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Abstract

A total coloring of a graph G is a coloring of both the edges and
the vertices. A total coloring is proper if no two adjacent or incident
elements receive the same color. An adjacent vertex-distinguishing to-
tal coloring h of a simple graph G = (V,E) is a proper total coloring
of G such that H(u) # H(v) for any two adjacent vertices u and v,
where H(u) = {h(wu)lwu € E(G)} U {h(u)} and H(v) = {h(zv)|zv €
E(G)} U {h(v)}. The minimum number of colors required for a proper
total coloring (resp. an adjacent vertex-distinguishing total coloring) of G
is called the total chromatic number (resp. adjacent vertex-distinguishing
total chromatic number) of G and denoted by x:(G) (resp. Xa:(G)). The
Total Coloring Conjecture (TCC) states that for every simple graph G,
A(G) +1 < x¢(G) < A(G) + 2. G is called Type 1 (resp. Type 2) if
Xxt(G) = A(G) + 1 (resp. x¢(G) = A(G) +2). In this paper, we prove that
the augmented cubes AQ, is of Type 1 for n > 4. We also consider the
adjacent vertex-distinguishing total chromatic number of AQ,,, prove that
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Xat(AQn) = A(AQR) + 2 for n > 3.

Keywords: Adjacent vertex-distinguishing total chromatic number; Aug-
mented cubes; Total chromatic number.

1 Introduction

The augmented cube AQ,, is an important topology structure in network.
The properties of AQ,,, such as the fault-tolerance, the pancyclicity and so
on have been intensively considered. Since some network problems can be
converted to coloring problem, we consider some coloring indices of AQ,
in this paper. A k-total coloring of a graph G = (V, E) is an assignment
of k colors to both the edges and the vertices of G. The total coloring is
called a proper k-total coloring if no incident or adjacent elements (vertices
or edges) receive the same color. The total chromatic number of G, x:(G),
is the least integer k for which G admits a proper k-total coloring. Let
A(G) be the maximum degree of G, Behzad [1] and Vizing [6] proposed
independently the following famous conjecture, which is known as the Total
Coloring Congecture (TCC).

Conjecture 1. For any graph G, A(G) +1 < x:(G) L A(G)+2. O

The lower bound of this conjecture is obvious, the upper bound remains
to be proved. Using probabilistic methods, Molloy and Reed (1998) showed
that the total chromatic number of a simple graph G is at most A(G)+10%,
provided that A(G) is sufficiently large. Apart from this result, not much
progress has been made on the conjecture. If G satisfies TCC and x;(G) =
A(G) +1 (resp. x:(G) = A(G) +2), then G is of Type 1 (resp. Type 2).

In [7], Zhang et al. proposed a new concept, namely adjacent vertex-
distinguishing total coloring. For a k-total coloring h : VUE — {1,2,--- ,k}
of a graph G, let h(uv) and h(v) be the color of the edge uv € E(G) and
the vertex v, respectively. Denote the color set of a vertex v in G by
H(v) = {h(w)|uv € E(G)} U {h(v)}. If h is a proper k-total coloring, and
H(u) # H(v) for any edge uv € E(G), then A is called a k-adjacent vertex-
distinguishing total coloring of graph G (abbreviated k-AV DT'C of G). The
minimum number of colors required for an adjacent vertex-distinguishing
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total coloring of G is called the adjacent vertez-distinguishing total chro-
matic number of G and denoted by Xx,:(G). The following theorem was
obtained by Zhang et al. (7).

Theorem 2 [7]. If a graph G has two vertices of maximum degree which
are adjacent, then x.:(G) > A(G) + 2.

In this paper, we prove that for n > 4, the augmented cube AQ,, is of
Type 1. We get the result by the following method: first, decompose the
augmented cubes into 2"~3 3-dimensional cubes, color the edges and the
vertices of each of these 3-dimensional cubes properly by four colors such
that any two adjacent vertices in augmented cubes are colored differently;
second, the uncolored edges form 2n — 4 perfect matchings of augmented
cubes, they can be colored properly by 2n — 4 colors. In this paper, we
also consider the adjacent vertex-distinguishing total chromatic number of
AQr. Since AQ, is a regular graph, by Theorem 2, we have x,:(AQ,) >
A(AQr) + 2. We prove that x.:(AQn) = A(AQ,) + 2 for n > 2, which
attains the lower bound of Theorem 2.

2 The Total Chromatic Number of AQ,

In this section, we consider the total chromatic number of AQ,,. We would
like to begin with some definitions and known results first.

The n-dimensional augmented cube, denoted by AQ,,, has 2™ vertices,
each of which corresponds to an n-bit binary string. It can be defined
recursively as follows: AQ; is a complete graph K, with the vertex set
{0,1}. For n > 2, let AQ%_, and AQL_, be two copies of AQn_; with
V(AQL_ ;) = {kun—1tn_2---usfu; =0o0r 1for1 <i < n—1}fork € {0,1}.
Then AQj, is constructed by connecting AQS_, and AQL_, with 2" edges
so that a vertex u = Qup_jun_z---u; in AQY_, is adjacent to a vertex
v = lup_1Un_2---v; in AQL_; if and only if one of the following two
conditions holds: (i) v; =u; forall 1 <i<n—1; (ii) v; =%; =1 —u; for
all 1 €4 < n— 1. Denote the adjacent vertex in condition (ii) by @ The
augmented cubes AQ;, AQ2, AQ3 are illustrated in Fig. 1.

Many topological properties related to cycle and path embedding in
augmented cubes, such as pancyclicity (5], panconnectedness (5], Hamil-
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Figure 1: The augmented cubes AQ:, AQ; and AQs.

tonian connectedness [4], panpositionable panconnectedness [3] have been
investigated. The following lemma gives a property of AQ, that will be
used repeatedly in the proofs to come.

Lemma 3 [2]. For n > 1, the augmented cubes AQ, are Cayley graphs,
AQ, = G(Z%,S) where S = {10--.000,01---000,...,00-.-001,00---011,
00---111,...,11.-.111} with 2n — 1 elements.

We find that the edges form 2n — 1 perfect matchings of AQ,, each
perfect matching is generated by one of the elements in S. Denote the
vertex with i-th (from right to left) position 1 and other positions 0 by €.
Ifn>4,let S, = {el,e2,el} C S. In fact, the subgraph generated by S;
form 2”3 3-dimensional cubes. Clearly, if n = 4, then subgraph generated
by S; = {el,e2,e}} is two 3-dimensional cubes, denote them by D} and
D32, which are illustrated in Fig. 2. For n > 5, let in_4--i,D} be 27~
copies of D} with V(in_q---i1D}) = {in—qa---irulu € V(D}) and i; =
Oorlforl < j< n-—4} where! € {0,1}. Since !l € {0,1}, so there
are 2"~3 3-dimensional cubes in i,_4--i; D}, each is isomorphic to D}
or D2. Obviously, the edges of in—g-- -4, D} are edges generated by S.
Furthermore, there are 2"~3 x 12 = 2"=1 x 3 edges in i,_4 - - - 11D}, which
is equal to the number of edges generated by S;. So the edges generated by
S, form 2"~3 3-dimensional cubes. Denote them by D}, D2, ..., D,’,"-a.

In the following, we will prove that the edges and the vertices of the
n—3
27-3 3-dimensional cubes Ui=1 D!, can be properly colored with four colors
such that any two vertices adjacent in AQ,, are colored differently.
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Figure 2: The two 3-dimensional cubes D} and D3 in AQ,.

n-=-3
Lemma 4. There exists a proper 4-total coloring f, for U,z=l D!, such
that any two vertices adjacent in AQ, are colored differently, where n > 4,

Proof. For any v € V(AQ,), let (F,(v)) denote the ordered color set
(fn(v),fn{;), v+el}, fa{v,v + €2}, fa{v,v+el}) of v. A 4-total coloring
fn of U?;; D!, can be coded in {(v, (F(v)))}. We will prove Lemma 4 by

induction on n.

If n =4, let {(v, (F4(v)))} be as follows: {(0000, (1,3, 4,2)), (0001,
(4,3,2,1)), (0011, (3,1, 2, 4)), (0010, (2,1, 4, 3)), (1000, (3,4, 1, 2)), (1001,
(2,4,3,1)), (1011, (1,2, 3,4)), (1010, (4,2, 1,3)), (0100, (4, 1,2, 3)), (0101,
(3,1,4,2)), (0111, (2,3,4,1)), (0110, (1,3, 2,4)), (1100, (2, 4, 1, 3)), (1101,
(1,4,3,2)),(1111,(4,2,3,1)),(1110,(3,2,1,4))}. Clearly, f4 is a proper 4-
total coloring of D} and DE. Furthermore, we can verify that two vertices
adjacent in AQ4 are colored differently by f;.

For n — 1 > 4, suppose there exists a proper 4-total coloring f,_;
for DL_,, D2_,, ..., D" such that two vertices adjacent in AQn_; are
colored differently by fn_;.

If n > 5, then D7 has the form 0D _, or 1D},_,, where j € {1,2,---,
273} and | € {1,2,---,2""4}. So the vertices of DJ have the form Oz
or 1z, where z € V(D! _,); and the edges of DJ have the form (0z,0y)
or (1z,1y), where (z,y) € E(D!,_,). Define f, as follows: let f,(0z) =

fa1(2), fa(12) = fac1(z+eil1); let £2{0z,0y} = fa1{z,y}, fn{lz, ly} =
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faor{z+en=ty+epT]
Claim 1. Any two vertices adjacent in AQ,, are colored different by f,.

Let (u,v) € E(AQ,), in order to show that fn(u) # f.(v). We classify
into three cases.

Case 1. Let u,v € V(AQP_,). Assume u = 0z and v = Oy, where
z,y € V(AQn-1). Clearly, z and y are adjacent in AQ,_;. By defini-
tion, fa(u) = frn-1(z) and fn(v) = fa—1(y). By assumption, we have
fa—1(z) # fn-1(y) since f,—; distinguishes any two adjacent vertices in
AQn—1. Therefore, f,(u) # fa(v).

Case 2. Let u,v € V(AQ}L_,). Assume u = lz and v = ly, where
T,y € V(AQn_l) Then x and y are adjacent in AQ,_1. Also z+er”}
and y + e"_} are adjacent in AQy,_ since (z,y) and (z +el"1,y +er"1)
are generated by the same generator of S. By definition, f,(u) = fa~1(z+

m~1) and fo(v) = fa—1{y + €2Z1). By induction assumption, we have
fn 1z +el”d) # fao1(y + ePZ1). Therefore, fo{u) # fa(v).

Case 8. Let u € V(AQ%_,), v € V(4AQL_,). Let u = Oz, where
z € V(AQn-1). By definition v = 1z or v = 1Z. Then f,(u) = fn(0z) =
Fa-1(z). Ifv = 1z, then f,(v) = fa(lz) = fa—1(z + e2}). Otherwise,
v = 1 and fo(v) = fn(1Z) = fa-1(T + €27}). Since z is adjacent to
both z + e”~1 and T+ e~} in AQn_1, 50 fa-1(z) # fa—1(z +€2_}) and
fac1(z) # fa-1(Z +€771). In both case, we have f,(u) # fa(v).

Claim 2. The coloring f, is a proper 4-total coloring for U?:;a D}.

In order to prove claim 2, by claim 1, we only need to prove that any
edge in U, Dl is colored different from its end vertices and its adjacent
edges in J2- =1 Dl

Case 1. Let (u,v) € E(0D!_,) for some ! € {1,2,---,2""%}. As-
sume (u,w) € E(0D)_;). Let v = 0z, v = Oy and w = 0z. Then z
and y are adjacent in D,_;; also, z and z are adjacent in D}_,. By def-
inition, fa{u,v} = fa_1{z,¥}, fa{u,w} = fu1{z, 2}, fu(v) = faa(y).
By induction assumption, fr—1{z,y} # fa-1(¥), fa—1{z, ¥} # fa-1{z, 2}
Therefore, fp{u,v} # fn(v), fa{u,v} # fa{u, w}.

Case 2. Let (u,v) € E(1D!_,) for some ! € {1,2,---,2"~4}. Assume
(v,w) € E(1D},_,). Let u = 1z, v = ly and w = 1z. Then we can
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get that = and y are adjacent in D/ _,; also, £ and z are adjacent in
Dl _,. It is easy to see that (z,y) and (z +e2-1,y + eP"}) are generated
by the same generator of S;. So z + e,'}:{ and y + e?Z1 are adjacent in
some DJ_;. Moreover,  + e*~} and z + e~} are adjacent in the same
D?_,. By definition, fo{u,v} = fao1{z + e?=}y + €21}, fufu,w} =
fao1{z+er], z+€771}, fa(v) = fa—1(y+€2Z1). By induction assumption,
fo-i{z + €2y + €21} # famr(y+ €nl)), far{z + ity +epli} #
fn_l{x+ez:l,z+e;‘:}}. Therefore, fn{u,v} # fo(v), fa{u,v} # fa{u, w}.
The proof of Claim 2 is now complete.

Combining claim 1 with claim 2, we can conclude that f, is a proper
4-total coloring for Uf:;s D!, such that any two vertices adjacent in AQ,

are colored differently. D

Next is the main result of this section.
Theorem 5. For each n > 4, x:(AQ,) = 2n.
Proof. Since AQ, is (2n — 1)-regular, then x:(AQ,) > 2n, and in order
to prove x:(AQ.) = 2n, we only need to prove that AQ, has a proper
2n-total coloring for n > 4.

First, by Lemma 4, color the edges generated by S; and the vertices
of AQ, properly by four colors such that any two adjacent vertices in
augmented cube are colored differently. Second, the uncolored edges form

2n — 4 perfect matchings of AQ,, they can be colored properly by another
2n — 4 colors. This yields a proper 2n-total coloring of AQ,. Hence,

xe(AQn) = 2n. O

3 The Adjacent Vertex-distinguishing Total
Chromatic Number of AQ,

In this section, we consider the adjacent vertex-distinguishing total chro-
matic number of AQ,,. We begin with the following definition.

Ifn >3, let S, = {el,e2} C S. In fact, the subgraph generated by
S, form 2"~2 four cycles. Clearly, if n = 3 then subgraph generated by
Sy = {e}, 3} is two four cycles, denote them by C} and CZ. For n > 4, let
in-g3-+-§C} be 23 copies of C} with V(in_3--+i1C}) = {in-3---hufu €
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V(Ci)andi; =0o0r1for 1< j<n—3} wherele {0,1}. Sincel € {0,1},
so there are 2"~2 four cycles in i,_3---i1C}, each is isomorphic to C3 or
C2. And the edges of i,_3---i,C} are generated by S;. Denote the 272
four cycles by C1, C2, ..., C2" 7%,

Let h, be a k-total coloring of U,z;;z C.. For any v € V(AQy),
let Hp(v) (resp. (Hp(v))) denote the color multiset {h,(v),hAn{v,v +
el}, hn{v,v + €2}} (resp. the ordered color multiset (hn(v),hn{v,v +
el}, hn{v,v +€2})) of v. Next, we will prove that there exists a proper 4-
total coloring h,, for Uf;;z C! such that hp(u) # hn(v) and Hp(u) # Hn(v)
for any (u,v) € E(AQn,).
Lemma 6. For n > 3, there exists a proper 4-total coloring h,, for Uf;;z (ol
such that h,(u) # hn(v) and H,(u) # Ha(v) for any (u,v) € E(AQR).

Proof. A 4-total coloring Ay, of Uf;T C! can be coded in {(v, (Hn(v)))}.
We will prove Lemma 6 by induction on n.

Ifn = 3, let {(v, (H3(v)))} be as follows: {(v, (Ha(v)))} = {(000, (2,1,4)),
(001, (3,1,2)), (010, (1,3, 4)), (011, (4, 3,2)); (100, (1,4, 3)), (101, (2, 4, 1)),
(110, (4,2,3)), (111,(3,2,1))}. Clearly, hs is a proper 4-total of C3 U C2.
Furthermore, h3(u) # h3(v) and H3(u) # H3(v) for any (u,v) € E(AQ3).

For n—1 > 3, assume h,_; is a proper 4-total coloring of Uf;;s Cl_,
such that h,_3(u) # hn—1(v) and Hpy(u) # Hp-1(v) for any (u,v) €
E (AQn-l)'

We need only to prove that U?;;z C! has a proper 4-total coloring
such that hp(u) # hn(v) and Hp(u) # H,(v) for any (u,v) € E(AQy).

If n > 4, then CJ has the form 0C._, or 1C}_,, where j € {1,2,---,
272} and ! € {1,2,---,2"3}. So the vertices of C} have the form 0z
or 1z, where z € V(C!_,); and the edges of CJ have the form (0z,0y)
or (1z,1y), where (z,y) € E(C._,). Define h, as follows: let hn(0z) =
Bn-1(z), hn(1z) = hp_y(z+€l71); let hn {0z, 0y} = hn_1{z, ¥}, hn{lz, 1y} =
hn-1{z + €21,y +enl1}.

By the definition of h, and the induction assumption of h,_1, we can
prove that hy, is a proper 4-total coloring for U?;Iz C! and any two adjacent
vertices in AQ,, are colored differently by k., similar to Lemma 4. We omit

the proof here.
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In order to prove Lemma 6, we only need to show that Hn(u) # H,(v)
for any (u,v) € E(AQ,). We classify into three cases to prove that H, (u) #
Hy(v).

Case 1. Let u,v € V(AQ%_,). Assume u = Oz and v = Oy, where
z,y € V(AQn-1). Clearly, z and y are adjacent in AQ,,_,. By definition,
ha(u) = hn-1(z), hn{u,u + e} = hnoy{z,z + en1} hn{u,u + €} =
hn-1{z,z + €2_,}. So Hn(u) = Hn—1(z). Similarly, we can get H,(v) =
H,_i(y). By assumption, we have H,_,(z) # H,_1(y) since any two
vertices adjacent in AQ,_; are coded with different color set. Therefore,
Hp(u) # Hp(v).

Case 2. Let u,v € V(AQ}_,). Assume u = 1z and v = ly, where
T,y € V(AQ,.,,I). Then z and y are adjacent in AQ,_;. Also, r + e~}
and y + €7} are adjacent in AQ,— since (z,y) and (z + e;':},y +er”1)
are generated by the same generator of S. By definition, hy(u) = hn—1 (z+

1)’ h {u u-+ en} hﬂ—l{x + en—1=z +en-l + en—l} hn{u ut+e } =

n-1{$ +elll,z+er i +e2_1}. So Hy(u) = Hu_y(z + €21). Similarly,

we can get Hn(v) = H,—1(y + €2_1). By assumption, we have H,_)(z) #
H,_1(y). Therefore, H,(u) # H,(v).

Case 3. Let u € V(AQS_,), v € V(AQL_,). Assume u = Oz, where
z € V(AQn-1). By definition v = 1z or v = 1Z. Then by case 1, Hp(u) =
Hn_i(z). If v = 1z, then Hy(v) = Hp—1(z + e271) by case 2. Otherw1se,
v=1% and H,(v) = Ho—1(T +€l}). Since z is adjacent to both z + e~
and T + e}"1 in AQn-1, 50 Hno1(2) # Huo1(z + €"Z)) and H,_y(z) 9é
H,_1(Z +€?~}1). In both case, we have H,(u) # Hn(v). |
Since AQ, is a (2n—1)-regular graph, by Theorem 2, we have x4:(AQ,) >
A(AQn)+2 = 2n+1. In the following, we will prove that x,:(AQn) = 2n+1
for n > 3.

Theorem 7. For each n > 3, x4t (AQ,) =2n + 1.

Proof. Since x0:(AQn) > 2n+1, in order to prove x,:(4Q,) = 2n+1, we
only need to give a (2n + 1)-adjacent vertex-distinguishing total coloring of
AQ,, forn > 3.

Let h,, be the proper 4-total coloring for U,,_ C provided by Lemma
6. The uncolored edges of AQ, form 2n — 3 perfect matchings. We can
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extend h,, to be a proper (2n + 1)-total coloring of AQ, by coloring each
perfect matching a new color with colors 5,6,...,2n + 1. Let Ha(v) be
the color set of v and its incident edges in AQ,. Then H,(v) = H,(v) U
{5,6,...,2n+1}. For any (u,v) € E(AQr), by Lemma 6, H,(u) # H,(v).
So H,(u) # Hn(v). This yields a (2n + 1)-adjacent vertex-distinguishing
total coloring of AQ,. Hence, xq:(AQr) = 2n + 1. 0
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