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Abstract

In this paper, we deal with the transitive relations on a
finite n-element set. The transitive relations are interpreted
as Boolean matrices. A special class of transitive relations are
constructed and enumerated, which can generate all transitive
relations on a finite n-element set by intersection operation. Be-
sides, several necessary and sufficient conditions that a relation
R is transitive are given.
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1 Introduction

Binary relations, especially equivalence and various ordering relations,
play an important role in modeling different kinds of fundamental concepts
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related to social sciences, decision-making, domain theory and measure-
ment theory. In all cases, the transitivity of a binary is a crucial prop-
erty [6].

Let X be a finite n-element set. A binary relation (or relation) R
on X is a subset of X x X. A relation R on X is called transitive if
for all z,y,z € X, the conditions (z,y) € R and (y,z) € R imply that
(z,z) € R. Counting the transitive relations on a finite n-element set is a
long-standing open problem [10]. There is no known general formula for
the number of such a simply-stated relations until now. In 1975, Kleitman
and Rothschild [9] showed that the number of transitive relations on a finite
n-element set is asymptotically 2™ times the number of partial orders. In
1997, Klaska [11] proved that there is a one-to-one correspondence between
transitive relations and partial orders. Further, he deduced a recurrence
formula for their enumeration. In fact, the enumeration of all finite posets
is also a long-standing open problem. We defer to [12,14] for a historical
survey. No reasonable explicit or recursive formula for the numbers of
posets on n elements is known. Though various algorithms [1-5, 14, 15]
have been proposed and applied for the constructive enumeration of partial
posets, the best result now is up to n = 16 [1] due to huge numbers of
them and the quick exponential growth of their numbers. Based on these
algorithms, we can also determine the number of all transitive relations up
to n = 16.

The purpose of this paper is to construct and enumerate a special class
of transitive relations, which has the similar performance of a basis of linear
space, to generate all transitive relations on a finite n-element set.

In this paper, we interpret transitive relations as Boolean matrices to
research their structure and properties. The remainder of this paper is
organized as follows. In Section 2, we discuss the properties of transitive
relations, and give two necessary and sufficient conditions that a relation is
transitive. In Section 3, we construct a special class of transitive relations
on a finite n-element set, and obtain a formula for the number of them. In
Section 4, we show that any transitive relation can be generated by these
special class of transitive relations. Finally, the paper concludes in Section
5.

2 Some properties of transitive relations

In this section, some properties of transitive relations will be recalled
and obtained. Let I, = {1,2,--- ,n}, and &, = {R = (Rij)nxn : Rij €
{0,1},(3,4) € In x I} be the set of all n x n Boolean matrices with the
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usual matrix multiplication except that we assume 1+1 =1 [7,8]. It is
isomorphic (in a natural way) to the set of all binary relations on finite
n-element set, where the operation is the composition of relations(see [13],
P.4).

Definition 2.1 [10] If R,Q € %,, then R < Q if and only if R;; < Qy;
for all (4, 7) € In x I,. In particular, R = Q if and only if R;; = Q; for all
(4,7) € In x L.

Definition 2.2 [10] Let R € B,. We define R? € %,, given by

n

R?j = V(Rip/\RP:i)

p=1

for all (i,5) € I, x I, with v and A denoting the usual maximum and
minimum, respectively.
Definition 2.3 [10] Let R,Q € #B,. We define RN Q € £, given by
(RNQ)ij = Rij AQyj for all (4,7) € In x I,.
Theorem 2.1 [10] R is a transitive relation if and only if R? < R.
Theorem 2.2 [10] If R and Q are transitive relations, so is RN Q.

For any (i,7) € I, x I,, let Lr(i) = {h € In : Rix = 1} and CRr(j) =
{k € In : Rkj = 1}.
Theorem 2.3 R? < Rif and only if R;; = 0 implies that Lr(:)NCr(j) =
for all (4,5) € I, x I..
Proof The first part. For any (,5) € In X In, if Riyj = 0, then R =

Vp=1(Rip A Rpj) = 0 by R? < R. Therefore, Riy A Ry =0 for all p € I..
Suppose that Lr(:)NCRr(j) # 9, then there must exist a k € LR(’l)nCR(J)
such that Rix A Ri; = 1, a contradiction. Hence, Lr(i) N Cr(j) =

For the converse implication. To verify R? < R, it is only to verify
that for any (3,5) € In x I, Ri; = O implies R} = 0. If R;; = 0, then
Lp(i)NCr(j) = 0. That is, p ¢ Lr(Z) N CR(]) and Rip A Rpj = 0 for all
p € I,. Therefore, R = Vp=1(Rip A Rpj) =

Corollary 2.1 R? < R if and only if for any (i, j) € I, x I, if Lg(?) # I,

then Lr(i) N (UjgLr(:Cr(S)) = 0.
Proof Immediately from Theorem 2.3.

1 1
Example 2.1 Let R = i 8 . Obviously, R is transitive by
1

-0 Om
—

1

Theorem 2.1. It is easy to see that Lg(2) = Lgr(3) = {2,3}, Lg(1l) =
Lgr(4) = Cr(2) = Cr(3) = I, Cr(1l) = Cr(4) = {1,4}, Ra1 = Rgy =
= R34 = 0. We have Lp(2) N Cr(1) =0, Lr(2) NCr(4) =0, Lr(3) N
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Cr(1) =0, Lr(3) N Cr(4) =0, Lr(2) N (VjgL2)Cr(7)) = @ and Lr(3)N
(Vsgza@Cr(s) = 0.

3 A special class of transitive relations

This section will investigate a special class of transitive relations and
show a method to construct them.
Definition 3.1 Let i € I, and X C I,.
(1) If R? < Rand Lg(i) = X, then Ris called an (¢, X)—transitive relation.
(2) If the following conditions hold:

(i) R is an (i, X )—transitive relation;

(ii) For any Q € %y, if Q is an (i, X)—transitive relation, then R > Q;
then R is called the maximum (Z, X)—transitive relation.

Foranyie€ I,, X C I, if there exists the maximum (i, X )—transitive
relation, then it is denoted by 7(:X).
Remark 3.1 It is easy to see that a transitive relation on a finite n-element
set has n different denotations according to Definition 3.1. For example,

10
00

relation, and it is also a (2, @)—transitive relation. However, the maximum

let R = ( ) such that R? < R, then R is an (1,{1})—-transitive

1, {1})-transitive relation is 10 , and the maximum (2, #)-transitive
11

.. 11
relation is ( 0 0 )

Remark 3.2 Let R € #,, R? < R and h € I,. If T("Lr(") exists, then
Lyw.epen (h) = Lg(h).
Theorem 3.1 Foranyic I,, X C I,

X)) 0, he(XU{i}) and k € ,\X,
hk 1, otherwise

for all (h,k) € I, x I,,.
Proof For any i € I,, X C I,,, we can construct a Q € B™*"™ as follows:

Oni = 0, he(XU{i})and ke I\X,
hk = 1, otherwise

for all (h,k) € In x I,.
(I) At first, we prove that Q is an (¢, X')—transitive relation.
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(i) Since ¢ € (X U {i}), it is easy to see that Lg(i) = X.

(i) For any h € I, if Lg(h) # In, then h € (X U{i}) and Lo(h) = X.
Again, Cq(k) = L,\(X U {i}) for all ¥ ¢ Lg(h) = X. It follows that
Lo(h) N (UrgrowCa(k)) = X NI:\(X U {i})] = 0, thus Q* < Q by
Corollary 2.1.

(i) and (ii) imply that Q is an (i, X)—transitive relation by Theorem

2.1 and Definition 3.1. _
(II) Then, we prove that Q = T®X). For any (¢, X)—transitive relation
R e I, x I,, we want to prove that R < @ by Definition 3.1. Obviously,
we only want to verify that Qu,x, = O implies that Rz, = 0 for all
(hoy ko) € In x I,.

For any (ho, ko) € In X In, if Qrok, = 0, then ho € (X U {i}) and
ko € I,\X. Again, Lgr(i) = X since R is an (i, X)—transitive relation,
thus ho € (Lr(i) U {i}) and ko ¢ Lg(%). There are two cases:

Case 1: hg = i. Then Rpk, = 0 since ko ¢ Lpr(3).

Case 2: hg € Lgr(i). In this situation, we have hg € Lp(z) but ko ¢
Lg(i), i.e., Rino = 1 but Ry, = 0. If Rpgx, = 1, then Ripy ARpor, = 1. This
implies that R% = 1> R, a contradiction to Theorem 2.1. Therefore,
Rhoko =0.

From Theorem 3.1, we have:

Corollary 3.1 For any X C I, i1, %2 € I, the following statements hold:

(i) If 41,42 € X, then T(1.X) = T(2.X),

(ii) If i € X and iz ¢ X, then TC1:X) > T2, X) byt TG X) £ T62.X),

(iii) If 43,42 ¢ X, then T(1X) £ T(2,X),

Corollary 3.2 For any i € I,, X1, X2 C I,,, the following statements hold:

(i) If X; # X3, then T¢»X1) £ T(B.X2),

(ii) X; C X3 is not necessary for T(:X) < T(2.X),

Example 3.1 Let n =4 and X; = {2,3}, X2 = {1,3}, X5 = {1,2,3}. By
Theorem 3.2, we have:

[0 1 1 0) /1111
paxy_| 01 10| roxy_[0110
0110] 0110
\1111) \1 111
(1111\ (1111
exy_ | 01 10| axy_ [01 10
™=lor10 | T""=lo110
\111 1) \0 110
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1010 1110
axy_| 1111 axy_| 1110
T 1010 [T 1110
1111 1111

Obviously, T(2X1) = TG@X1)) > PAX1) T@X) »« PLX) P1.X1) #
T4, X:) T(LX1) # T, Xa), T, X1) < 7 Xs) but T(L.Xa) and T(1,X3) gre
1ncompa.rable
Remark 3.3 Theorem 3.1 implies that for any i € I,, X C I,,, T(®X)
always exists.

Let X = {T®X) :ie L.}, I* =Uxcr, Z,X and | X| be the cardinal
number of X By Theorem 3.1 and Corollary 3. 1 we have:
Corollary 3.3 For any X C Iy, if |X| # 0, then |FX| = n — |X| + 1;
otherwise, |Z;X| = n.

Corollary 3.4 |7} = n+ 22=1( z )(n — k + 1), where ( Z ) =
Ki(neky 15 the combination formula.

Example 3.2 Let n =5 and X = {1, 3}. Consider 95“‘3}.
Solution By Theorem 3.1 and Corollary 3.3, we have:

|'95{1’3}| = 4’ '%’{1'3} — {R(lv{lla}),R(Zr{lia}),R(4y{1!3}),R(5r{113})},

where
(10100\ (10100\
10100 11111
R33N =11 0100 (,R&D=]11 010 0],
11111 10100
\1 1111} \1 1111/
(1 010 0) (10100\
11111 11111
R&N =11 0100 |,R&3D=]1 1010 0
11111 11111
\1 010 0) \1 111 1)
/(1 010 0)
11111
RG(3H =] 1 0 1 0 0 | =RMLO3Y,
11111
\11111)
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4 An method to obtain all the transitive re-
lations on I, x I,

In this section, we will investigate the relationship between the maxi-
mum transitive relations and the general ones. That is, we can construct
all the transitive relations from those maximum ones by intersection oper-
ation.

Theorem 4.1 If R? < R, then there exits a Q € J;7 such that Q > R.
Proof By Definition 3.1, it is easy to see that R is an (i, Lr(i))-transitive
relation, and R < T(hLr() € F* for all i € I,.

Theorem 4.2 If R?2 < R, then there exists an M C J, such that
R =nNgemQ.

Proof (i) Obviously, R < Nier, TL20) by the proof of Theorem 4.1.
(ii) For any (h,k) € I x I, if Rax = 0, then T{ER(®) = g gince
LR(h) = LT(h.LR(h)) (h) It follows that (ﬂieInT(i,Ln(i,;?)hk =0, ie, R >
ﬂ,-eI"T("'L"(")). (1) and (il) imply that R = nielnT(i’LR(i)). Let M =
{T(i'LR(i)) 11 € I,}, then R =NgemQ.

Let 7, be the set of all the transitive relations on I, x I, and T, = | Z,|.

By the Theorems 2.2 and 4.2, the following two theorems hold:
Theorem 4.3 R? < R if and only if R = Ny, THLrE),
Theorem 4.4 9, = {NremMR: M C J}}.

Theorem 4.5 Let R € %,

Nhel, Lpoerey (8) = LR(E) N (NigL p(n),ixnLr(R))

for all i € I,.
Proof For any i, h € I, there are three cases:

Case 1: h = i. Clearly, Lpx.crwn (i) = Lr(k) = Lgr(i) by Remark
3.2.

Case2: h # iand i € Lr(h). By Theorem 3.1, we have Lyn.Lpmn (2) =
Lg(h).

Case3: h # i and ¢ ¢ Lr(h). Lpwn.egpen (i) = I, immediately from
Theorem 3.1.
Therefore, Nner, Lytn.zpin (8) = Lr(1) N (NieLp(n),iznLr(R)).
Theorem 4.6 R? < R if and only if Lr(i) C Nicpp(n),ignLr(h) for all
i€ l,.
Proof Necessity. By Theorem 4.3, R = N;e;, TLr1) since R? < R.
This implies that Lg(i) = Nner, Lpoogmn (3) for all ¢ € I,. Again,
Lg(i) = LR(T,) N (r‘l,-e[,n(h)’,-#hLR(h)) by Theorem 4.5. Hence, Lg(:) C
NieLgr(n),iznLR(R).
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Sufficiency. For any i € I, Nher, Lptznon () = LREYN(NieL p(ny,ignLr(R))
by Theorem 4.4, thus Nyey, Lyn.2rn (]) = Lp(i) since Lr(i) C NieLr(n),iznLrR(A .
It follows that R = N, THER(), Therefore, R? < R by Theorem 4.3.
Remark 4.1 By Corollary 3.4 and Theorem 4.3, we have

1721

T<Z(|y*)

where |7} | =n+3 p_, ( Z )(n—k+1).

From Theorem 4.4, we can give a method to construct all the transitive
relations on I, x I.
Algorithm 4.1

Stepl Obtain ;X for all X € I,, according to Theorem 3.1 and Corol-
lary 3.1;

Step2 I, = Uxcr, %

Step3 7 = {NremR: M C Z2};

Stepd Tp, = | Tnl;

Step5 Stop.
Remark 4.2 In fact, there always exists a general algorithm to obtain
all the transitive relations on I, x I,. Since J, C %,, we can test the
Boolean matrices in &, one by one to determine whether it is a transitive
relation or not within 2" steps. On the other hand, one can easily see
that the key part of Algorithm 4.1 is to construct the maximum transitive
relations. From Corollaries 3.3 and 3.4, we can obtain them in |Z*| <

nY reo ( : ) = n2" steps. Though it is not a polynomial algorithm we

expected, it has much less computational complexity.

By means of the Algorithm 4.1 we have shown how to construct all
the transitive relations on I, x I,. Now we demonstrate this algorithm by
a suitable example.

Example 4.1 Let n = 2. Construct all the transitive relations on I x I,

and count them.
1 1 0 1 0
Stepl%o'_'{( 0)}’%{1}={(1 1)’(1 o)}’

0
1
0
7 = ( 0
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. {0 0) (1 1)y /10)(10) /01

Step2 73" = (1 1)’(0 0)’(1 1)’(1 o)’(o 1)’
1 1) (11
(61)( i)
00} (01 (00} (10) (11

Stepw@:{(o 0)’<0 1)’(1 1)*(1 1)’(0 1)’
1 1) (10)/10)[/00Y (01
00)'\10)\o1)\0o1)\00)
1 0Y (00) (11},
00)\10)\11)t

Stepd T, = 13.

Step5 Stop.

5 Conclusion

This paper studied the transitive relations on a finite n-element set.
Several necessary and sufficient conditions that a relation R is transitive are
given. A special type of transitive relations are constructed and counted,
which can be used to obtain all the transitive relations. We hope that
these results can provide some help for future research on related problems,
especially the enumeration of all finite transitive relations.
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