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Abstract Let Fg") denote the n-dimensional row vector space over the finite
field F, with n > 2. An l-partial linear map of FS™ is a pair (V, f), where V is an
l-dimensional subspace of IF“(,") and f:V — F{™ is a linear map. Let £ be the

set of all partial linear maps of F{ containing 1. Ordered .# by ordinary and
reverse inclusion, two families of fnite posets are obtained. This paper proves
that these posets are lattices, discusses their geometricity and computes their
characteristic polynomials.
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1 Introduction

It is well known that lattice is an important part of poset's theory, its theory
plays an important role in many branches of mathematics, such as computer
logical design and procedure theory. In recent times there has been great interest
in constructing more kinds of practical lattices. For example, the results on the
lattices generated by transitive sets of subspaces under finite classical groups
may be found in Huo, Liu and Wan [5, 6, 7]. In [2], Guo discussed the lattices
associated with finite vector spaces and finite affine spaces. In [15], Wang and Li
discussed the lattice £(n,d) = PU{F{™}, where P is the set of all the subspaces
of F{™ intersecting trivially with a given (n — d)-dimensional subspace of F.
The lattices generated by the orbits of subspaces under finite classical groups
have been obtained in a series of papers by Huo and Wan [8], Guo, Li and Wang
131, Wanu§ and Feng [12], Wang and Guo (13, 14], Guo and Nan {4, 9).

Let Iy be a finite field with ¢ elements, where g is a prime power. For a non-
negative integer n > 2, let IF‘(,") denote the n-dimensional row vector space over
Fq. An l-partial linear map of ]Ff,") is a pair (V, f), where V is an [-dimensional
subspace of F\™ and f : V — !Ff,") is a linear map. Let . be the set of all

partial linear maps of IF&") containing 1. For any z,y € &\ {1}, we define 1
includes z, and y includes z if A C B and g|a = f where z = (4, ), y = (B, g).
By ordering .Z by ordinary and reverse inclusion, two families of finite posets
are obtained, denoted %o and %r respectively. We prove that .%o and .%#r are
lattices, discusse their geometricity and compute their characteristic polynomials.

This paper is organized as follows. In Section 2, we introduce some defi-
nitions and terminologies about finite posets, and prove that %o and .#g are
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finite lattices. In Section 3, we discuss the geometricity of %o and compute its
characteristic polynomial. The same problem of % is discussed in Section 4.

2 Preliminaries

In this section, we first recall some definitions and terminologies about finite
posets and lattices. The reader is referred to [1, 10] for details. And then intro-

duce two families of finite lattices generated by partial linear maps of lF‘f,").

Let P be a poset with partial order <. As usual, we write a < b whenever
a £ band a # b. For any two elements a,b € P, we say b covers a, denoted by
a < b, if a < b and there exists no element ¢ € P suchthat e < ¢ < b. If P has
the minimum (resp. maximum) element, then we denote it by 0 (resp. 1). In

this case we say that P is a poset with 0 (resp. 1).
Let P be a finite poset with 0. By a rank function on P, we mean a function
r from P to the set of all the nonnegative integers such that
(@) r(0)=0;
(ii) r(b) =r(a) + 1 whenever a < b.
Note that the rank function on P is unique if it exists.
Let P be a finite poset with 0 and 1. The polynomial

x(P,t) =" p(0,a)t™ =@
a€EP

is called the characteristic polynomial of P, where r is the rank function on P.
A poset L is said to be a lattice if both a Vb := sup{a, b} and a Ab := inf{a, b}
exist for any two elements a,b € L. Let L be a finite lattice with 0. By an atom
in L, we mean an element in L covering 0. We say L is atomic if any element in
L\ fO} is a union of atoms. A finite atomic lattice L is said to be geometric if L

admits a rank function r satisfying r(a A b) + r(a V b) < r(a) + r(b) for any two
distinct elements a,b € L.

Lemma 2.1 ([11]) The number of m-dimensional subspace of IF‘(,“) containing a

nok i1
given k-dimensional subspace of ]Ff,") is ,::';] = H.E:l__,..(;‘(ql) 2.
i=1 -

Definition 2.1 Let V be a subspace of ]F.(,"), and f:V — F S,"’ be a linear map.
Then the pair (V, f) is said to be a partial linear map of IFS,"). In paerticular, we
write (V, f) =0 if V = {0}.

Let .Z denote the set of all partial linear maps of lFf,”) containing iie,
£ ={(V,f) | (V,f) is a partial linear map of F{™} u {i}.
For any elements z,% € &, if we define z < y <= y includes =, then . is a

finite poset, denoted by % . If we define z < y <= z includes y, then £ is also
a finite poset, denoted by Zr.

Proposition 2.2 The poset Lo ( resp. ZLr) is a finite lattice.

Proof. For any two elements z,y € %o, if # = I or y = 1, then both the
least upper bound and the greatest lower bound of z,y exist. Let (A, f), (B,g) €

%o\ {i}. Then we assert that
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(Auf) v (B,g)
(A, f)N(B,g) (D,h),h = f|lp =g|p,

where D is the maximum subspace in the set {C C AN B| f|c = g|c}. In fact,
there are three cases to be considered:
Case 1. flanB = glans. Assume that (C,p) € %% is an upper bound of

(A,f) and (B,g). Then AC C, B C C and 9|4 = f, p|lz = g, which implies
that A+ B C C and p|a+B = h. Thus the desired result follows.

Case 2. flanB # glans. Assume that (C,p) < 1 is an upper bound of (A, f)
and (B,g). Then ANB C C, flans = ¢|anB = g|ans, a contradiction.

Case 3. Assume that (C,p) € % is a lower bound of (4, f) and (B, g),
then C C AN B and flc = glc = y, which implies that C belongs to {C C
AN B|flc = g|c}. Thus the desired result follows.

Similarly, #r is also a lattice. D

(A+ B,h),hla = f,hlg =g, if flane =glans;
1 otherwise ,

3 The lattice %

The lattice %o has the maximum element 1 and minimum element 0. Since
the set of all the atoms of %o consists of all the partial linear map (A, f) with
dimA = 1, % is a finite atomic lattice. Now we will discuss the geometricity of
%o and compute its characteristic polynomial.

Lemma 3.1 The the rank function ro on %o is

_ [ dimA, ifz=(Af)e Lo\ {i}
ro(z)—{n+1, ifz=1. °

Proof. By the definition of ro, it is easy to see that ro(0) = 0. For any
(A, £)(B,g) € Zo, if (A, f) < (B,g) # 1, then (B,g) < (A,f) and (B,g) #
(A, f). Thus 0 < dimB — dimA < 1. Since, if dimB — dimA > 2, then there
exists an non-zero vector e in B\ A such that (A, f) < (A+(e),h) < (B, g), where
{e) is the subspace spanned by e and h = g|44(), 2 contradiction. If (4, f) < 1,
then dimA = n. Therefore, the desired result follows. D

Theorem 3.2 %o is not a geometric lattice withn > 2.

Proof. Let z = ({e1),f1), y = ({e1}, f2) € Lo with fif(e;y # foltc,). Then
zVy=1and zAy=0. It follows that

ro(zVy)+ro(zAy) =n+1>ro(z) +roly).

Hence, %o is not a geometric lattice with n > 2. ]

Proposition 3.3 ([10}) Let n be a nonnegative integer, and q # 1. Then

n=1 n
[Ta+daa =3 ¢3) ["]z" (1)
=0 m=0
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Corollary 3.4 Let n be a nonnegative integer, and g # 1. Then

n—1

[T¢-a'e™=>" q( )[ ]( g )T
=0

i={) m

Proof. Letz = -9; as in (1). Then the desired result follows. ]

Lemma 3.5 For any z,y € %o, the Mobius function po of %o is

ifz gy
po(z,y) = ( 1)'q( ), fz<y#lorz=y=1;
I'I""°"’ '1-4'q"), Hz<y=1],
where 7 = ro(y) — ro(z).

Proof. In order to prove that uo is the Mabius function of %o, we only need
to show that zz<z<v po(z,z) =0 for any z,y € %o with z < y. There are the

following two cases to be considered:
Case 1. y # 1. Let ro(y) — ro(z) = m. By Lemma 2.1 and Proposition 3.3,
we have

Y polz,2) = (-1%(3) [T] + (~1)'q() [ 7] + (-2 [T
0 1 2

o + ..+(_])"‘q(';) [Tmn]
= -1 7]
k=0

m=—1

=JTa-4)

i=0
=0.
Case 2. y = 1. Let ro(z) = m. Then
Y oz =1+ (D' [* "]
z<z<1

+( l)n m ( 2"‘) [ ] n(n—m)_*_#o(x 1)

n—m-—1 n—m-—1 .
H (1- H (1-4q'q") {(by Proposition 3.3)
=0 i=(

=0.
Therefore, the desired result follows. (w}

Theorem 3.6 The characteristic polynomial of %o is

n~1 n-1
x(Zo, )y =t [[(t-q"d) - [[(1 —d")
=0 i=0
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Proof. By Lemma 3.5 we obtain

X(ZO, t) = z ”0(6, a)tro(i)—ro(d)
a€fo

o 2] e g 2] e
dod g [:] (-1)"¢(3)t + 4o (6, 1)

n—1 n—1
=1 H (t—qd'q") - H(l —-q"q")  (by Corollary 3.4)
=0

i=0

as desired.

4 The lattice %

The lattice £ has the maximum element 0 and minimum element 1. In this
section, we will show that #r is an atomic lattice, but not a geometric lattice
with n > 2, and compute the characteristic polynomial of .Zr.

Theorem 4.1 %r is an atomic lattice, but not a geometric lattice with n > 2.

Proof. For any ¢ € Zr, define

ra(z)={ (r)t+l—d1mA, ;:::gA,f)eZR\{l};

then rg is the rank function on %x.

Note that all the partial linear map (Ff,"), f) are atoms of #gr. For any
z = (A,h) € £r\ {1}, there are the following two cases to be considered:

Case 1. 2 # 0. Let {a1,a2,--- ,am} be a basis for Aand {a1,a2, - ,am,a@m+1,

-+« ,an} be a basis for Ff,") . Let linear maps f and g as follows:
fiEP —FP, 0 — a)(1€ES M), emes — amai(1 <5 < n—m);

g:F — F, ai — h{a:)(1 < i< M), ams; — 0(1<j<n—m).

Thus, (F$"), f) and (F$", g) are the atoms of £z, and (4, h) = (F{”, f)V(FS™, g).
Case 2. £ = 0. Let linear maps f and g as follows:

f:li"“(,") ——»IF,(,"), a — 0; g:IF,(;")—#lF,‘,"), a —a. (2)
Then }IF((,"), f) and (F{", g) are the atoms of Z&, and 0 = (F™, £) v (F{™, g).
Therefore, #r is an atomic lattice.

Let linear maps f and g as in (2). Write z = EM, ), y = (F,g). Then
zVy=0and zAy=1. It follows that

rrR(zVy) +rr(z Ay) =n+1> ra(z) + ra(y).

Hence, %5 is not a geometric lattice with n > 2. (m}
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Lemma 4.2 For any z,y € %r, the Mobius function ur of Zr is

Cyal®) bl
_ ) (~uyela), fitz<yora=y=1
x, = r - 7 if 1 < ,
pr(z,y) ~ IR 21— g'q™, fl=z<y,rrly) 22
-1, fz=1rr(y)=1,

where 7 = rr(y) — rr(x).

Proof. Suppose z # 1. Let rr(y) — 7a(z) = m. By Lemma 2.1 and Proposition
3.3, we have

> ur(zy) = (0% ]+ 0@ [T]+ -+ (-1mg(D 7]

z<z<y
-3 ()
’g( 1)%ql2 []
m-—1

= H (1-4% (by Proposition 3.3)
i=0
=0.

Suppose z = 1. Let 7r(y) = m > 2. Then

3 walzy) = pr(ly) + ()™ (7T ["‘" 1] Y

. m-—1
125y

+(~1)}q(2) [m_ 1} " +1

rr(y)-2
ST e a4 S (et )[ ]

i=0 =0
m~—2 ) m-2 )
=[J-d¢ - [ (1-¢"¢") (by Proposition 3.3)
=0 i=0
=0.
Therefore, the desired result follows. m]

Theorem 4.3 The characteristic polynomial of Lr is

x(-?n,t)=t"“—([ Ja'e +§2nﬁ- 1-d'am [F]t )

k=0 i=0

Proof. For a given subspace A of ]F(") there are "9"™4 partial linear maps in

%r. By Lemma 2.1 and 4.2 we obtam

x(Zrt)= S pa(l,a)r®-rr@
a€&n
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=t 3 pe(d (a4, )t
(Afre2p\{1}
_tn+l _ [n] nztn_l_’iln-k_] 1 iny [T tk
= L k=0i11(—qq)[k]
as desired. ]
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