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Abstract

For a graph G, a vertex-edge alternating sequence vg, e1,v1, €2, - -,
€k—1,Vk—1, €k, Uk such that all the e;’s are distinct and e; = v;—yv;
for all i is called a trail. For u,v € V(G), a (u,v)-trail of G is a trail
in G whose origin is u and whose terminus is v. A (u,v) trail is called
a close trail if u = v. A trail H is called a spanning trail of a graph
GifV(H)=V(G). Let X CE(G) and Y C E(G) with XNY = 0.
In this paper, we study the minimum edge-connectivity of a graph G
such that for any u,v € V(G) (including » = v), G has a spanning
(u,v)-trail H such that X C E(H) and Y N E(H) = 0.

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs
have no loops. For a graph G, a trail is a vertex-edge alternating sequence
Vg, €1,V1,€2, "+, €k—1, Vk—1, €k, Vk Such that all the e;’s are distinct and e; =
vi—1v; for all i (1 < i < k). Let ¢/, ¢’ € E(G). A trail in G is called an

(e',e")-trail if its first edge is ¢’ and its last edge is e”. For u,v € V(G),

a (u,v)-trail of G is a trail in G whose origin is © and whose terminus is
v. A trail H is called a spanning trail if V(H) = V(G). If u = v, then a
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(u,v)-trail in G is a closed trail, which is also called a Eulerian subgraph of
G. A graph is called supereulerian if it has a spanning Eulerian subgraph.

Many researches have been done for the existence of spanning Eulerian
trails in a graph under various conditions (see [5] and [6]). In this paper,
we study the following problem.

For a graph G and an integer » > 0, let X and Y be two
edge disjoint subsets of E(G) with |X| + |Y| < r. Find the
minimum edge-connectivity for G such that for any u,v € V(G)
(or €', e” € E(G)), G has a spanning (u, v)-trail (or (¢’, &”)-trail)

H such that X C E(H)and YN E(H) =0.

There are many 3-edge-connected graphs such as the Petersen graph,
and any 3-connected cubic graph that does not have a proper 3-edge-
coloring is not supereulerian. Then the minimum edge-connectivity for
a graph to assure the existence of a spanning Eulerian subgraph is at least
four. Some special cases of the problem above were studied by several
researchers ([2], (7], [8], [10], [12]).

Theorem 1.1 (Catlin [2]). If G is 4-edge-connected, then for any u,v €
V(G) there is a spanning Eulerian (u,v) trail in G.

Zhan [12] proved the following.
Theorem 1.2 (Zhan [12]). If G is a 4-edge-connected graph, then for any
edges e, ez € E(G) there is a spanning (e;, e3)-trail in G.

For the case when Y = @, Lai [10] proved the following result.
Theorem 1.3 (Lai [10]). Let r > 0 be an integer. For a graph G, let
X C E(G) with |X| < r. Then G has a spanning Eulerian subgraph H
such that X C E(H) if and only if G is f(r)-edge-connected, where f(r) is

defined by

4, 0<r<2,
f(r)=¢ r+1, r>3andrisodd,
T, T > 4 and r is even.

In [7], the authors extended the results in [10] and solved the problem
for the case when Y = 0. Following closely the method of 7], we extend
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that result for Y # 0. In the next section, we will present Catlin’s reduction
method and some preliminary results. Our main results are in Sections 3

and 4.

2. Catlin’s reduction method and Preliminary results

In [2], Catlin defined collapsible graphs. For a graph G, let O(G) be
the set of odd degree vertices of G. A graph G is collapsible if for every
even subset R C V(G), G has a spanning connected subgraph Hg such
that O(Hg) = R. We regard an empty set as an even subset and K as
a collapsible graph. Therefore, if G is a collapsible graph, then G has a
spanning eulerian subgraph Hp as R =, and G has a spanning (u, v)-trail
Hpg, for any u and v in V(G) as Ry = {u,v}. In [2], Catlin proved the
following. '

Collapsible Partition Theorem (Catlin [2]). Every graph G has a unique
collection of vertex disjoint mazimal collapsible subgraphs H,, Ha, ---, H,
such that V(G) = V(H;)UV(Hz)U--- UV (H,).

Let H be a connected subgraph of G. The contraction G/H is obtained
from G by contracting each edge of H and deleting the resulting loops. Let
H,, H,, - -+, H, be the set of vertex disjoint maximal collapsible subgraphs
of G. The reduction of G is obtained from G by contracting each H; into
a vertex v; for all i (1 < ¢ < ¢), and is denoted by G’. Each H; is called a
preimage of v; in G, and v; is called the contraction image of H; in G'. A
vertex v in G’ is called a trivial contraction if its preimage in G is K;. A
graph G is reduced if G is the reduction of some graph. Let F(G) be the
minimum number of edges that must be added to G so that the resulting
graph has two edge-disjoint spanning trees.

Theorem 2.1 (Catlin [2]). Let G be a graph, and let G’ be the reduction
of G. Each of the following holds.

(a) G is supereulerian if and only if G’ is supereulerian.

(b) G is collapsible if and only if G' & K,

It is well known that a 2k-edge-connected graph has & edge-disjoint
spanning trees (Kundu (9], and Polesskii [11]). Catlin [2] proved that if G
has two edge-disjoint spanning trees, then G is collapsible. Thus, if G is
4-edge-connected, then G is collapsible.
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In (3], Catlin proved the following.
Theorem 2.2 (Catlin [3]). Let G be a graph and let 7 > 1 be an integer.
Then G is r-edge-connected if and only if for any ¥ C E(G) with |Y] <
(r+1)/2}, G —Y has |r/2] edge-disjoint spanning trees.

The following theorems will be needed in our proofs.
Theorem 2.3 (Catlin et al. [4]). Let G be a connected graph. If F(G) < 2,
then either G is collapsible, or the reduction of G is in {Kj, K3} (t > 1).

Let e be an edge in G. Edge e is subdivided when it is replaced by a
path of length 2 whose internal vertex, denoted by v(e), has degree 2 in
the resulting graph. The process of taking an edge e and replacing it by
that path of length 2 is called subdividing e. Let G be a graph and let
X C E(G). Let Gx be the graph obtained from G by subdividing each
edge in X. Then V(Gx) = V(G) U {v(e)| e€ X}. For a graph G, let
X CE(G)and Y C E(G) with XNY = 0. Define (G ~Y)x as a graph
obtained from G by removing all the edges in Y and subdividing each edge
in X.

We need the following lemma, which was proved in [7].
Lemma 2.4 (Chen et al. [7]). Let G be a connected graph. Then each of
the following holds:

(a) Let k > 2 be an integer. If G has k edge-disjoint spanning trees, then
for any X C E(G) with |[X| <2k -2, F(Gx) < 2.

(b) Let X = X; UX, with X; X3 =0. Then F(Gx) < F((G—Xl)xz).

Combining Theorem 2.2 and Lemma 2.4 we have the following.
Lemma 2.5. Let G be a connected graph and let » > 1 be an integer.
Let X and Y be two disjoint subsets of E(G). If G is r-edge-connected,
Y| < [(r+1)/2] and | X]| <2|r/2] — 2, then F((G-Y)x) <2.

Proof. By Theorem 2.2, G — Y has |r/2] edge-disjoint spanning trees.
Then by Lemma 2.4, F((G — Y)x) < 2. The lemma is proved. O.

3. A Main Result on (G-Y)x

Let » > 2 be an integer. For a graph G, let X and Y be two disjoint
subsets of E(G) such that

V] < [(r+1)/2) and [XUY| <7+ |r/2] —2. )
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If [ XUY| < 2|r/2) -2, define Xo = X and Yo = Y. If|[XUY| > 2|r/2] -2,
then since [Y] < |(r+1)/2], we can choose Yp in such a way that Yo contains
all the edges in Y and some edges in X (if |Y| < [(r 4 1)/2]), such that
|Yo| = |(r + 1)/2]. Then define Xo = (XUY) —Yo. And so Xo C X and
IXol = |XUY| = |Yo| £ 7+ /2] —2 = |(r +1)/2] = 2|r/2] — 2. Thus,
for any disjoint subsets X and Y satisfying (1) above, we have X, and Yo
of E(G) such that

XoCX,Y CYo, XonYo=0, [Yo| < |(r+1)/2] and |Xo| < 2|r/2] - 2.

Lemma 3.0. Let G be a graph and let X, Y, X, and Yy be subsets of
E(G) defined in (1) and (2). Then

F((G-Y)x) £ F((G - Yo)xo)- ©)

Proof Let X; = X — Xo. Then Yo =Y U X, Xo = X — X; and so
XonX,=0. Let Gy =G-Y. Since XNY =0, X; and X, are subsets of
E(G-Y) = E(G:). By Lemma 2.4, F((G-Y)x) < F((G-Y) - X1)x,)-
Since Y =YUX;,G-Y =(G-Y)-X,. Hence, F((G-Y)x) <
F((G - Yb)x,)- The lemma is proved. O

Theorem 8.1. Let r > 4 be an integer. Let G be an r-edge-connected

graph and let X C E(G) and Y C E(G) with XNY =0, |Y| < [(r+1)/2]
and | X| +|Y| < 7+ |r/2] — 2. Then one of the following holds.

(a) (G—-Y)x is collapsible, or

(b) #'(G) < |X|+|Y| and (G —Y)x can be contracted to Kz, i.e. the
reduction of (G — Y)x is Kz, and

(bl) K'(G-Y)<t<|X|ifKk'(G-Y)>30rr 26
(b2) K(G-Y)<t< |X|+|Y|if '(G-=Y)=2 (thenr =4 or 5).

Proof. Let Xy and Yy be the two edge subsets of E(G) defined above.
By Lemma 3.0, F((G -Y)x) < F((G - Yp)x,). Since |Yp| < |(r + 1)/2],
by Theorem 2.2, (G — Yp) has |r/2]-edge-disjointed spanning trees. By
the definition of X and Yy, |Xo| € 2|r/2] — 2. Then by Lemma 3.0 and
Lemma 2.5, F((G-Y)x) £ F((G - Yo)x,) < 2. By Theorem 2.3, either
(G-Y)x is collapsible or (G —Y)x € {Ka,K2,}. Assume that (G—Y)x
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is not collapsible. Then (G - Y)y € {Ka2,Ka:}. We will show that the
statement (b) holds.

Since G is r-edge-connected, r > 4 and |Y| < |(r + 1)/2],
K(G-Y)2r(G)-IY|2r-|(r+1)/2] 2 |r/2] 2 2. (4)
Thus, (G - Y)Y is 2-edge-connected. Therefore, (G- Y)y = Ko, (t > 2).

Let E((G - Y)y) = E(Ka,;) = {uwy,vwy, - -, uw, vwy, vws, -+ -, vwe }
where w; (1 < ¢ < t) is a degree two vertex in (G —Y)%. Let E' =
{vwy,vwa, -+, vw,}. Then E’' is an edge-cut of (G - Y)Y.

If /(G - Y) > 3, then each w; is a vertex obtained by subdividing an
edge in X. Therefore, |E’| < | X|. Let Ex be the edge subset of X in which
the edges are subdivided to obtain the edges in E’. Since E’ is an edge-cut
of (G-Y)Y, Ex is an edge-cut of (G-Y'), and so X is an edge-cut of G—-Y..
Hence, | X| > |Ex| = |E'| =t 2 &'(G-Y). Therefore X UY is an edge-cut
of G and so £'(G) < [X UY|. The statement holds if (G —-Y) > 3. If
T 2> 6, since G is r-edge-connected and |Y| < |(r +1)/2}, ¥(G-Y) > 3.
Thus the statement (bl) holds if » > 6.

Next we consider the case if '(G—Y) = 2.
Claim 1. If w; is not a vertex obtained by subdividing an edge in X, then
there are at least 7 — 2 edges in Y adjacent to some vertices in the preimage

of Wwj.
Proof of Claim 1: It follows from that G is r-edge-connected and r > 4.

Claim 2. At most one edge in E’ is not from subdividing the edges in X.
Proof of Claim 2: Since /(G —Y') = 2, the equalities in (4) hold. Sor =4
or 5and Y| = |(r +1)/2] = 2 or 3. Thus we have

2<|Y]<3. (5)

Since G is either 4 or 5 edge-connected, by Claim 1 after removing 2 or
3 edges in Y from G, at most one vertex in {w;} (1 < ¢ < t) is not from
subdividing edges in X. Claim 2 is proved.

Thus, by Claim 2, |E’| - 1 < |X], and so by (5),

2=k(G-Y)<t=|E'|<|X|+1<|X|+]|Y] (6)
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To complete the proof of statement (b2), we still need to show | X|+ Y| >
K'(G)=r.

By way of contradiction, suppose that |[X|+|Y| <r. By (6),2<t=
|E') < |X|+ Y| <r. Thus,t=|E|=2ifr=4and2<t=|E'|<3
if r = 5. Therefore, (G —Y)x = Kz € {Ka2,K23}, and E' = {vw;}
(1 < i < t) is corresponding to an edge-cut with size ¢ in G — Y that
separates the pre images of u and vin G -Y.

If r = 4, then G is 4-edge-connected, (G-Y)% = K3 2. Since [X|+|Y] <
r=4,|X|<4-]Y|<2. By Claim 2, |X|>1,and so |[X|=1and |[Y| =2,
Therefore, at least one vertex in {w;, w2}, say ws, is not a vertex obtained
by subdividing an edge in X. Therefore, by Claim 1, the two edges in Y’
must be adjacent to some vertices in the preimage of w,. Therefore, at
least one of the preimage of u or v in G is connected by at most three
edges to the rest of the graph G. Thus, &'(G) < 3, contrary to that G is
4-edge-connected.

If r = 5, then G is 5-edge-connected. Since |X|+ |Y| < r = 5 and by
Claim 2 and (5), |[X] > 1, 2 < |Y| £ 3. Note that (G-Y)x = K, €
{K22,K23}. By Claim 2, at least one vertex in {wi,..,w;} (¢ = 2 or 3),
say wy, is not a vertex obtained by subdividing an edge in X. By Claim 1
and r —2 = 3 and |Y| < 3, Y should have 3 edges and the 3 edges in ¥’
are adjacent to some vertices in the preimage of wy. Therefore, no matter
(G-Y)yx = K32 or Ka3, at least one of the preimage of u or v in G is
connected by at most four edges to the rest of the graph G. Thus, G is
at most 4-edge-connected, contrary to that G is 5-edge-connected. Thus
|X]+1Y| > r = &'(G). Theorem 3.1 is proved. O

From the proof of Theorem 3.1, we have
Corollary 3.2. Let 7 > 4 be an integer. Let G be an r-edge-connected
graph and let X C E(G) and Y C E(G) with XNY =0, |Y| < [(r+1)/2]
and |X|+|Y| <+ [r/2] — 2. If ¥(G —Y) > 3, then one of the following
holds:
(i) (G - Y)x is collapsible, or
(ii) (G—-Y)x can be contracted to Ko in such a way that each degree two
vertex in Kp; is a trivial contraction obtained in (G — Y') by subdividing
the edges in X, and (r — |Y]) <t < |X].
Proof. Corollary 3.2 follows from the proof of Theorem 3.1 and the fact
that s'(G-Y) > k'(G)-|Y|2>2r-|Y|. O
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Let G be the 4-edge-connected graph shown in Figure 1 where s > 5.
Let X = {z1,22} and Y; = {21,22}. Then the reduction of (G — Y;)x is
K3; = K 4. This shows that t < |X| +|Y| =r = 4 is the best possible in
Theorem 3.1. Let X = {z;,z2} and Y2 = {y1,32}. Then /(G - Y2) = 2.
The reduction of (G — Y2)x is K2 3 in which one degree two vertex is not
a trivial contraction. Thus, £'(G — Y2) > 3 is necessary in Corollary 3.2.
This graph G has no spanning Eulerian subgraph H with X C E(H) and
YoNnE(H) = 0.

4. Spanning Eulerian Trails

Let Gbeagraphandlet X C E(G) and Y C E(G) with XNY = @ and
|X| + Y} < r. In this section, we present the result on the minimum edge-
connectivity of G such that G has a spanning Eulerian subgraph or spanning
(u,v) -trail (or (e1, ez)-trail) H for any u,v € V(G) (or any e;,e; € E(G))
such that X C E(H) and Y N E(H) = 0.

The following property of an Eulerian graph will be needed:
Eulerian property. A connected graph G is Eulerian if and only if the
cardinality of every minimum edge-cut of G is even.

Theorem 4.1. Let r > 3. For a graph G, let X C E(G) and Y C E(G)
which satisfy the following

XnY =0, Y| < [(r+1)/2), |XUY]=|X|+[Y|<r ™
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Then each of the following holds:

(a) For any X and Y satisfying (7) G has a spanning Eulerian subgraph
H such that X C E(H) and YNE(H) = @ if and only if G is (r + 1)-

edge-connected.

(b) For any X and Y satisfying (7) and for any « and v in V(G) G has
a spanning (u, v)-trail T such that X C E(T) and Y N E(T) = 0 if
and only if G is (r + 1)-edge-connected.

Proof. We prove the necessary condition first. Suppose that «'(G) =
r. Let Eg be an edge-cut of G with |Eg] = r. Let H; and H; be two
components of G — Eg. If r is even, choose an edge e in Ep and let Y = {e},
andlet X = Eg - Y. If r is odd, then let Y = @ and X = Ey. Then
|X| +|Y| = r and |X| is odd. If G has a spanning Eulerian subgraph H
such that X C E(H) and Y N E(H) = @, then H has an odd minimum
edge cut X which separates induced subgraphs H{V(H;)] and H{V(H3)]
in H, contrary to the Eulerian property. This shows that G is at least
(7 + 1)-edge-connected.

Next, we will prove the sufficient condition.

Since G is (r + 1)-edge-connected and r > 3, [(r +1)/2] > 2. Then X
and Y satisfying (7) will have |Y| < [(r+1)/2] < |(r+2)/2] and | X|+]Y] <
r < (r+ 1)+ [(r +1)/2] — 2, which satisfies Theorem 3.1. Therefore, since
k'(G) > r+1and |X|+|Y| <7, by Theorem 3.1, (G - Y)x is collapsible.
Since V(G) = V(G -Y) C V((G - Y)x) and by the collapsibility of
(G-Y)x, (G-Y)x has a spanning Eulerian subgraph H, and a spanning
(u, v)-trail T for any u,v € V(G). Then each degree two vertex in (G-Y) x
must be in H, and in Ts;. Obviously, Y N E(H,) = Y N E(T;) = @. Let
H (or T') be the graph obtained from H; (or T;) by replacing each path of
length two in (G — Y)x by its corresponding edge in X. Therefore, G has
a spanning Eulerian subgraph H and a (u,v) trail T such that X C E(H)
and X C E(T),and YNE(H) =Y NE(T) = 0. The theorem is proved. O

If we only consider the existence of spanning Eulerian subgraph, then
when r > 4 and r — |Y| is even, the edge-connectivity of graph G can be
reduced to 7 instead of 7 + 1 in Theorem 4.1(a).

Theorem 4.2. Let 7 > 4. For a graph G, let X C E(G) and Y C E(G)
such that X and Y satisfy (7), r—|Y] is even and x'(G-Y) > 3. Then G has
a spanning Eulerian subgraph H such that X C E(H) and YN E(H) =0
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for any such X and Y if and only if G is r-edge-connected.
Proof. We prove the necessary condition first. Suppose that G is (r — 1)-
edge connected. Let Ey be an edge-cut of G with |Eyp| = » — 1. Let H; and
H; be the two components of G — Ey. If r > 4 is even, choose Y = §. Then
K(G-Y)=#K(G)>r-12>3. Ifr >4is odd, then r > 5. Choose an
edge e in Ey and let Y = {e}. Then k'(G-Y) 2 K'(G)—1=r—-22>3.
Let X = Eop —Y. Then |X|+ |Y| = |Eo|] = 7—1 and r — |Y| is even.
Thus, X and Y are two subsets of E(G) that satisfy all the requirements
in Theorem 4.2. However, if G has a spanning Eulerian subgraph H such
that X C E(H) and Y N E(H) = 0, then H has an odd minimum edge cut
X, contrary to the Eulerian property. Thus, G is at least r-edge-connected.
Next, we will show the sufficient condition. Without loss of generality,
we only need to prove the statement for the case | X|+|Y| = r. By Corollary
3.2, either (G-Y)x is collapsible or the reduction of (G-Y)x is (G-Y ) =
Ky where r — |Y| < t < |X|. Since |X|+|Y| =7 and r — |Y] is even,
t = |X| = r—|Y| is even. Therefore, K. is an Eulerian graph. By Theorem
2.1, G =Y has spanning Eulerian subgraph. Thus, G — Y has a spanning
Eulerian subgraph containing all the vertices of degree two in (G — Y)x,
and so G —Y has a spanning Eulerian subgraph containing all the edges in
X. The theorem is proved. O

The graph of Figure 1 shows that when G is 4-edge-connected, the con-
dition '(G-Y) > 3 in Theorem 4.2 is necessary. This theorem also implies
that if G is 4-edge-connected, then for any X C E(G) and Y C E(G) with
XNY =0,1Y| <2 £(G-Y)>3and | XUY| <4, G has a spanning
Eulerian subgraph H such that X C E(H) and YNE(H) = 0. Let G be the
graph defined in Figure 2 below with X = {z),z2,23} and Y = {y1,32},
where each H; (i = 1,2,3 or 4) is a complete graph K, (s > 5). Obvi-
ously, G is 4-edge-connected and G — Y is 3-edge-connected. However, the
reduction of (G = Y)x is not a K3, graph, and has no spanning Eulerian
subgraph containing all the edges in X. Thus, |[X UY| < 4 is the best
possible in Theorem 4.1 and Theorem 4.2 for the case r == 4. We can also
show that |Y| < |(r+1)/2] is necessary for the case r = 4 or 5 in Theorem
3.1 from this graph by adding an edge between H; and H; (and an edge
between H3 and H, for case r = 5).
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Figure 2

Next we consider the edge-connectivity for spanning (e;, ez)-trails with
prescribed edges.
Lemma 4.3. Let G be a graph and let e;,e; € E(G) and let X C E(G).
Let X; = X U {ey,e2}. Let v(e;) and v(ez) be the two vertices subdivid-
ing e; and eg, respectively. Then if Gx, is collapsible or has a spanning
(v(e1),v(ez))-trail, then G has a spanning (e;, ez)-trail containing X.
Proof. It follows from the definitions of collapsibility and Gx,. O

The following lemma was proved in [7].
Lemma 4.4 (Chen et al.[7]). Let G be a 3-edge-connected graph. Let
X C E(G) and let ¢/, €’ € E(G). Let X; = X U {€,e"}. Suppose that
G, = K2, where t > 3. If t > | X|, then G has a spanning (¢, e”)-trail H
such that X C E(H).

Using Theorem 3.1, we prove the following result on (e;, ez)-trails anal-

ogous to Theorem 4.1 which extends Theorem 1.3 [12].
Theorem 4.5. Let 7 > 3. For a graph G, let X and Y be the subsets of

E(G) such that
XnY =0, |Y|<|(r+1)/2), K(G-Y)>3 and |X|+|Y|<r-1. (8)

If G is an (r + 1)-edge-connected graph then G has a spanning (e;,ez)-
trail H in G for any e, e2 € E(G) — (X UY) such that X C E(H) and
YNE(H)=0.
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Proof. Let X; = X U {e1,e2}. Let (G—Y)x, be the graph obtained from
G -Y by subdividing each edge in X;. Since r > 3, {(r+1)/2| > 2. Then
|XuY| L | XuY|+2<r+1 < (r+1)+|(r+1)/2) —2. By Theorem 3.1,
either (G — Y)x, is collapsible or (G —Y)x, is contractible to Ky, with
t > r. If (G-Y)x, is collapsible, then by Lemma 4.3, G—Y has a spanning
(e1,e2)-trail containing X. If (G - Y)x, is contractible to K, with t > 4,
since t > r > |X|, by Lemma 4.4, G — Y has a spanning (e;, ez)-trail H
containing the edges in X. O
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