A Construction of Modular Generalized Sidon
Sets

Charles C.Y. Lam* and Alan C.H. Ling!

Abstract

A Sidon set S is a set of integers where the number of solutions to
any integer k = ki + k2 with ki,k2 € Sis at most g = 2. If g > 3, the
set S is a generalised Sidon set. We consider the Sidon sets modulo
n, where the solutions to addition of elements are considered under a
given modulus. In this note, we give a construction of a generalised
Sidon set modulo n from any known Sidon set.

1 Introduction

Let S be a set of integers, we are interested in the number of distinct
solutions to
81+ 82 = 83 + 84

where s,, 52, 53,84 € S, such that {s;, 2} # {s3,54}.
Sidon’s Problem can be stated as follows. Given a set S C Z, define

15"l = IS *S*- #5]lo
= rileaécl{(sl,sm...,sh):siGS,sl+s;+~~-+sh=k}|.(1)

If |[S*3([oo < 2, then S is called a Sidon set. For any n € Z*, let [n] =
{1,2,3,...n}. We are interested in constructions of sets S C [n] such that
15*?|}eo < g-

In order to study the mathematics of Sidon sets, we consider the follow-

ing, according to Martin and O’Bryant [7). Define

R(g,n) = max{|S] : § C [n] 5"?l|os < g}.
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Note that R(2,n) measures the largest possible size of a subset of {n] that
is a Sidon set. In the process in proving certain bounds, the following is
considered. Define

C(g,n) = max{|S| : § CZ/(n),|I5"|e0 < g}-

It is believed that the study of Sidon sets requires the understanding of
Sidon sets mod n. In particular, a result from Martin and O’Bryant [7] is
listed as follows.

Proposition 1 Let g, f,z,y be positive integers, then
R(gf,z 2R( oy +1— —y—)zR 2)C(f,9).
(9f,zy) 9f,zy [C( 7 y)] (9,2)C(f,9)
The above result was used to provide lower bounds for the quantity

R(g,n)
p(g) = lim inf —>—= W

The precise asymptotics for p(g) are known only for g = 2,3. Lower bounds
of p(g) are investigated in [7, 6, 3]. Some upper bounds of p(g) are also
investigated in [5].

In this note, we look at a construction of generalised Sidon sets modulo
n from known Sidon sets. The construction method gives rise to inequali-
ties stemming from several known Sidon sets which may be applicable for
analysis of Sidon sets. In addition, these new constructions may give rise
to possible constructions of new designs.

2 Construction

Let A be a Sidon set modulo kn on [kn). Let A;={z € A| (i-1)n+1<

z < in}, where 1 < i < k, so that A = A;UA9U - - -UAg, the disjoint union
of Ay, As,...,Ax. We construct corresponding S;’s as follows: let S; =
{xmodnlxeAl} for2<j<kletS;={zmodn|ze 4}V S;
It will turn out that all S;’s are disjoint. Consxder the set

S = $USyU- - - US.
Theorem 1 Using the above construction,
IS * Slloo < 2k,

under addition modulo n.
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Proof: Let J € ZN|[n] be a constant. For 1 <4,5 <k, i+j=J (mod k),
consider ||S; * Sj||co, s in equation (1), where

[1S; * Sjlloo = rll;leaétl{(sl,.Sz) : 81 € S;,82 € 55,91+ 82 =k} (2)

We will show that

> 115 % Sjlleo < 2,
(i,7)€[k)3,i+j=J (mod k)

when the sum s; + s; in equation (2) is taken modulo n.

First, assume that there exists Sj,S;, S|, Sm, where %,3j,!,m are not
necessarily distinct, and that (t;,t2) € S; x S;, (t3,t4) € Si x Sy, where
i+j=1l4+m (mod k), and (t,,t2) # (t3,%4), such that

ti+ila=ts+ 1y (mod n)
Then,
h+(@-1n+t2+(G-—1n=ts+ (- n+ts+ (m—1)n (mod kn).

Since t) + (1 —1)n € Ay, ta+ (j — 1)n € Az, t3 + (I — 1)n € A3, and
ty + (m — 1)n € A, contradicting the hypothesis that A is a Sidon set
modulo kn.

Since there are k equivalence classes modulo k,

115*3||o < 2k,
under addition modulo n. O

Corollary 1 Using the same construction, if A C [kn| is a generalised
Sidon set such that under addition modulo kn,

[|A* Alloo < 2t,
then, using the same construction as above, we have
[|S * S|l < 2tk,

under addition modulo n.
3 Applications

In this section, we look at three different constructions of Sidon sets and
use them to induce inequalities about generalised Sidon sets modulo 7.

67



3.1 Bose’s construction

Let g be any prime power, and 8 to be a generator of Fyz2, k € F,. Let
Bose(q,8,k) = {a € [¢° — 1] | 8° — k6 € F,}.

Then if k # 0, Bose(g, 8, k) is a Sidon set [1] of size ¢. It is also a Sidon set
modulo ¢ — 1.

It is known also from [1] that in Bose(q, 8, k), there does not exist two
distinct elements where the difference is a multiple of ¢ + 1 modulo ¢ — 1.
Hence, using our construction from the previous section, let ¢> — 1 = kn
where n = t(q + 1). Then, the collapsed set S still has size g. We arrive at
the following result.

Theorem 2 If q is a prime power, and ¢> — 1 = kt(q+ 1), where k,t € Z,
then

2 _
ok T 2

As an example, we choose ¢ = 31. Then the set

A = {16,20,53,140, 178, 195, 198, 203, 238, 280, 311, 324, 347, 415, 441,
510, 520, 521, 677, 711, 726, 765, 787, 849, 858, 865, 877, 879, 906,
924,930}

is a Sidon set mod 960.
Since 960 = 5 - 192, dividing A into five parts, we get

T, = {3,6,11,16,19,20,31,46,53,57,81,88,90,97,101, 109,111,119,
126,132, 135, 136, 137, 138, 140, 150, 155, 156, 162, 178, 189}.

Note that ||T5 * T5||cc = 10, under addition modulo 192.
We can divide the set into more parts, however, the inequality may not
be tight. For example, 960 = 10 - 96, we divide A into 10 parts and get

Tw = {1,3,5,6,11,13,15,16,19,20,23,30, 31,36, 39, 40, 41, 42, 44, 46,
53, 54, 57, 59, 60, 66, 81, 82, 88, 90, 93}

while ||T10 * T10lleo = 14, under addition modulo 96.

3.2 Ruzsa’s construction

Let p be a prime. Let 6 be a generator of the multiplicative group F;. For
1 <i < p, let a;; be the congruence class modulo p? — p defined by

a;; =t (mod p — 1) and a;; = i6* (mod p).
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Define

Ruzsa(p, 6, k) = {atx | 1 < t <p} CZ/(»* - p).
According to (8], Ruzsa(p, 8, k) is a Sidon set. Note that |[Ruzsa(p,8, k)| =
p—1.

It is known also from [8] that in Ruzsa(p, 8, k), there does not exist two
elements where the difference is a multiple of p or p — 1 modulo p? — p.
Hence, using our construction from the previous section, if we choose &
such that (p® — p)/k is a multiple of p or p — 1, then, the collapsed set S
still has size p — 1.

Suppose p? — p = (p — 1)tk, since p is a prime, either t =1 or k= 1. If
t=1, we have § =Z,_,. If k = 1, then S = Ruzsa(p, 6, k). In either case,
we arrive at the trivial result. Otherwise, we arrive at the following result.

Theorem 3 If p is a prime, let p? — p = ptk. Then

2 _
cee, =)z p-1.

3.3 Singer’s construction

Using the notations in [9, 4, 2, 7], let ¢ be any prime power, and let 8 be a
generator of the multiplicative group of Fs. For each k € Fy, let

T(k)={0}u{a€[¢®—1]|6° —kd € F,}.

Define Singer(q, 8, k) to be the congruence classes modulo ¢2 + g + 1 that
intersect T'(k). Then Singer(g, 6, k) is a Sidon set. Note that |T'(k)| = ¢+1.

It is also known that in Singer(q,0,k), there is exactly one pair of
distinct elements that give a difference of any s € Z/(¢? + ¢ + 1). Ap-
plying the construction from the previous section, for any & € Z such
that g2 + ¢ + 1 = kn, exactly one element is duplicated when we take
S = A mod n. Hence, we have shown the following.

Theorem 4 If q is a power of a prime, and g% + ¢ + 1 = kn, then

2
C(2, e +tgtl

> q.
p )24q

4 Conclusion

The following are proved in [7]. Let ¢ be a prime power.
e If g is a prime, then C(2k?,¢% — q) > k(g — 1);
o C(2k%¢* - 1) 2 kg;
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o C(2k%,¢*+q+1) > kqg+1.

In this note, we have proved the following. Let ¢ be a prime power.
e If q is a prime, and ¢ [k, then C(2k, 91;'3) >q-1;
o If k|g — 1, then C(2k, L22) > ¢;

o If k|g® + g + 1, then C(2k, £E2t1) > ¢,

Our result differs in that we restrict ||S*2|| < 2k instead of 2k? in the
inequalities derived. Though, in the application to the limits of p in (7],
only the case k = 1 was applied, thus the results for the bounds of p are

not changed.
For any k € Z, our results apply when k|p? — p, klg — 1 or k|g® + ¢+ 1.
In particular, let p be a prime and consider the congruence

p" =1 (mod k).

Note that by the Euler-Fermat Theorem, if ged(k,p) = 1, then p*¢(¥) =
1 (mod k) for all t € Z. Hence, for each prime p, there are infinitely many
cases where ¢ = p™ and k|g — 1 so that Theorem 2 can be applied.

In our results, the bounds are tight when the number of divisors is
small, as seen in our example. Further research is needed to determine the
behaviour of bounds when number of divisors is high.
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