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Abstract

In an ordered graph G, a set of vertices S with a pre-coloring
of the vertices of S is said to be a greedy defining set (GDS)
if the greedy coloring of G with fixing the colors of S yields
a x(G)-coloring of G. This concept was appeared first time
in [M. Zaker, Greedy defining sets of graphs, Australas. J.
Combin, 2001]. The smallest size of any GDS in a graph G
is called the greedy defining number of G. We show that to
determine the greedy defining number of bipartite graphs is
an NP-complete problem. This result answers affirmatively
the problem mentioned in the previous paper. It is also shown
that this number for forests can be determined in linear time.
Then we present a method for obtaining greedy defining sets
in Latin squares and using this method, show that any n x n
Latin square has a GDS of size at most n? — (nlog4n)/4.

1 Introduction

Let G be a simple graph whose vertices are ordered by an order o
as v1,...,Vs. The first-fit (greedy) coloring of G with respect to o
starts with v; and assigns color 1 to v; and then goes to the next
vertex. It colors v; by the first available color which is not appeared
in the neighborhood of v;. If the algorithm finishes coloring of G
by x(G) colors then we say that it succeeds. But this is not the
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case in general. If we want the greedy algorithm to succeed, then we
need to pre-color some of the vertices in G before the algorithm is
invoked. So we define a greedy defining set (GDS) to be a subset of
vertices in G together with a pre-coloring of S, that will cause the
greedy algorithm to successfully color the whole graph G with x(G)
colors. It is understood that the algorithm skips over the vertices
that are part of the defining set. Greedy defining sets of graphs were
first defined and studied by the author in [2]. This concept have
also been studied for Latin squares in [3, 4] and recently in [1]. The
formal definitions follow in the sequel.

Definition 1. For a graph G and an order ¢ on V(G), a greedy
defining set is a subset S of V(G) with an assignment of colors to
vertices in S, such that the pre-coloring can be extended to a x(G)-
coloring of G by the greedy coloring of (G, o) and fizing the colors of
S. The greedy defining number of G is the size of a greedy defining
set which has minimum cardinality, and is denoted by GDN(G, o).
A greedy defining set for a x(G)-coloring C of G is a greedy defining
set of G which results in C. The size of a greedy defining set of C
with the smallest cardinality is denoted by GDN(G, 0, C).

Let an ordered graph (G,c) and a proper vertex coloring C of G
using x(G) colors be given. Let ¢ and j with 1 < i < j < x(G)
be two arbitrary and fixed colors. Let a vertex say v of color j be
such that all of its neighbors with color ¢ (this may be an empty
set) are higher than v. Then v together with these neighbors form a
subset which we call a descent. It was proved in [2] that a subset S
of vertices is a greedy defining set for the triple (G, o, C) if and only
if S intersects any descent of G or equivalently S is a transversal for
the set of all descents.

Consider the Cartesian product K,0K, and the lexicographic order
of its vertices. Namely (i,j) < (¢,j') if and only if either i < ¢’
ori =14 and j < j'. Since any n x n Latin square is equivalent
to a proper n-coloring of the Cartesian product K,[1K, then we
can define greedy defining set and number of Latin squares. In any
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Latin square we denote any cell in row ¢, column j with entry z by
(2,7;z). Now the concept of descent in the context of Latin squares
is stated as follows. Given a Latin square L, a set consisting of three
cells (2,7;y), (r,7;y) and (i,k;z) wherei < r, j < kand z < y, is
called a descent. The following theorem proved in (3, 4] is in fact
a consequence of the theorem concerning GDS and transversal of
descents which was mentioned in the previous paragraph.

Theorem 1. A subset D of entries in a Latin square L is greedy
defining set if and only if D intersects any descent of L.

2 Greedy defining number of graphs

In (2] the computational complexity of determining GDN(G, o, C)
has been studied.

Theorem 2.([2]) Given a triple (G,0,C) and an integer k. It is an
NP-complete problem to decide GDN(G,0,C) < k.

Throughout the paper by the vertex cover problem we mean the
following decision problem. Given a simple graph F and an integer
k, whether F' contain a vertex cover of at most k vertices? Recall
that a vertex cover is a subset K of vertices such that any edge is
incident with a vertex of K. This problem is a well-known NP-hard
problem. In [2] the vertex cover problem was used to prove Theorem
2. But because there exists a flaw in its proof, in the sequel we first
fix the proof by slight modification of it and then discuss the open
question posed in [2].

Proof of Theorem 2. It is enough to reduce the vertex cover prob-
lem to our problem. Let (F,k) be an instance of the vertex cover
problem where F' has order n. We first color arbitrarily the vertices
of F' by n distinct colors. Denote the color of a vertex v € F by
¢(v). Now we consider the complete graph K, (vertex disjoint from
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F) on vertex set {1,2,...,n}. We order a vertex i in K, by the very
i and a vertex v € F by 2n — j + 1 if ¢(v) = j. For any ¢ and j
with ¢ < j, we put an edge between a vertex v of F of color j = ¢(v)
and a vertex 7 from K, if and only if v is not adjacent to the vertex
of color 72 in F'. Let the color of a vertex i € K,, be i. Denote the
resulting ordered graph (G, o) and the proper coloring of G by C. It
is easily checked that no descent in (G, o, C) consists of only a single
vertex. Since the colors of F' are all distinct then a descent can only
have two vertices and we note that any edge in F forms in fact a
descent and these are the only descents of G. We conclude that a
transversal for the set of descents in G is a vertex cover for F' and
vise versa. This completes the proof.

It was asked in [2] that given an ordered graph (G, o), whether to
determine GDN(G, o) is an NP-complete problem? This problem
is in fact the uncolored version of Theorem 2 where no coloring of
graph is given in the input.

In the following we answer this problem affirmatively. We begin with
the following lemma.

Lemma 1. Let G be an ordered bipartite graph which contains at
least one edge. Let also C be a proper vertexr coloring of G using
two colors where no isolated vertex is colored 2. Then there exists
a mintmum greedy defining set S for C such that all vertices of S
receive color 1 in the coloring C.

Proof. Let S be a minimum GDS for C with the minimum number
of vertices of color 2 in the coloring C among all greedy defining sets
of C. Let the number of vertices of color 2 in S be k. If £ = 0 then
we are home. Otherwise, consider a vertex v € S of color 2. Note
that by our assumption on C the vertex v is not an isolated vertex.
Since S is a minimum GDS, S\ {v} is not a GDS and so all neighbors
of v with color 1 in the coloring C has higher order than v. Now it
suffices to delete v from S and add any neighbor u of it to S. The
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new member of our GDS i.e. u has color 1 because there are only
two colors in the graph. The resulting set (S U {u}) \ {v} with its
color from C is still a GDS for C where the number of vertices of
color 2 is less than that of S. This contradicts with our choice of S.
Therefore there exists a minimum GDS for C containing no vertex
of color 2. O

Theorem 3. Given an ordered connected bipartite graph G and a
positive integer k. It is NP-complete to decide whether GDN(G) <
k.

Proof. We transform an instance (F, k) of the vertex cover problem
to an instance of our problem where F'is a connected graph. Let
V(F) and E(F) be the vertex and edge set of F, respectively. As-
sume that V; and V3 are two disjoint copies of V(F). Namely any
vertex of F' has two distinct copies in V] and V,. Similarly let E;
and E be two disjoint copies of E(F'). Let G be the bipartite graph
consisting of the bipartite sets X = VJUFE; and Y = VU E,, where
v €V € X is adjacent to e € E3 C Y if e (as an edge of F) is
incident to v in F. Also a vertex v € V, is adjacent to e € E; if
e is incident to v in F. The only extra edges of G are of the form
vv' where v is an arbitrary vertex in V] and v’ its copy in Vo. We
consider any ordering o of V(G) in which Fy < E), < V5 < V;, where
for any two sets A and B by A < B we mean any element of A has
lower order than any element of B.

The bipartite graph G is connected since F is so. Therefore G has
only two proper colorings with two colors. To determine GDN(G)
it is enough to determine the minimum greedy defining number of
these two colorings of G. Consider an arbitrary coloring C of G in
which the part X is colored 1. According to Lemma, 1 it is enough to
consider those greedy defining sets of G which are contained in X.
Based on the property of our ordering o, we obtain that a descent in
G consists only of a vertex from E» together with its two endpoints
in V3. This shows that a greedy defining set of G is a subset of V;
which dominates the elements of Ej, i.e. a vertex cover of F. The
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converse is also true. It turns out that GDN(G) is the same as the
minimum size of a vertex cover in F. This proves the theorem for
this case. The case where X is colored by 2 is proved similarly in
which a subset S C Y is a GDS for G if and only if S C V5 and it
dominates all elements of E;. Namely in this case too the minimum
GDS is the same as the smallest vertex cover of F. This completes

the proof. O

In the following lemma, for a given tree T and a proper vertex col-
oring C of T using two colors 1 and 2, by a dominating set we mean
a subset D of vertices of color 1 such that any vertex of color 2 is
adjacent to some vertex of D. If we fix the coloring C let us denote
the minimum cardinality of a dominating set in T by m(T). It is
natural to define m(F) for a forest F as Zm(T) where the sum-
mation is taken over all connected components of F'. We shall make
use of the following lemma in proving Theorem 4 which provides a
linear algorithm to obtain a minimum GDS in any forest.

Lemma 2. Let T be a tree with at least two vertices and C a coloring
of T using colors 1 and 2.

(i) Let v be a vertex of degree one and color 2 in T'. Let also u be
the neighbor of v in T. Then any dominating set of T contains u
and m(T) = m(T \ N) + 1 where N is the set of the neighbors u in
T including v.

(i) Let S be the set of vertices of degree one and color 1 in T. Then
if T is isomorphic to a star graph K, , for some p > 2 thenm(T) =1
and if T is not a star graph then m(T) = m(T \ S).

Proof. The part (i) can be proved easily as follows. Since u is
the only vertex which dominates v then any dominating set contains
u. Note that v also dominates all the vertices in N and none of
these vertices can be an element of a dominating set since they are
colored 2. This implies that a minimum dominating set for T° can be
obtained by a minimum dominating set for T'\ N together with the
vertex u itself. Therefore m(T) =m(T \ N)+1.
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The first part of (ii) where T is isomorphic to a star graph is obvious.
To complete the proof of (ii) note that in this case any leaf vertex
of color 1 dominates only one vertex of color 2 and that since T is
not a star graph then any vertex of color 2 is adjacent to a vertex
of color 1 which is not a leaf vertex. Therefore we can only consider
non-leaf vertices of color 1 as possible elements of our dominating
set. In other words, m(7T") = m(T \ S) where T'\ S is still a tree. O

We have now the following theorem.

Theorem 4. There exists a linear time algorithm to determine the
greedy defining number of a forest.

Proof. Let F be a forest equipped with an ordering on its ver-
tices. Let F' consist of T1,T3,...,T as its connected components.
Each T; is a tree. Since T}’s are vertex disjoint then it is clear that

GDN(F) = ) _GDN(T;). Note that x(F) < 2. First consider the

case where so;ne T; consists of only one single vertex say v. Ob-
viously GDN(T;) = O in this case and this only happens when v
receives color 1. Therefore without loss of generality we may assume
that each T; has at least two vertices and so x(T;) = 2. To prove
the theorem it is enough to obtain a method to determine GDN(T)
where T is any tree of order at least two.

Now let T be such an ordered tree. It contains exactly two proper
colorings using two colors since it is connected. It is enough to
determine the greedy defining number of a 2-coloring of T'. Note
that a 2-coloring of T' can be achieved in a linear time O(n) where n
is the order of T by coloring its leaves one by one. Let a 2-coloring
be given by a bipartition X UY of V(T') where X consists of vertices
colored 1. Recall that a descent is of the form a vertex of color
2 say v together with its all neighbors of v. These neighbors are
colored 1 and have higher order than v. Consider the subgraph F’
of T induced by the vertices of the descents in T. By Lemma 1 it
is enough to find a subset of vertices of color 1 with the minimum
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cardinality which dominates all the vertices of color 2 in F'. It is
clear that GDN(F') = Z GDN(G) where the summation is taken

on all connected components G of F'. To prove the theorem we need
to find a minimum GDS for any connected component G of F'. Let
G be any connected component of F'. Note that since any descent
in T has more than one vertex then G is not a single vertex. In the
sequel we explain and provide a method to construct a minimum
greedy defining set to be denoted by K for G. The set K will in fact
be a minimum dominating set for G. Our algorithm scans vertices
of degree one and at each stage removes at least one vertex from the
graph. Since the original graph has not any cycle, at each stage we
have a vertex of degree one. This shows that the running time of our
algorithm is proportional to the order n of the graph i.e O(n).

Since the original graph has not any cycle then at each stage of
our algorithm there exists at least one vertex of degree one. The
proposed algorithm at each step first scans leaf vertices of color 2
and if there exists such a vertex v with its neighbor u then it adds
u to the GDS K and then removes all of the neighbors of v from
the graph. By Lemma 2 the greedy defining number of the graph
in hand is one more than that of the remaining graph. Note that
after this stage it is possible to have some vertices of degree zero
with color 1 but since these vertices do not form a descent we simply
remove these isolated vertices from the graph.

Next the algorithm scans the leaf vertices of color 1. If at this step
there exists a star graph whose leaves are colored 1 then the algo-
rithm adds one of the leaves to K and then removes the whole star.
We arrive to the case where any vertex of color 2 has a non-leaf
neighbor of color 1. In this case according to Lemma 2 we remove
all the leaf vertices of color 1 and check the remaining graph and
continue according to Lemma 2. At each step at least one vertex
from the graph is removed and so after O(n) steps the algorithm
halts. This completes the proof. a



3 Latin squares

The greedy defining number of any n x n Latin square is denoted
by g(n) in [3, 4] where it was shown that g(n) = 0 when n is a
power of two. The exact values of g(n) for n < 6 were given in [4]
and for n = 7,9,10 in [1]. But the complexity status of determining
the greedy defining number of Latin squares is still unknown. In the
sequel we present a method to obtain a greedy defining set in a Latin
square.

For any n x n Latin square L on {1,2,...,n} we correspond three
graphs R(L), C(L) and E(L). Let R be an arbitrary row of L. We
first define a graph G[R] on the vertex set {1,...,n} as follows. Two
vertices ¢ and j with 1 <4 < j < n are adjacent in G[R] if and only
if (1) j appears before 7 in the row R and (2) there is another entry
i in the same column of j such that it comes after j (i.e. lower than
7). In other words 7 and j are adjacent if and only if they form a
descent (jointly with an additional entry 7). The graph R(L) is now
defined the disjoint union UG|R] on n? vertices where the union is
taken over all n rows of L. For any column C of L we define G[C]
similarly. The graph C(L) consists of the disjoint union of G[C]’s.

In the sequel we define the graph E(L) corresponding to the entries
of L. Let e € {1,...,n} be any fixed entry. There are n entries
equal to e in L. First, a graph denoted by E[e] on these n entries is
defined in the following form. Two entries e; and ey (which both are
the same as e but in different rows and columns of L) are adjacent
in Ele] if and only if with an additional entry they form a descent
in L. Precisely, assume that (i, 5;e) and (¢, j';€) are two arbitrary
vertices of Fle] where i < i’ and j' < j (i.e. the i-th row is upper
than the #-th row). We put an edge in E(e) between these two
vertices if and only if the entry of L in position (3, j') is greater than
e i.e. these three cells form a descent in L. Now that the graph Eli]
is defined for any ¢ = 1,...,n we define F(L) as the disjoint union
E[l]JUE[2] U... U E[n] on n? vertices. The following proposition
concerning R(L), C(L) and E(L) is immediate.
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Proposition 1. A subset D of entries of a Latin square L is a GDS
if D is a vertez cover for at least one of the graphs R(L), C(L) and
E(L).

Proposition 1 provides some upper bounds for the greedy defining
number of Latin squares. As an application, in the following we
present an upper bound for the greedy defining number of any Latin
square. We recall that according to Turan’s theorem any graph on n
vertices and with no clique of order m has at most (m—2)n2/(2m—2)
edges.

Theorem 5. Anynxn Latin square contains a GDS of size at most
2o log 4n
Y

Proof. By Proposition 1 it is enough to find a vertex cover for E(L)
of the desired cardinality. Since E(L) = E[1JU E[2]U... U E[n]
then it is enough to obtain an upper bound for the vertex cover
of each Efi], ¢ = 1,...,n. Now fix an i and consider the graph
G = E(i). The number of edges of G is maximized when the n
entries of 7 lie in the northeast-southwest diagonal of L and the
maximum possible number of entries greater than ¢ are placed above
this diagonal. It turns out that in this case the graph has no more
than n(n —1)/2 —i(i — 1)/2 edges. Assume that G has at most f(z)
independent vertices. Then the complement of G which has at least
(1 — 1)/2 edges, does not contain a clique of order f(i) + 1. Using
Turan’s theorem we obtain

(fG)=1)n? _ i(i—1)
O

which simplifies to

n

n?—i(i—1)

f(@) 2
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If we write ¢ = n — j for some 0 £ j < n—1 then

) n? n
T2 e -+ > H+1

n—1

This shows that E(L) contains at least nz
j=0

independent
Lo+ 1 P

vertices. But from other side

n-1 1
2 >

2n+1
z 321+log(2n+1) 1 > log4n.
= k 2 2

It turns out that E(L) contains at least (nlog4n)/4 independent
vertices. Therefore it contains a vertex cover of no more than n? —
(nlog4n)/4 vertices. This completes the proof. a
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