UTILITY AND EXPANDABILITY OF CHANNEL
ASSIGNMENTS*

PATRICK BAHLS AND THOMAS MAHONEY

ABSTRACT. The Channel Assignment Problem is often modeled by
integer vertex-labelings of graphs. We will look at L(2, 1)-labelings
that realize the span X of a simple, connected graph G = (V, E). We
define the utility of G to be the number of possible ezpansions that
can occur on G, where an expansion refers to an opportunity to add
a new vertex u to G, with label £(u), such that

(1) edges are added between u and v and

(2) edges are added between u and the neighbors of v, and

(3) the resulting labeling of the graph is a valid L(2, 1)-labeling.

Building upon results of Griggs, Jin, and Yeh, we use known val-

ues of A to compute utility for several infinite families and analyze
the utility of specific graphs that are of interest elsewhere.

1. INTRODUCTION

A considerable amount of research has been done on L(2, 1)-labelings and
the more general L(h, k)-labelings. The origin of this category of problems
is channel assignment, in which broadcast channels for various nodes are
assigned such that there is no interference with each other, while minimizing
the frequency spectrum used. For a survey of the problem, see [2] as well
as (3] and [4]. The goal of this paper is to examine how “expandable” a
particular graph labeling is without changing the span of all labels. We call
our measure of expandability the utility of a labeling.

When we consider the original problem of assigning channels to nodes
while trying to minimize both interference and span, we often find many
possible ways to label nodes while realizing the same span. If the labeled
graph represents an actual network of nodes and channels, we seek to de-
termine if another node may be added and assigned a channel within the
current span that does not require existing nodes to change their channels.
While many labelings may realize the same span, only a few of those la-
belings permit the addition of more nodes in the above manner. In some

*This research was supported by the NSF REU, “Groups, Graphs, and Geometry,”
held at UNC Asheville, Summer 2008.

ARS COMBINATORIA 114(2014), pp. 73-85



sense, then, our measure distinguishes some channel assignments as “more
expandable” than others.

Given a simple connected graph G = (V| E), we define a channel as-
signment, or an L(2, 1)-labeling, to be a function £ : V(G) — {0,1,2,...}
such that whenever u,v € V are adjacent, |€(u) — £(v)| > 2, and when-
ever u and v are distance 2 from each other then |¢(u) — €(v)| > 1. The
span of G is the smallest A such that there is a valid L(2,1)-labeling
2:V(G) — {0,1,2,...,A}, and is denoted by A(G). Throughout this pa-
per, we will consider only finite graphs unless we explicitly say otherwise.
Note that the following definitions apply in both cases.

For v € V we let N(v) denote the set of neighbors of v (those vertices
adjacent to v). Let £: V(G) — {0,1,...,A} be a labeling. Let # denote
the operation in which a new vertex u is attached to v € V(G) such that
edges are drawn from u both to v and to all v* € N(v), and the resulting
graph, using some value £(u) < A, realizes an L(2,1)-labeling. We define
the utility of a labeled graph U(G, £) as the number of v € V(G) such that
u#v. Thus 0 < U(G,?) < |V(G)|.

In measuring utility, we may permit attachments independently to v
and vg, yet it may be the case that these attachments cannot occur at once.
In order to measure the maximal number of attachments that can occur
simultaneously, we introduce the notion of simultaneous utility, Us(G, ).
We define U, (G, £) to be the maximum number of u#v € V(G) such that
all may occur simultaneously.

Notes. In such attachments, if vertices u; and u; are simultaneously
attached to the same vertex vg, then an edge [u;,ug] must be included.
Because of this, we cannot have more than —2’\- attachments at any vertex.
Thus 0 < U,(G) < %n.

We also note that while utility counts vertices of the original graph,
simultaneous utility counts vertices that are attached to the original graph.
This is the fundamental distance between the two measures.

We now define utility and simultaneous utility for the graph G alone:
U(G) = max U(G,8) and Us(G)= m?xU,,(G, 0),

where the maxima are taken over all L(2, 1)-labelings of G.

Note that if U(G, £) = 0 then U,(G, £) = 0; however, it is possible that
Us(G,¢) > U(G, ¢) in the case where multiple expansions occur on a single
vertex. We see that this is realized by the graph in Figure 1.

This article will proceed as follows. In Section 2, we will consider the
utility of paths, prisms, and other basic families of graphs. In Section 3, we
will expand our search to include several families of infinite, regular graphs.
In Section 4, we will examine bounds on utility and simultaneous utility
as well as graphs that realize exceptionally high utility and simultaneous
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FIGURE 1. |V(G)| =12 and U,(G,{) = 14

utility. Finally, in Section 5 we list several open problems and natural
extensions of this research.

The authors extend special thanks to Professor Jerrold Griggs at Univer-
sity of South Carolina for his insights, suggestions, and editorial remarks.
Thanks are also due to UNC Asheville Professors Samuel Kaplan and David
Peifer for helpful conversations and suggestions, and to the referee for help
in indicating some errors in the original manuscript.

2. UTILITY FOR SEVERAL INFINITE FAMILIES

In this section, we examine the utility U(G) and simultaneous utility
U,(G) of some basic graphs of general interest, including complete graphs
K,, complete k-partite graphs Kpn, n,,...n., Wheels Wy, cycles C,, paths
P,, prisms Pry,, and ladders L,,. Throughout this section, let G = (V, E)
be a simple, connected graph, let £(v) denote the label of vertex v and let
u be the vertex to be added to the graph in expansion. As usual, let the
order of G be |V(G)|.

Proposition 2.1. The utility U(G) = 0 if G = K,, Kn, ns,..nu» Wn or
Ch.

Proof.

Complete Graphs: Let v;,v; € V(K,) = {v1,v2,...,vn}. Weknow
that there is an edge connecting v; to v;. In constructing a labeling
A starting with £(v;) = 0, each successive label must be 2 higher
than the previous, thus A(K,) = 2(n — 1). Let v € V(K,). If
u#v, the resulting graph is Kn41. As we just saw, AM(Kp41) =
2((n+1)—1) =2n, but 2n > 2(n —1). Thus U(K,) =0.

Complete k-Partite Graphs: Let G = K, n,.. », and let N; be
the classes of the partition of V(G). By [9], A(G) = |V(G)|+k-2.
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Lemma 2.2. The labeling £ realizes \(G) if and only if &(N;) are
disjoint intervals in [0,1,..., )] for every i =1,...,k, each of size
|N;| and the difference between the marimum label in £(N;) and
the minimum label in its successor is ezactly 2, as is the difference
between the minimum label in £(N;) and the mazimum label in its
predecessor.

Proof. (<) A straightforward calculation shows that if £ has the
given form, then £ realizes A\(G).

(=) Note that diam(G) = 2, so all labels {(v) must be distinct.
Since |{0,1,...,A} = [V(G)| + k — 1, k — 1 of the values in [0, }]
are omitted by . Note that if u; € N;,u; € N;,i # j, such that
£(u;) < £(u;) and there is no u € V(G) such that £(u;) < £(u) <
£(uy), then £(u;) — £(u;) > 2. That is, any time we transition from
one class of the partition to another, we must skip at least one
value. Since there are only k& — 1 values omitted by £, at most k—1
transitions are allowed. but this forces all £(/V;)s to be intervals
separated by 2 because there are k classes. 0

Let the labeling £ realize A\(G) and let v € V(G). Suppose u#v.
By Lemma 2.2, ¢(u) & £(V(G)), so it must be one of the skipped
labels. However, u must be adjacent to vertices in the class of either
the successor or predecessor, and thus ¢(u) must be separated by
at least 2 from the successor’s maximum label or the predecessor’s
minimum label. Since £(u) is a skipped label, it is separated from
both the successor and predecessor by only 1, which is a contradic-
tion. Therefore, U(Knp, n,,...n) = 0.

Wheels: From (8], A\(W;)) = n + 1. The complete k-partite case
shows that U(K;,,) = 0. It follows at once from K; , < W, and
AMK1n) = A(W,,) that since U(K1,n) =0, U(W,) =0 as well, as if
no vertex can be attached to K n, the same is clearly true for W,.

Cycles: From [9], A(Cr) = 4. No matter where u is attached, it will
be connected to 3 vertices: the initial vertex v and its two neighbors.
Suppose u#tv; with neighbors v;-; and v;;;. This forces

£(u) < min{€(vi=1), &(v;), £(vit1)}—2 or £(u) > max{€(vi-1), &(vi), &(vig1) }+2.

However, from examining all possible optimal labelings for 3
consecutive vertices in a cycle, we see that each must contain a 0
or 1 as well as a 3 or 4. Since £(u) cannot be less than 0 or greater
than A\, U(C,) = 0.

O

Thus far, we have seen several graphs for which U(G) = 0 regardless of
|[V(G)|. We will now examine two families, prisms and paths, for which
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U(G) > 0 if |V(G)| has certain values. Our arguments rest on finding
“blocks” of labels, from which we may construct labels yielding optimal
utility.
Theorem 2.3. For any finite path P,,

0 ifn<5,

UP)=¢ 1 if5<n<10, n#6, and
2 ifn>10 orn==6.

Proof. First, we check the cases n < 5. Note that P, = K;, P, = Ky, P3 =
K, 2, and an optimal labeling of P4 uses the labels 2,0,3,1. In these four
cases, we the utility is 0, by Proposition 2.1. For n > 5, A\(P,) = 4 with
a canonical cyclical labeling {0,2,4,0,2,4,...}. Henceforth for simplicity
we will indicate a labeling sequence by a concatenated string of integers, so
the canonical labeling is 024024.. .. For all interior vertices along the path,
the cases for expansion are the same as those for cycles (Proposition 2.1.3)
and thus, no expansions can be made. Terminal vertices do not allow for
expansions, and thus the canonical labeling has 0 utility.

Now let us consider non-canonical labelings of P,. Let vy,vs,...,v,
correspond to consecutive vertices on P, where v, and v,, represent the two
terminal points. Let £(v;) = ¢;. We will now construct a labeling of Ps
such that U(F;5) > 0. To avoid the canonical labeling, we force ¢35 € {1, 3},
which also forces £2 € {0,4}. There are 4 possibilities of £;£243¢4¢5 that
allow for u#v;:

a; = 20314, ap = 24130, a3z = 40314, and a4 = 04130.

Suppose that £ is an optimal labeling and let #(v) = A — £(v) be the
inverse labeling. We claim that ¢ is optimal. Indeed ¢ realizes the minimal
span A, thus #/(v) € [0, A] for all v € V as well. Hence, ¢ is also an optimal
labeling.

Thus we may consider the inverse pairs {a;, a2} and {a3,as}. Without
loss of generality, we look at only one in each pair, say o; and 3. Note that
for n > 5, g only depends on £,¢5. The label pair £4¢5 is the same in both
oy and a3 (41). To obtain possible ending sequences £, _4€n—3ln—28n_185
so that u#uv,, we take the o;s and reverse the order of their labels:

B = 41302, B, = 03142, Bz = 41304, and B4 = 03140.

Given labels ¢, 5. .. £,_s, to determine if 8; can be used to label £,,_4...¢0,,,
we need only examine £,,_4¢,_3, which have possible values of 03 and 41.

For the case n = 5, using a; we see that 20314 allows for u#tv; with
£(u) = 4 and that if u#vs, £(u) > A\. Thus U(P;) = 1.

We begin with ;.

For n = 6 we see that if g = 0, we have 203140, and thus U(Fs) = 2.
Also note that 8, is used for the last 5 vertex labels.
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Since the starting sequence o is fixed and only one of the §;s can be
used for the last 5 labels, we need only check if a sequence of length n can
be built that begins with «; and ends with a §;. Since the last 3 digits of
o1, 314, do not begin any i, if n = 7 we can expand on the one terminal
vertex but not the other, thus U(P;) = 1. By the same argument, since
14 does not begin any g;, U(Fs) = 1. For the case n = 9, note that 4
does begin B; and (3, however, this sequence puts a 1 on either side of the
4, thus U(Py) = 1. If n = 10, the length of the path is long enough that
starting and ending sequences do not overlap, and we check combinations
that may lie adjacent to each other. Indeed, the sequence a;f; witnesses
U(Pyo) =2.

For n > 10, we seek to find labelings satisfying either a; Pf; or a; PB2
where P = p;...pn—10 is a string of labelings such that p; € {2,0} and
Prn-10 & {1,3}. For the next 6 cases, we need only find a witness P for each
case.

For n = 11, note that P = 2 gives us 320, so U(P1;) = 2.

For n = 12, P = 20 gives us a;200,;, so U(P;2) = 2.

For n = 13, P = 024 gives us a;0248,, so U(Py3) = 2.

For n = 14, P = 0314 gives us «;031408,, so U(Py4) = 2.

For n = 15, P = 20314 gives us 203140, so U(Py5) = 2.

For n = 16, P = 024024 gives us 102402405, so U(Pig) = 2.

We now note that every integer > 6 can be written as a linear com-
bination of 3 and 4 with positive coefficients. We have “building blocks”
A =024 and B = 0314. Thus for for n > 16 we may construct a sequence
of the form o;C;C>...C,032 where C; € {A, B}, for all ¢ that witnesses
U(P,) = 2. The value we obtain is an upper bound as well as a lower
bound because any other blocking would result in less efficient use of the
path’s length.

Thus for n > 16, U(P,) = 2. Therefore if n > 10, U(P,) = 2. O

We remind the reader that a prism Pr, is graph consisting of two equal-
length cycles C,, and C!, in which each vertex on C, is connected to the
corresponding vertex on Cj,. We will refer to labels on prisms by pairs of

vertices g where a is the label of a vertex on C,, and b is the label of the
vertex adjacent to a on CJ,.
Theorem 2.4. Let n > 3. Then for the prism Pry,

0, ifn <10 orn =0 (mod 3)
U(Pra) 2 { 13-2], ifn210andn %0 (mod 3)

Proof. For this proof, let all congruences be mod 3. As with paths, we
wish to find blocks of labels that can be strung together to form a labeling
admitting U(Pry,) > 0. For an arbitrary attachment u#uv in the prism we
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FIGURE 2. Prism u#v

find that the smallest block of labels admitting an attachment must contain
at least 3 vertex pairs.

By exhaustive computer search, for n < 10,U(Pr,) = 0. Thus we as-
sume n > 10. By Georges and Mauro [5], we have A(Pr,,) = { 2: i: 11: ; g .
We have 3 cases corresponding to congruence classes mod 3.

Case 1 (n = 0). By [5], if n = 0,A(Pr,) = 5. This case uses the la-

beling o = i g g and repeats cyclically around the whole prism. For this

case, U(Pry,a) = 0, and since the only other optimal labelings of Pr,, are
permutations of o, we have that U(Pr,) =0, when n = 0.

Case 2 (n = 1). We let A and B be labeling blocks A = ;53 and

B = 1 g g ? 2 g g of lengths with 3 vertex pairs and 7 vertex pairs respec-

tively. (A computer search yielded no label blocks of shorter length that
could be appended to each other.) Note that for A, if £(v) = 0, u#v where
£(u) = 2. We also see that if A is placed adjacent to itself, the sequence
AA may extend to a valid labeling.

From this we can build a labeling BAA... A for the prism Pr, where
A is repeated 2L times. For each A there is a vertex where an expansion

can occur, U(Pin) = 237, Since n = 1,3k such that 3k + 1 = n. This
gives us @'—"%l_—" =k-2=|k-2+3%)= |3 _2)=|2 -2|. Thus for
n=1U(Pr,) >3 -2].

05246153

Case 3 (n=2). Welet C= ;] 530406 Dealabeling block of 8 vertex

pairs, noting that no shorter labels for n = 2 were found by a computer
search. From this we can build a labeling CAA... A for the prism Pr,
where A is repeated "—3—‘8 times. For each A there is a vertex where an
expansion can occur, U(Pr,) = 2328, Since n = 2, 3k such that 3k+2 = n.
This gives us S5E2=8 — k9 — |k -2+ 3] = |32 2| = |2 —2]. Thus
forn=2,U(Pr,) 2 |5 —-2]. a

Note. Proving the equality U(Pr,) = |§ — 2] for n # 0 would require
showing that our blocking scheme is optimal, which we have not here done.
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To see how different labelings realizing the span of a graph can yield
different utility, we look at the prism Pry4 in Figure 3. We use the labeling
blocks A, B, and C from Proposition 2.4. In Figure 3, ¢; is given by AAC
and £, is given by BB. However, in the first case U(Pry4,£¢;) = 2 while in
the latter U(P‘I‘M,fg) =0,

Corollary 2.5. For a prism Prp,,n >3, Us(Pr,) = U(Pr,).

Proof. Suppose we have the label pattern A used consecutively. By this
we know that exactly one expansion occurs inside the label block A, and
since the expansion points are both separated by distance 3, they can occur
simultaneously. Thus U,(Prn) > U(Pr,). Moreover, since all expansions
on Pr, occur inside blocks of vertices labeled using A and since inside any
one block we can append no more than one new vertex, in fact we have
Us(Pry) = U(Pry). O

We remind the reader that a ladder L, is graph consisting of two equal-
length paths P, and P/ where each vertex on P, is connected to a cor-
responding vertex on P.. We will refer to labels on ladders by pairs of
vertices, as we did for prisms.

Corollary 2.6. For a ladder L,,U(L,) =0.
Proof. For a subgraph H < G, it is easily shown that A(H) < A(G). So for
a ladder L, A(L,) < A(Pry). By using the same labeling block o = ‘i g g

that was used for a prism Pr,, in case n = 0 (mod 3), we obtain A(L,) < 5
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Starting by labeling any vertex £(v) = 0 it is easy to see that A(L,) cannot
equal 4. Thus for n € N, A(L,) = 5. We also see that, as before, the only
valid labelings are all permutations of a. Since it was previously shown
that no vertices in this labeling can be expanded, we need only check what
occurs at the terminal points of the ladder. For any valid permutation of
the labels in a, utility is still 0. Since no other labelings can be used and
no permutation o permits expansions, we have U(L,) = 0. ]

3. INFINITE REGULAR GRAPHS

Up to this point, we have considered only finite graphs; we now consider
a few infinite graphs. For the following translation-invariant graphs, utility
and simultaneous utility are easily computed because attachments look the
same at all vertices. Let I'a,I'g, and 'y, be the infinite Euclidean lattices
whose regions are triangles, squares, and hexagons, respectively.

Proposition 3.1. The utility U(G) =0 if G=Tx,'n, or T'y.

Proof. From Griggs and Jin (7], A(Tx) =5, M['g) = 6, and A(T'a) = 8.

Hexagonal Lattice: For the infinite hexagonal lattice 'y we exam-
ine at a potential expansion on an arbitrary vertex v € V(I'y).
The subgraph induced by v and N(v) is isomorphic to K 3, thus
K, 3 <Tpy. We know that A(K},3) = 4, and we will show that even
if we allow labels in {0,1,...,5}, no expansion is possible. We see
that for 4 vertices and 6 possible labels, exactly 2 labels must be
omitted. If ¢(v) € [1,4], then the 2 omitted labels must be £(v) +1
and £(v) — 1, which does not permit u#tv. If £(v) = 0,5, then 1
or 4 is omitted, respectively, and then there are 4 choices for the
other omitted label. Regardless of the combination of omitted la-
bels used, u#tv cannot occur. Since an expansion cannot be made
for any arbitrary vertex, U(I'g) = 0.

Square Lattice: Similarly, K; 4 < I';. While A(K3,4) = 5, we allow
labels in [0, 6]. As before, we attempt to label K 4 using this longer
interval. By applying the same argument, we again see that u#v
is impossible and thus U(I'g) = 0.

Triangular Lattice: In this case, K16 < I'a. We know that A\(K;6) =
7, but we allow labels in [0,8]. Arguing as before, we obtain
UTa)=0.

O

Indeed, the argument used in the above proof can be generalized to prove
the following

Corollary 3.2. If a graph G is k-regular and \(G) = k+2, then U(G) = 0.
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There are large general classes of graphs with this property. For example,
we may consider the Cayley graphs of Artin groups. For elements s, t in the
generating set of a group, we let w,,(s,t) denote the alternating product
stst ... consisting of exactly m terms. An Artin group is a group A given by
presentation (S | R) in which R consists of pairs wm(s,¢)($,t) = W) (¢, 5),
for s,t € S and m(s, t) satisfying m(s, t) = m(t,s) € NU{oo} and m(s,t) =
1 if and only if s = £. If m(s,t) = co we mean that there is no relation
involving s and ¢t. The set S is called the fundamental generating set. If
all m(s,t) are even or infinite, we call A an even Artin group.

For example, the integer lattice is the Cayley graph of the even Artin
group (s, t | st = ts). More generally, any 2k-regular tiling of the hyperbolic
plane by p-gons for which p = 0 mod 4 gives rise to a graph that can be
realized as a subgraph of the Cayley graph of an even Artin group.

The following is proven in [1].

Proposition 3.3. IfT' is a subgraph of the Cayley graph of an even Artin
group, relative to the fundamental generating set, then A(T') = A + 2.

From this we have

Corollary 3.4. IfT" is a subgraph of the Cayley graph of an even Artin
group, relative to the fundamental generating set, then U(T') = 0.

Proof. Apply Corollary 3.2 and Proposition 3.3. a

4. BounDps oN UTILITY

In this section we will examine the bounds on utility and simultaneous
utility. To do this, we need the following lemma. Roughly it says that
the utility of a graph U(G) can also be used as a measurement of a label’s
“Hexibility,” i.e. the extent to which the label of a specific vertex can be
altered so that the resulting labeling is also a valid L(2, 1)-labeling.

Lemma 4.1. IfU(G) > 0 then u#tvg & 3k € Z, |k| = 2, such that £'(v) =

L)+ k, ifv=uw
{ (), vt
Proof. (=) Suppose u#v and let £'(v) = £(u). Let k = £'(v) — £(v). Then
|k] = |€(v) — €(u)| > 2 because u#v. Similarly, ¢(w) — £(v)| > 2 for all
w € N(v). Thus ¢ realizes a proper labeling.

(«) Suppose for some |k| > 2 and #'(v) = €(v) + k that £ realizes a
proper labeling. Let £(u) = #/(v) and let w € N(v). To show u#tv, we
need |¢(w) — £(u)] > 2 and |{(w) — £(v)| > 2. Since ¢ is a proper labeling,
|é(w) — £(u)| = |(w) — £'(v)| = 2. Likewise |{(v) — £(u)] = |k| > 2. Hence
uftv is valid. [m]

Theorem 4.2. If G has order n, then U(G) < n —1.

also realizes a L(2,1)-labeling.
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FIGURE 4. G, with expansions

Proof. To show U(G) < n, assume to the contrary that U(G) = n. (By
definition U(G) < n.) In this case we may attach to any v € V. We know
that for some v; € V(G), £(v;) = A. Because u#uv;, by Lemma 4.1 we may
relabel v; with £ such that for some |k| > 2, #(v;) = £(v;) + k. Since we
cannot allow £'(v;) > A, we have that k < —2 and so #'(v;) < £(v;). This is
true for all v such that £(v) = A, and thus we could create a new labeling
of G with a span less than A, which contradicts A(G) realizing the span of
G. Thus U(G) < nand so U(G) < n—1. O

As indicated in Figure 4, there exists a graph G,, with order n such that
U(Gr) = n — 4. This shows that the sharp upper bound for U(G) must lie
in [n —4,n—1]. This G, has the form of K4 with a pendant path of length
n — 4. We see that A(G,) = 6. Note that expansions can occur, shown
here with the smaller labels and thinner edges, at all vertices but the 4
contained in K4. We emphasize that the expansions shown in Figure 4 are
not to be performed simultaneously; they are all shown together merely to
indicate the vertices at which expansion can occur.

Theorem 4.3. Let G be a graph with maxzimum degree A and order n.

Then
A ; 2(n -1).

Us(G) <

Proof. We saw in Figure 1 that U,;(G) > n is possible when multiple at-
tachments are made to a given vertex. When p attachments are made to
a single vertex vp, then wp, a single neighbor of vy and p attached vertices
induce Kp42. From Proposition 2.1, we know that A(Kp+2) = 2(p + 1).
By Theorem 4.2 we know that there are at most n — 1 vertices where at-
tachments can be made. By the pigeonhole principle we can ensure that p
vertices can be attached to a single vertex only if U,(G) > p(n — 1).

Thus to find the maximum number of attachments that can be made to
a vertex, we look at how many attachments, p, can be made before adding
another induces a complete graph that requires a higher A. By taking a
vertex and a single neighbor, we seek a number of attachments p to a vertex
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that induces K2 such that A(Kp42) > A(G), forcing a contradiction. In
terms of A(G), we get p > 252, which gives us U,(G) < 25%(n — 1).

We now show that there exists a graph G such that U,(G) = in(25%),
so that our bound above is of the right order in terms of n and A.

Let the graph G) with order n have the structure of K with a pen-
dant edge at each vertex (Figure 1), thus n = 2k. Let V' be the set
of vertices v} € V(Gk),i = 1,...,k such that deg(v;) = 1. As in Proposi-
tion 2.1.1, label the vertices v; € V(Gg),i = 1,...,k that form K} such that

3, ifi=1
f(v1) =0,8(v2) =2,...,L(vx) =2(k—1). Let £(v)) =< 5, ifi=2
1, if3<i<k

Note that this is a valid labeling of G, AMG) = 2k — 2, U(Gy) = k,
and attachments can be made on each v} € V(Gi) for i = 1,...,k. The
number of expansions that can occur simultaneously at each v} is at least
k — 4. For v{,v;, the number of simultaneous expansions is k — 3. This
gives Us(Gk) = k(k — 4) + 2. Putting this in terms of n and A we have
Us(Gy) = -;-n(-"—;—e).

Corollary 4.4. Let G be a graph with maximum degree A and order n.
Then

Uy(G) < 5(A% + A~ 4)(n 1) < 5(n° ~ 20" ~ dn +4).

Proof. By Theorem 4.3 we have U,(G) < 3(AG) — 2)(n — 1). From
Gongalves [6] we know that A(G) < A%+ A — 2. By a substitution, we get
a bound U,(G) < 1(A%+ A —4)(n—1) in terms of maximum degree A and
order n. From here, we can get a bound depending only on n by noting that
A < n—1. This substitution gives U,(G) < 3((n—1)*+(n—1) —4)(n—1),
which simplifies to U(G) < 3(n® — 2n® — 3n + 4). O

Note that Griggs and Yeh have conjectured [9] that A(G) < A2, which,
if proven true, improves the bound to Us(G) < (A —2)(n — 1) < (A% -
2(n-1)< i3 -3n2+n+1).

5. DIRECTIONS FOR FURTHER RESEARCH

Several areas remain open for exploration. The following section men-
tions several that are closely related to results found in this paper.
Question 1. What is U(Q,), for the cube @, with 2" vertices? Clearly,
for n < 3,U(Qr) = 0. For larger n, however, it is unknown.

Question 2. What is U(M,), for the M6bius ladder M,,? These graphs are
similar to prisms, but it appears likely that A(M,) > A(Pr,). Because of
its similarities to prisms, if A\(My,) = A(Pr,), then it is likely that U(M,) ~
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U(Pr,) for sufficiently large n. If A\(My,) > A(Pr,,), then it is very possible
that U(M,,) > U(Pr,).

Question 3. What is the utility of finite subgraphs of the lattices G, Ga, Gy ?
Here, expansions would have to occur on the perimeter. It would be useful
to show if a particular grid structure has U(G) > 0 because such knowl-
edge could lead to more efficient methods of setting up grids that allow for
expandability of real-world networks.

Question 4. What is the utility of a given tree? Trees seem to have a
relatively high utility compared to their size. Finding a bound on a tree’s
utility compared to its size, maximal degree, and span would be a significant
result.

Question 5. Can we obtain a sharp bound for utility or simultaneous
utility? The bounds presented in Theorems 4.2, 4.3, and 4.4 are clearly not
optimal, as our examples have shown. Finding better bounds may give rise
to other methods of determining the utility of a graph. Also, showing the
existence of graphs that have higher utility or simultaneous utility than the
ones mentioned in Figure 4 and Figure 1 may be useful in discovering the
most flexible labelings for a particular graph or class of graphs.
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