-1
a1,0 a1,1 ce Q1n-1
A= .
an-1,0 @Cn-1,1 *°° Qn-1in-1

Now consider the ring homomorphism
h: C[ao'o, veuy an_lyn_ll - C[zo, ceey :L‘n_1]

that maps h(a; ;) = 7. Let us write h(A) for the matrix [h(a; ;)]. Clearly h(A)
is the Vandermonde matrix V shown below:

0 1 n—1
Zo g 0 Io .
m? x% e x;"_
V= ) :
0 1 n—1
Tn-1 Th Tna

Recall that Z,, is the ideal (= — 1,...,27%_; — 1) in C[zo, ..., Za_1] of polyno-
mials that vanish on all inputs from Q7. From elementary properties of determi-
nants, we find that det(h(A[a])) = > det(V') (mod I,). It follows that

>, Ca det(h(A[e])) = g det(V') (mod I,).

Now it is well known that det(V) = [[o<i<;<n (2 —Z:), s this determinant van-
ishes whenever there is some z; with the same value as some z;. Hence g det(V)
vanishes on all inputs from Q7. Consequently gdet(V) is the zero polynomial
modulo Z,,. Because det(h(A[c])) = h(det(Ala])) (mod Z,,), we deduce that

h (3, ca det(Alal)) = 0 (mod Z,,).
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Now observe that each monomial of ), cq det(A[a]) contains at most one vari-
able from each row of 4, so h (3, co det(A[a])) = 0 (mod Z,,) implies actually
that ) c. det(Ala]) = 0, as desired. o

Define,forl < k<n-1,
D
ap+-Far=n—k

and fo = zg — 1. The following fact is proven in [6]:

FACT: Jn = (fo, f1,+++) fa-1)-
Let
R,={a€Z;:0;<n—1t, foralli=0,...,n—1}.

We now seek to define an ordering of the elements in Z7:. First define, for any

€ Z}\ Ry,
I(6) = o Jnax l{i 10 2n—1i}.
<i<n—

For two distinct &,y € Z7, define 6 < v if
e JER,, or
o I(6) < I(y),0r

o I(6) = I(y) and 616 < Yi(y)-

As usual, we write § < «, if § < yand v £ 4. The significance of this ordering is
the following lemma.

Lemma 2 Suppose that A is an n x n matrix. If § € Z1*\ Ry, then det(A[d]) can
be expressed as a sum of the form 3 5 ¢y det(Aly]), for some integer constants

Cy.
Proof. Let k = I(9). Define,
k
Fe={a€Z}:> oi=n—kandoys == a1 =0}.
i=0
so F} consists of the exponents of terms appearing in fy.. Define also
e=(0,...,0,n—k,0,...,0),

where n — k occurs in the kth coordinate. Clearly ¢ € Fi. Nowset 8 = § —e.
Since fi € Z,,, Lemma 1 shows that, for any matrix C,

)" det(C[a]) =0.

a€Fy
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In particular, when C = A[f), we deduce
>~ det(A[B]le]) =0
a€Fy

where A[][a] denotes the matrix obtained from A by first rotating 3 then further
rotating a. Because det(A[f][a]) = det(A[B + a]) and § = B + ¢, we find

det(A[d)) + ) det(A[S+aq]) =0.
a€F\{¢}

(o

It suffices now to observe that 8 + a < 4, forall o € Fj \ {¢}.

Now we are ready for the main theorem.

Theorem 5 For any n x n matrix A and any 3 € LY, the determinant of A[B) is
an integer linear combination of the n! determinants in the set

P, = {det(A[e]) : 0 €Z} : s < n—1, foralli=0,...,n—1}.

Proof. Use Lemma 2 to express det(A[f]) as a “smaller” sum of the form

<8 S det(A[y]), for some integer constants c,. Now repeatedly apply the
lemma to replace any determinant in this sum with “smaller” sums until all deter-
minants are in the set shown. o

It is not hard to see that Theorem 5 is best possible in the sense that the n!
multilinear polynomials in the set P, are independent because the main diago-
nal of each matrix A[a] produces a monomial that does not appear in any other
polynomial in this set.

7 Future Work

There are several directions for further research: 1). relate 7(G) to structural
properties of G, 2). characterize the matroids that arise as the partition matroids
and vector matroids of L¢ as in the proof of Theorem 3, 3). extend these results
to general matching and f-factor theorems, and 4). identify properties of these
extensions that permit easy application of the Combinatorial Nullstellensatz.
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