Total and adjacent vertex-distinguishing total chromatic numbers of augmented cubes *

Meirun Chen † Shaohui Zhai

School of Applied Mathematics, Xiamen University of Technology, Xiamen Fujian 361024, China

Abstract

A total coloring of a graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G = (V, E) is a proper total coloring of G such that $H(u) \neq H(v)$ for any two adjacent vertices u and v, where $H(u) = \{h(wu)|wu \in E(G)\} \cup \{h(u)\}$ and $H(v) = \{h(xv)|xv \in E(G)\} \cup \{h(v)\}$. The minimum number of colors required for a proper total coloring (resp. an adjacent vertex-distinguishing total coloring) of G is called the total chromatic number (resp. adjacent vertex-distinguishing total chromatic number) of G and denoted by $\chi_t(G)$ (resp. $\chi_{at}(G)$). The Total Coloring Conjecture (TCC) states that for every simple graph G, $\Delta(G) + 1 \leq \chi_t(G) \leq \Delta(G) + 2$. G is called Type 1 (resp. Type 2) if $\chi_t(G) = \Delta(G) + 1$ (resp. $\chi_t(G) = \Delta(G) + 2$). In this paper, we prove that the augmented cubes AQ_n is of Type 1 for $n \geq 4$. We also consider the adjacent vertex-distinguishing total chromatic number of AQ_n , prove that

^{*} The Project is Supported by NSFC (No. 11101345), Fujian Provincial Department of Science and Technology (2012J05012) and Fujian Provincial Department of Education (JA10244, JA12244).

[†] Corresponding author. E-mail address: mrchen@xmut.edu.cn.

$$\chi_{at}(AQ_n) = \Delta(AQ_n) + 2 \text{ for } n \geq 3.$$

Keywords: Adjacent vertex-distinguishing total chromatic number; Augmented cubes; Total chromatic number.

1 Introduction

The augmented cube AQ_n is an important topology structure in network. The properties of AQ_n , such as the fault-tolerance, the pancyclicity and so on have been intensively considered. Since some network problems can be converted to coloring problem, we consider some coloring indices of AQ_n in this paper. A k-total coloring of a graph G = (V, E) is an assignment of k colors to both the edges and the vertices of G. The total coloring is called a proper k-total coloring if no incident or adjacent elements (vertices or edges) receive the same color. The total chromatic number of G, $\chi_t(G)$, is the least integer k for which G admits a proper k-total coloring. Let $\Delta(G)$ be the maximum degree of G, Behzad [1] and Vizing [6] proposed independently the following famous conjecture, which is known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph
$$G$$
, $\Delta(G) + 1 \leq \chi_t(G) \leq \Delta(G) + 2$. \Box

The lower bound of this conjecture is obvious, the upper bound remains to be proved. Using probabilistic methods, Molloy and Reed (1998) showed that the total chromatic number of a simple graph G is at most $\Delta(G)+10^{26}$, provided that $\Delta(G)$ is sufficiently large. Apart from this result, not much progress has been made on the conjecture. If G satisfies TCC and $\chi_t(G) = \Delta(G) + 1$ (resp. $\chi_t(G) = \Delta(G) + 2$), then G is of Type 1 (resp. Type 2).

In [7], Zhang et al. proposed a new concept, namely adjacent vertex-distinguishing total coloring. For a k-total coloring $h: V \cup E \to \{1, 2, \cdots, k\}$ of a graph G, let h(uv) and h(v) be the color of the edge $uv \in E(G)$ and the vertex v, respectively. Denote the color set of a vertex v in G by $H(v) = \{h(uv)|uv \in E(G)\} \cup \{h(v)\}$. If h is a proper k-total coloring, and $H(u) \neq H(v)$ for any edge $uv \in E(G)$, then h is called a k-adjacent vertex-distinguishing total coloring of graph G (abbreviated k-AVDTC of G). The minimum number of colors required for an adjacent vertex-distinguishing

total coloring of G is called the adjacent vertex-distinguishing total chromatic number of G and denoted by $\chi_{at}(G)$. The following theorem was obtained by Zhang et al. [7].

Theorem 2 [7]. If a graph G has two vertices of maximum degree which are adjacent, then $\chi_{at}(G) \geq \Delta(G) + 2$.

In this paper, we prove that for $n \geq 4$, the augmented cube AQ_n is of Type 1. We get the result by the following method: first, decompose the augmented cubes into 2^{n-3} 3-dimensional cubes, color the edges and the vertices of each of these 3-dimensional cubes properly by four colors such that any two adjacent vertices in augmented cubes are colored differently; second, the uncolored edges form 2n-4 perfect matchings of augmented cubes, they can be colored properly by 2n-4 colors. In this paper, we also consider the adjacent vertex-distinguishing total chromatic number of AQ_n . Since AQ_n is a regular graph, by Theorem 2, we have $\chi_{at}(AQ_n) \geq \Delta(AQ_n) + 2$. We prove that $\chi_{at}(AQ_n) = \Delta(AQ_n) + 2$ for $n \geq 2$, which attains the lower bound of Theorem 2.

2 The Total Chromatic Number of AQ_n

In this section, we consider the total chromatic number of AQ_n . We would like to begin with some definitions and known results first.

The n-dimensional augmented cube, denoted by AQ_n , has 2^n vertices, each of which corresponds to an n-bit binary string. It can be defined recursively as follows: AQ_1 is a complete graph K_2 with the vertex set $\{0,1\}$. For $n\geq 2$, let AQ_{n-1}^0 and AQ_{n-1}^1 be two copies of AQ_{n-1} with $V(AQ_{n-1}^k)=\{ku_{n-1}u_{n-2}\cdots u_1|u_i=0 \text{ or } 1 \text{ for } 1\leq i\leq n-1\}$ for $k\in\{0,1\}$. Then AQ_n is constructed by connecting AQ_{n-1}^0 and AQ_{n-1}^1 with 2^n edges so that a vertex $u=0u_{n-1}u_{n-2}\cdots u_1$ in AQ_{n-1}^0 is adjacent to a vertex $v=1v_{n-1}v_{n-2}\cdots v_1$ in AQ_{n-1}^1 if and only if one of the following two conditions holds: (i) $v_i=u_i$ for all $1\leq i\leq n-1$; (ii) $v_i=\overline{u}_i=1-u_i$ for all $1\leq i\leq n-1$. Denote the adjacent vertex in condition (ii) by \overline{u} . The augmented cubes AQ_1 , AQ_2 , AQ_3 are illustrated in Fig. 1.

Many topological properties related to cycle and path embedding in augmented cubes, such as pancyclicity [5], panconnectedness [5], Hamil-

Figure 1: The augmented cubes AQ_1 , AQ_2 and AQ_3 .

tonian connectedness [4], panpositionable panconnectedness [3] have been investigated. The following lemma gives a property of AQ_n that will be used repeatedly in the proofs to come.

Lemma 3 [2]. For $n \ge 1$, the augmented cubes AQ_n are Cayley graphs, $AQ_n \cong G(Z_2^n, S)$ where $S = \{10 \cdots 000, 01 \cdots 000, \dots, 00 \cdots 001, 00 \cdots 011, 00 \cdots 111, \dots, 11 \cdots 111\}$ with 2n - 1 elements.

We find that the edges form 2n-1 perfect matchings of AQ_n , each perfect matching is generated by one of the elements in S. Denote the vertex with i-th (from right to left) position 1 and other positions 0 by e_n^i . If $n \geq 4$, let $S_1 = \{e_n^1, e_n^2, e_n^4\} \subseteq S$. In fact, the subgraph generated by S_1 form 2^{n-3} 3-dimensional cubes. Clearly, if n=4, then subgraph generated by $S_1 = \{e_4^1, e_4^2, e_4^4\}$ is two 3-dimensional cubes, denote them by D_4^1 and D_4^2 , which are illustrated in Fig. 2. For $n \geq 5$, let $i_{n-4} \cdots i_1 D_4^l$ be 2^{n-4} copies of D_4^l with $V(i_{n-4} \cdots i_1 D_4^l) = \{i_{n-4} \cdots i_1 u | u \in V(D_4^l) \text{ and } i_j = 0$ or 1 for $1 \leq j \leq n-4\}$ where $l \in \{0,1\}$. Since $l \in \{0,1\}$, so there are 2^{n-3} 3-dimensional cubes in $i_{n-4} \cdots i_1 D_4^l$, each is isomorphic to D_4^1 or D_4^2 . Obviously, the edges of $i_{n-4} \cdots i_1 D_4^l$ are edges generated by S_1 . Furthermore, there are $2^{n-3} \times 12 = 2^{n-1} \times 3$ edges in $i_{n-4} \cdots i_1 D_4^l$, which is equal to the number of edges generated by S_1 . So the edges generated by S_1 form 2^{n-3} 3-dimensional cubes. Denote them by D_n^1 , D_n^2 , ..., $D_n^{2^{n-3}}$.

In the following, we will prove that the edges and the vertices of the 2^{n-3} 3-dimensional cubes $\bigcup_{k=1}^{2^{n-3}} D_n^l$ can be properly colored with four colors such that any two vertices adjacent in AQ_n are colored differently.

Figure 2: The two 3-dimensional cubes D_4^1 and D_4^2 in AQ_4 .

Lemma 4. There exists a proper 4-total coloring f_n for $\bigcup_{l=1}^{2^{n-3}} D_n^l$ such that any two vertices adjacent in AQ_n are colored differently, where $n \geq 4$.

Proof. For any $v \in V(AQ_n)$, let $(F_n(v))$ denote the ordered color set $(f_n(v), f_n\{v, v + e_n^1\}, f_n\{v, v + e_n^2\}, f_n\{v, v + e_n^4\})$ of v. A 4-total coloring f_n of $\bigcup_{l=1}^{2^{n-3}} D_n^l$ can be coded in $\{(v, (F_n(v)))\}$. We will prove Lemma 4 by induction on n.

If n=4, let $\{(v,(F_4(v)))\}$ be as follows: $\{(0000,(1,3,4,2)),(0001,(4,3,2,1)),(0011,(3,1,2,4)),(0010,(2,1,4,3)),(1000,(3,4,1,2)),(1001,(2,4,3,1)),(1011,(1,2,3,4)),(1010,(4,2,1,3)),(0100,(4,1,2,3)),(0101,(3,1,4,2)),(0111,(2,3,4,1)),(0110,(1,3,2,4)),(1100,(2,4,1,3)),(1101,(1,4,3,2)),(1111,(4,2,3,1)),(1110,(3,2,1,4))\}$. Clearly, f_4 is a proper 4-total coloring of D_4^1 and D_4^2 . Furthermore, we can verify that two vertices adjacent in AQ_4 are colored differently by f_4 .

For $n-1 \geq 4$, suppose there exists a proper 4-total coloring f_{n-1} for D_{n-1}^1 , D_{n-1}^2 , ..., $D_{n-1}^{2^{n-4}}$ such that two vertices adjacent in AQ_{n-1} are colored differently by f_{n-1} .

If $n \geq 5$, then D_n^j has the form $0D_{n-1}^l$ or $1D_{n-1}^l$, where $j \in \{1, 2, \dots, 2^{n-3}\}$ and $l \in \{1, 2, \dots, 2^{n-4}\}$. So the vertices of D_n^j have the form 0x or 1x, where $x \in V(D_{n-1}^l)$; and the edges of D_n^j have the form (0x, 0y) or (1x, 1y), where $(x, y) \in E(D_{n-1}^l)$. Define f_n as follows: let $f_n(0x) = f_{n-1}(x)$, $f_n(1x) = f_{n-1}(x+e_{n-1}^{n-1})$; let $f_n\{0x, 0y\} = f_{n-1}\{x, y\}$, $f_n\{1x, 1y\} = f_{n-1}\{x, y\}$, $f_n\{1x, 1y\} = f_{n-1}\{x, y\}$.

 $f_{n-1}\{x+e_{n-1}^{n-1},y+e_{n-1}^{n-1}\}.$

Claim 1. Any two vertices adjacent in AQ_n are colored different by f_n .

Let $(u, v) \in E(AQ_n)$, in order to show that $f_n(u) \neq f_n(v)$. We classify into three cases.

Case 1. Let $u, v \in V(AQ_{n-1}^0)$. Assume u = 0x and v = 0y, where $x, y \in V(AQ_{n-1})$. Clearly, x and y are adjacent in AQ_{n-1} . By definition, $f_n(u) = f_{n-1}(x)$ and $f_n(v) = f_{n-1}(y)$. By assumption, we have $f_{n-1}(x) \neq f_{n-1}(y)$ since f_{n-1} distinguishes any two adjacent vertices in AQ_{n-1} . Therefore, $f_n(u) \neq f_n(v)$.

Case 2. Let $u, v \in V(AQ_{n-1}^1)$. Assume u = 1x and v = 1y, where $x, y \in V(AQ_{n-1})$. Then x and y are adjacent in AQ_{n-1} . Also, $x + e_{n-1}^{n-1}$ and $y + e_{n-1}^{n-1}$ are adjacent in AQ_{n-1} since (x, y) and $(x + e_{n-1}^{n-1}, y + e_{n-1}^{n-1})$ are generated by the same generator of S. By definition, $f_n(u) = f_{n-1}(x + e_{n-1}^{n-1})$ and $f_n(v) = f_{n-1}(y + e_{n-1}^{n-1})$. By induction assumption, we have $f_{n-1}(x + e_{n-1}^{n-1}) \neq f_{n-1}(y + e_{n-1}^{n-1})$. Therefore, $f_n(u) \neq f_n(v)$.

Case 3. Let $u \in V(AQ_{n-1}^0)$, $v \in V(AQ_{n-1}^1)$. Let u = 0x, where $x \in V(AQ_{n-1})$. By definition v = 1x or $v = 1\overline{x}$. Then $f_n(u) = f_n(0x) = f_{n-1}(x)$. If v = 1x, then $f_n(v) = f_n(1x) = f_{n-1}(x + e_{n-1}^{n-1})$. Otherwise, $v = 1\overline{x}$ and $f_n(v) = f_n(1\overline{x}) = f_{n-1}(\overline{x} + e_{n-1}^{n-1})$. Since x is adjacent to both $x + e_{n-1}^{n-1}$ and $\overline{x} + e_{n-1}^{n-1}$ in AQ_{n-1} , so $f_{n-1}(x) \neq f_{n-1}(x + e_{n-1}^{n-1})$ and $f_{n-1}(x) \neq f_{n-1}(\overline{x} + e_{n-1}^{n-1})$. In both case, we have $f_n(u) \neq f_n(v)$.

Claim 2. The coloring f_n is a proper 4-total coloring for $\bigcup_{l=1}^{2^{n-3}} D_n^l$.

In order to prove claim 2, by claim 1, we only need to prove that any edge in $\bigcup_{l=1}^{2^{n-3}} D_n^l$ is colored different from its end vertices and its adjacent edges in $\bigcup_{l=1}^{2^{n-3}} D_n^l$.

Case 1. Let $(u, v) \in E(0D_{n-1}^l)$ for some $l \in \{1, 2, \dots, 2^{n-4}\}$. Assume $(u, w) \in E(0D_{n-1}^l)$. Let u = 0x, v = 0y and w = 0z. Then x and y are adjacent in D_{n-1}^l ; also, x and z are adjacent in D_{n-1}^l . By definition, $f_n\{u, v\} = f_{n-1}\{x, y\}$, $f_n\{u, w\} = f_{n-1}\{x, z\}$, $f_n(v) = f_{n-1}(y)$. By induction assumption, $f_{n-1}\{x, y\} \neq f_{n-1}(y)$, $f_{n-1}\{x, y\} \neq f_{n-1}\{x, z\}$. Therefore, $f_n\{u, v\} \neq f_n(v)$, $f_n\{u, v\} \neq f_n\{u, w\}$.

Case 2. Let $(u, v) \in E(1D_{n-1}^l)$ for some $l \in \{1, 2, \dots, 2^{n-4}\}$. Assume $(u, w) \in E(1D_{n-1}^l)$. Let u = 1x, v = 1y and w = 1z. Then we can

get that x and y are adjacent in D^l_{n-1} ; also, x and z are adjacent in D^l_{n-1} . It is easy to see that (x,y) and $(x+e^{n-1}_{n-1},y+e^{n-1}_{n-1})$ are generated by the same generator of S_1 . So $x+e^{n-1}_{n-1}$ and $y+e^{n-1}_{n-1}$ are adjacent in some D^j_{n-1} . Moreover, $x+e^{n-1}_{n-1}$ and $z+e^{n-1}_{n-1}$ are adjacent in the same D^j_{n-1} . By definition, $f_n\{u,v\} = f_{n-1}\{x+e^{n-1}_{n-1},y+e^{n-1}_{n-1}\}, \ f_n\{u,w\} = f_{n-1}\{x+e^{n-1}_{n-1},z+e^{n-1}_{n-1}\}, \ f_n(v) = f_{n-1}\{y+e^{n-1}_{n-1}\}.$ By induction assumption, $f_{n-1}\{x+e^{n-1}_{n-1},y+e^{n-1}_{n-1}\} \neq f_{n-1}(y+e^{n-1}_{n-1}), \ f_{n-1}\{x+e^{n-1}_{n-1},y+e^{n-1}_{n-1}\} \neq f_{n-1}\{x+e^{n-1}_{n-1},z+e^{n-1}_{n-1}\}.$ Therefore, $f_n\{u,v\} \neq f_n(v), \ f_n\{u,v\} \neq f_n\{u,w\}.$ The proof of Claim 2 is now complete.

Combining claim 1 with claim 2, we can conclude that f_n is a proper 4-total coloring for $\bigcup_{l=1}^{2^{n-3}} D_n^l$ such that any two vertices adjacent in AQ_n are colored differently. \square

Next is the main result of this section.

Theorem 5. For each $n \ge 4$, $\chi_t(AQ_n) = 2n$.

Proof. Since AQ_n is (2n-1)-regular, then $\chi_t(AQ_n) \geq 2n$, and in order to prove $\chi_t(AQ_n) = 2n$, we only need to prove that AQ_n has a proper 2n-total coloring for $n \geq 4$.

First, by Lemma 4, color the edges generated by S_1 and the vertices of AQ_n properly by four colors such that any two adjacent vertices in augmented cube are colored differently. Second, the uncolored edges form 2n-4 perfect matchings of AQ_n , they can be colored properly by another 2n-4 colors. This yields a proper 2n-total coloring of AQ_n . Hence, $\chi_t(AQ_n) = 2n$. \square

3 The Adjacent Vertex-distinguishing Total Chromatic Number of AQ_n

In this section, we consider the adjacent vertex-distinguishing total chromatic number of AQ_n . We begin with the following definition.

If $n \geq 3$, let $S_2 = \{e_n^1, e_n^2\} \subseteq S$. In fact, the subgraph generated by S_2 form 2^{n-2} four cycles. Clearly, if n=3 then subgraph generated by $S_2 = \{e_3^1, e_3^2\}$ is two four cycles, denote them by C_3^1 and C_3^2 . For $n \geq 4$, let $i_{n-3} \cdots i_1 C_3^l$ be 2^{n-3} copies of C_3^l with $V(i_{n-3} \cdots i_1 C_3^l) = \{i_{n-3} \cdots i_1 u | u \in A_3^l \}$

 $V(C_3^l)$ and $i_j=0$ or 1 for $1\leq j\leq n-3\}$ where $l\in\{0,1\}$. Since $l\in\{0,1\}$, so there are 2^{n-2} four cycles in $i_{n-3}\cdots i_1C_3^l$, each is isomorphic to C_3^1 or C_3^2 . And the edges of $i_{n-3}\cdots i_1C_3^l$ are generated by S_2 . Denote the 2^{n-2} four cycles by $C_n^1,\,C_n^2,\,\ldots,\,C_n^{2^{n-2}}$.

Let h_n be a k-total coloring of $\bigcup_{l=1}^{2^{n-2}} C_n^l$. For any $v \in V(AQ_n)$, let $H_n(v)$ (resp. $(H_n(v))$) denote the color multiset $\{h_n(v), h_n\{v, v + e_n^1\}, h_n\{v, v + e_n^2\}\}$ (resp. the ordered color multiset $(h_n(v), h_n\{v, v + e_n^1\}, h_n\{v, v + e_n^2\})$) of v. Next, we will prove that there exists a proper 4-total coloring h_n for $\bigcup_{l=1}^{2^{n-2}} C_n^l$ such that $h_n(u) \neq h_n(v)$ and $H_n(u) \neq H_n(v)$ for any $(u, v) \in E(AQ_n)$.

Lemma 6. For $n \geq 3$, there exists a proper 4-total coloring h_n for $\bigcup_{l=1}^{2^{n-2}} C_n^l$ such that $h_n(u) \neq h_n(v)$ and $H_n(u) \neq H_n(v)$ for any $(u, v) \in E(AQ_n)$.

Proof. A 4-total coloring h_n of $\bigcup_{l=1}^{2^{n-2}} C_n^l$ can be coded in $\{(v, (H_n(v)))\}$. We will prove Lemma 6 by induction on n.

If n=3, let $\{(v,(H_3(v)))\}$ be as follows: $\{(v,(H_3(v)))\}=\{(000,(2,1,4)),(001,(3,1,2)),(010,(1,3,4)),(011,(4,3,2));(100,(1,4,3)),(101,(2,4,1)),(110,(4,2,3)),(111,(3,2,1))\}$. Clearly, h_3 is a proper 4-total of $C_3^1 \cup C_3^2$. Furthermore, $h_3(u) \neq h_3(v)$ and $H_3(u) \neq H_3(v)$ for any $(u,v) \in E(AQ_3)$.

For $n-1 \geq 3$, assume h_{n-1} is a proper 4-total coloring of $\bigcup_{l=1}^{2^{n-3}} C_{n-1}^l$ such that $h_{n-1}(u) \neq h_{n-1}(v)$ and $H_{n-1}(u) \neq H_{n-1}(v)$ for any $(u,v) \in E(AQ_{n-1})$.

We need only to prove that $\bigcup_{l=1}^{2^{n-2}} C_n^l$ has a proper 4-total coloring such that $h_n(u) \neq h_n(v)$ and $H_n(u) \neq H_n(v)$ for any $(u, v) \in E(AQ_n)$.

If $n \geq 4$, then C_n^j has the form $0C_{n-1}^l$ or $1C_{n-1}^l$, where $j \in \{1, 2, \dots, 2^{n-2}\}$ and $l \in \{1, 2, \dots, 2^{n-3}\}$. So the vertices of C_n^j have the form 0x or 1x, where $x \in V(C_{n-1}^l)$; and the edges of C_n^j have the form (0x, 0y) or (1x, 1y), where $(x, y) \in E(C_{n-1}^l)$. Define h_n as follows: let $h_n(0x) = h_{n-1}(x)$, $h_n(1x) = h_{n-1}(x+e_{n-1}^{n-1})$; let $h_n\{0x, 0y\} = h_{n-1}\{x, y\}$, $h_n\{1x, 1y\} = h_{n-1}\{x+e_{n-1}^{n-1}, y+e_{n-1}^{n-1}\}$.

By the definition of h_n and the induction assumption of h_{n-1} , we can prove that h_n is a proper 4-total coloring for $\bigcup_{l=1}^{2^{n-2}} C_n^l$ and any two adjacent vertices in AQ_n are colored differently by h_n similar to Lemma 4. We omit the proof here.

In order to prove Lemma 6, we only need to show that $H_n(u) \neq H_n(v)$ for any $(u, v) \in E(AQ_n)$. We classify into three cases to prove that $H_n(u) \neq H_n(v)$.

Case 1. Let $u,v \in V(AQ_{n-1}^0)$. Assume u=0x and v=0y, where $x,y \in V(AQ_{n-1})$. Clearly, x and y are adjacent in AQ_{n-1} . By definition, $h_n(u)=h_{n-1}(x)$, $h_n\{u,u+e_n^1\}=h_{n-1}\{x,x+e_{n-1}^1\}$, $h_n\{u,u+e_n^2\}=h_{n-1}\{x,x+e_{n-1}^2\}$. So $H_n(u)=H_{n-1}(x)$. Similarly, we can get $H_n(v)=H_{n-1}(y)$. By assumption, we have $H_{n-1}(x)\neq H_{n-1}(y)$ since any two vertices adjacent in AQ_{n-1} are coded with different color set. Therefore, $H_n(u)\neq H_n(v)$.

Case 2. Let $u, v \in V(AQ_{n-1}^1)$. Assume u = 1x and v = 1y, where $x, y \in V(AQ_{n-1})$. Then x and y are adjacent in AQ_{n-1} . Also, $x + e_{n-1}^{n-1}$ and $y + e_{n-1}^{n-1}$ are adjacent in AQ_{n-1} since (x, y) and $(x + e_{n-1}^{n-1}, y + e_{n-1}^{n-1})$ are generated by the same generator of S. By definition, $h_n(u) = h_{n-1}(x + e_{n-1}^{n-1})$, $h_n\{u, u + e_n^1\} = h_{n-1}\{x + e_{n-1}^{n-1}, x + e_{n-1}^{n-1} + e_{n-1}^1\}$, $h_n\{u, u + e_n^2\} = h_{n-1}\{x + e_{n-1}^{n-1}, x + e_{n-1}^{n-1} + e_{n-1}^2\}$. So $H_n(u) = H_{n-1}(x + e_{n-1}^{n-1})$. Similarly, we can get $H_n(v) = H_{n-1}(y + e_{n-1}^{n-1})$. By assumption, we have $H_{n-1}(x) \neq H_{n-1}(y)$. Therefore, $H_n(u) \neq H_n(v)$.

Case 3. Let $u \in V(AQ_{n-1}^0)$, $v \in V(AQ_{n-1}^1)$. Assume u = 0x, where $x \in V(AQ_{n-1})$. By definition v = 1x or $v = 1\overline{x}$. Then by case 1, $H_n(u) = H_{n-1}(x)$. If v = 1x, then $H_n(v) = H_{n-1}(x + e_{n-1}^{n-1})$ by case 2. Otherwise, $v = 1\overline{x}$ and $H_n(v) = H_{n-1}(\overline{x} + e_{n-1}^{n-1})$. Since x is adjacent to both $x + e_{n-1}^{n-1}$ and $\overline{x} + e_{n-1}^{n-1}$ in AQ_{n-1} , so $H_{n-1}(x) \neq H_{n-1}(x + e_{n-1}^{n-1})$ and $H_{n-1}(x) \neq H_{n-1}(\overline{x} + e_{n-1}^{n-1})$. In both case, we have $H_n(u) \neq H_n(v)$. \square

Since AQ_n is a (2n-1)-regular graph, by Theorem 2, we have $\chi_{at}(AQ_n) \ge \Delta(AQ_n)+2=2n+1$. In the following, we will prove that $\chi_{at}(AQ_n)=2n+1$ for $n\ge 3$.

Theorem 7. For each $n \geq 3$, $\chi_{at}(AQ_n) = 2n + 1$.

Proof. Since $\chi_{at}(AQ_n) \geq 2n+1$, in order to prove $\chi_{at}(AQ_n) = 2n+1$, we only need to give a (2n+1)-adjacent vertex-distinguishing total coloring of AQ_n for $n \geq 3$.

Let h_n be the proper 4-total coloring for $\bigcup_{l=1}^{2^{n-2}} C_n^l$ provided by Lemma 6. The uncolored edges of AQ_n form 2n-3 perfect matchings. We can

extend h_n to be a proper (2n+1)-total coloring of AQ_n by coloring each perfect matching a new color with colors $5,6,\ldots,2n+1$. Let $\overline{H}_n(v)$ be the color set of v and its incident edges in AQ_n . Then $\overline{H}_n(v)=H_n(v)\cup\{5,6,\ldots,2n+1\}$. For any $(u,v)\in E(AQ_n)$, by Lemma $6,H_n(u)\neq H_n(v)$. So $\overline{H}_n(u)\neq \overline{H}_n(v)$. This yields a (2n+1)-adjacent vertex-distinguishing total coloring of AQ_n . Hence, $\chi_{at}(AQ_n)=2n+1$.

References

- [1] M. Behzad, Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University, 1965.
- [2] S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84.
- [3] T.-L. Kung, Y.-H. Teng, L.-H. Hsu, The panpositionable panconnectedness of augmented cubes, Information Sciences 180 (2010) 3781-3793.
- [4] C.-M. Lee, Y.-H. Teng, J.J.M. Tan, L.-H. Hsu, Embedding Hamiltonian paths in augmented cubes with a required vertex in a fixed position, Comput. Math. Appl. 589 (2009) 1762-1768.
- [5] M. Ma, G. Liu, J.-M. Xu, Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Comput. 33 (2007) 36-42.
- [6] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134. (in Russian).
- [7] Z. Zhang, X. Chen and J. Li et al., On the adjacent vertexdistinguishing total coloring of graphs, Science in China Ser. A Mathematics 48 (2005) 289-299.