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Abstract

Fibonacci (p, r)-cube is an interconnection topology, which uni-
files a wide range of connection topologies, such as the hypercube,
classical Fibonacci cube, postal network, etc. It is known that clas-
sical Fibonacci cubes are partial cubes. In this paper we show that
a Fibonacci (p, r)-cube is partial cube if and only if either p = 1,
or p> 2 and r < p+ 1. Furthermore, we show that for Fibonacci
(p, 7)-cubes, almost-median graphs, semi-median graphs and partial
cubes are all equivalent.

Key words: Fibonacci (p, r)-cube; partial cube; median graph; almost-
median graph; semi-median graph

1 Introduction

Hypercubes are an important class of graphs. Set B = {0,1}. The n-
dimensional hypercube @, is the graph defined on the vertex set B, =
{b1by...bnlb; € B,i = 1,...,n}, two vertices a = aja3...a, and § =
bibs . ..b, being adjacent if a; # b; holds for exactly one ¢ € {1,...,n}.
Inspired by classical Fibonacci sequence of numbers, Hsu (3] introduced
the Fibonacci cube as follows, which has similar properties as hypercube.
For n > 1set F, = {b1ba...bs| b; € B,bibiy1 =0,i =1,...,n—1}. Fi-
bonacci cube T, is the graph defined on the vertex set F,, and two vertices
are adjacent if they differ in exactly one coordinate. Structural and enu-
merative properties of the Fibonacci cubes were given in [13]. It is showed
that Fibonacci cubes are precisely the resonance graphs of zigzag hexagonal
chains in [11). Plane bipartite graphs whose resonance graphs are exactly
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Fibonacci cubes were characterized in [17]. For more results on application
and structure of Fibonacci cubes, see [7] for a survey.

Egiazarian and Astola (2] introduced a wide generalization of Fibonacci
cubes, which were primarily studied as interconnection networks. Let n, p
and r be positive integers with n > p, r. Then a Fibonacci (p, 7)-string
of length n is a binary string of length n in which there are at most r
consecutive 1s and at least p Os between two substrings composed of (at
most 7) consecutive 1s. Let F*") denote the set of Fibonacci (p, 7)-strings
of length n. The Fibonacci (p, r)-cube TP is the graph whose vertex set is
F and two vertices are adjacent if they differ in exactly one coordinate.
Note that I"™ = Q, and T{"D = T,,. T T and T are showed
in Fig. 1. In [15], Fibonacci (p, r)-cubes which can be the resonance graphs
of perfect matchings of plane (bipartite) graphs were determined.

10011000 1100

0001,

0011]

o111 1111
2,4
ro re g

00110 00160 01100
Fig. 1. Fibonacci (p, 7)-cubes Féa'z), 1-.‘(‘2,3) and I‘fl“).

Let G be a graph with the vertex set V(G) and the edge set E(G).
For X C V(G), let (X) denote the subgraph of G induced by X. Then
Tn = (F,) and TP = (F{P") are the induced subgraphs of Q.

The distance dg{a, ) between vertices a and 8 of a graph G is the
length of a shortest a, 5-path. Given two binary strings o and 8 of B,,
their Hamming distance H(c, ) is the number of coordinates in which they
differ. As we have seen in [6], dg, (o, 8) = H(a, B) for any two vertices o
and B of @Q,. So for any two vertices ¢, 8 of a subgraph G of Q,,, we have
the inequality

da(a, B) > H(e, B). (1.1)

Furthermore, since hypercube is bipartite, for any two vertices «, 8 of
a subgraph G of @y, if dg(«, 8) # H(a, B), then

dg(e, B) > H(e, B) + 2. (1.2)
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For a subgraph H of graph G, if dg(e, 8) = dg(a, B) for all a,8 €
V(H), then we say H is an isometric subgraph of G. More generally, if H
and G are arbitrary graphs, then a mapping f : V(H) = V(G) is an iso-
metric embedding if dg(u,v) = dg(f(u), f(v)) holds for any u,v € V(H).
A partial cube is a connected graph that admits an isometric embedding
into a hypercube. Partial cubes constitute a large class of graphs with many
applications and includes, for example, benzenoid graphs. There have sev-
eral applications of partial cubes related to communication and chemical
theory, for instance, the Wiener index of a partial cube can be computed
easily [8].

It is easy to check that Pgs,z) and sz.s) are partial cubes, but I‘ﬁu) is
not a partial cube. So it is natural to raise a question of determining which
Fibonacci (p,7)-cubes are partial cubes. This question is a fundamental
question. The reason is that in those cubes that admit isometric embed-
ding one can design a very simple local routing. This question is solved
completely in this paper. We obtain the following main result, which will
be proved in Section 2.

Theorem 1.1. TP is a partial cube if and only if either p = 1, orp >

2andr <p+1.
Further, we have the following corollary.

Corollary 1.2. T is o partial cube if and only if it is an isometric

subgraph of Qn.

Following Djokovié [1] the isometric dimension, dim;(G), of a partial
cube G is the smallest integer n such that G can be isometrically embedded
into Q,. Since the maximum degree of I'""™ is n (such a vertex is O"), if

P s a partial cube, then
diml(l"g’"r)) >n (1.3)
By Corollary 1.2 and Ineq. (1.3), we obtain the isometric dimension of
I‘sf ™) which is a partial cube.

Corollary 1.3. Let TP" be a partial cube. Then dim;(T¥™) = n.

A median of a triple of vertices ¢, 8, w of a graph G is a vertex v
that lies on a shortest ¢, S-path, on a shortest 8, w-path and on a shortest
a,w-path. A graph is a median graph if every triple of its vertices has a
unique median. It was proved by Mulder [12] that a median graph can
be obtained from a one-vertex graph by an expansion procedure and from
this characterization some nice properties are derived. For more about the
structure, characterization and application of median graphs, see {9]. It is
easy to check that I‘?’z) is a median graph, but I‘f’a) and I“(;“) is not a
median graph. Ou and Zhang determined which Fibonacci (p, r)-cubes are
median graphs in the following theorem.
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Theorem 1.4 ([14]). TP is o median graph if and only if eitherr < p
andr <2, orp=1andr=n.

We give a new proof of Theorem 1.4 in the final section of this paper.

In the theory of partial cubes and median graphs, the following sets
play an important role. For a connected graph G with a8 € E, let

Wag = {w € V | dg(a,w) < dg(B,w)};

Usp = {w € Wap | w has a neighbor in Wg, }; and

Fop = {e € E | e is an edge between W,p and Wpg,}.

A bipartite graph is a semi-median graph if it is a partial cube in which
for any edge af3, (Ua,p) is connected. Similarly, a bipartite graph G is an
almost-median graph if it is a partial cube and for any edge af, (U,g) is
isometric in G. Those graphs with some structural properties appeared
in [5]. A characterization of almost-median graph was given in [10]. The
following theorem proved in Section 3 determines which Fibonacci (p,r)-
cubes are almost-median graphs.

Theorem 1.5. TP is an almost-median graph if and only if it is a partial
cube.

Since an almost-median graph must be a semi-median graph, the fol-
lowing result holds.

Corollary 1.6. TP is o semi-median graph if and only if it is a partial
cube.

Those results show that for Fibonacci (p, r)-cubes, partial cubes, semi-
median graphs and almost-median graphs are all equivalent. But for general
graphs it is not like this situation [5].

2 Proofs of Theorem 1.1 and related corol-
laries

A subgraph H of G is convex if for any o, 8 € V(H), every shortest a, 3-

path in G lies entirely in H. The following theorem due to Djokovié puts

forth a fundamental characterization of partial cube.

Theorem 2.1 ([1]). A graph G is a partial cube if and only if G is bipartite,

and (Wog) and (Wp.) are convez subgraphs of G for every a8 € E(G).
Note that I & Qn(17*1), where Q(17+1) is the graph obtained from

Qr by removing all vertices that contain 17+! as a substring [4].

Lemma 2.2 ([4]). Letr > 1. ThenT ") is an isometric subgraph of Q.

Let o = @1a2...a, and B = byby...b, be two binary strings of length
n. Let p = aiaiy1...0i4¢ and v = bjb;y1...bj4, be substrings of length
t+ 1 of a and B, respectively. If i = j, then we say u and v appearing

200



in the same coordinates of o and 8. For instance, if & = 1100110001
and § = 0010011111, then x = 10001 and v = 11111 appear in the same
coordinates of a and 8.

Lemma 2.3. Leta =aa2...a0, and B =byby...b, € f,‘,”"’, p=>2. Then
drs‘p,r)(a, B) = H(e, B) if and only if there ezist neither substring 10'1 and
111, nor 11%1 and 10t1 appearing in the same coordinates of o and B for
anyt withp<t<r—2

Proof. We prove the necessity by contradiction. Assume that dpstp,r) (o, B) =
H(a, B) but there exist substrings 10°1 and 11*1, or 11*1 and 10°1 appear-
ing in the same coordinates of o and 3. Let H(, 8) = s and a;; = b;; for
j=1,2,...,n—s. Since p > 2, in any shortest path of T'P" connecting
o and 8 there must exist at least one vertex obtained from some vertex
by changing some a;; to 1 — a;; and there also must exist another vertex
obtained from some vertex by changing 1 —a;; to a;; in order to go to 3.
Hence drgp.r) (o, B) # H(a, B8), a contradiction.

We prove the sufficiency by induction on s, where s = H(e,8). It is
obvious for the basic case s = 1. For s > 2 suppose it holds for s — 1. Let
ai; # by, for j =1,...,s. Without loss of generality we may assume that
a;, =1and b;, =0.

If iy =1, a;,-1 =0, or a;;41 = 0, let o' be the binary string obtained
from o by changing a;, from 1 to 0. Then o is a Fibonacci (p,r)-string
adjacent to o in "™ and H(e/,8) =s—1. So dren (o, B) = H(!, B) =
s — 1 by the induction hypothesis, and there exists a path of length s
connecting o and 8 in T®". Thus s = dl..s‘p,r) (a, B) by Ineq. (1.1).

If ai-1 = 1 and a;,+1 =1, then bil—l =1 and bi,+1 = 0. By the
condition that there exists neither substrings 10°1 and 11%1, nor 11*1 and
10%1 appearing in the same coordinates of & and B, so there must exist k
(r—12>k >1)such that a;,41 = - = @j;4x = land bj,4; = -+ =
biy4+x =0, but a;, yx4+1 =0 and by, 4x+1 =0o0r b, yxy1 =1, 0r i3 +k=n.
Then there is a Fibonacci (p, r)-cube string o’ adjacent to a obtained from
a by changing a;, 4+ from 1 to 0 and H(o/,8) = s — 1. By the induction
hypothesis, drs.;.,r)(a' ,B) =s—1= H(c/,B). Then there exists a path of
length s connecting a and B. So dyp.n (e, 8) < s. Hence drgn (e, B) = s
by Ineq. (1.1). The resuilt follows. (m]
Corollary 2.4. Letp > 2 andr < p+ 1. Then TP™ is an isometric
subgraph of Q..

Proof. Suppose that there exist substring 10¢1 and 11*1 appearing in the

same coordinates of some two strings o and 8 in FP). Then t > p and
t+2<r, thatis, p<t <r—2 acontradiction to r < p+ 1. So TP is
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an isometric subgraph of @, by Lemma 2.3. m]

Lemma 2.5. Letp > 2 andr > p+ 2. Then TP is not an isometric
subgraph of Qn. Furthermore, it is not a partial cube.

Proof. We choose 2p + 6 vertices of [P as follows:

a = 0""P~201P0, B = Q"~P~211P0, v = O"~P—210P1, § = on-P—211P1,

xi = On~P=20P+2-1% gnd g = 0"~P-21%0P+2~i for 4 =1,2,...,p+ 1.

Note that np41 = B, H(7,0) = p and o is an edge of I‘S.p‘r). By Lemma.
2.3 and direct calculation we have

dps‘p.r) (Cl, 7) = H(aa 'Y) =p+ 29 dr\s‘P-') (6: 7) = H(:Ba 7) =p+ 1,

drs‘p,r‘) (a, 5) = H(a, 6) = 2, drs‘p.r)(ﬁ,a) = H(ﬁ,&) = 1,

dpslp-") (as X‘l) = H(a$ X1) = p+2_7'1 dps‘P-") (ﬁ, Xt) = H(ﬂa x:) = P+3—'l,

dre.n(aym) = H(aym) = p+2 —i and dpon(B,m) = H(B,m:) =
p+l—ifori=12,...,p+1 So~v,0,m € Wga,i1=1,2,...,p+1 and
Xi € Wag,i=1,2,...,p+ 1.

By Lemma 2.3 and Ineq. (1.2), dron(7,6) 2 H(7,0) + 2 since there
exist 10P1 and 1171 appearing in the same coordinates of y and 4. So ['{P"™
is not an isometric subgraph of Q,. Obviously, P = vx1x2... XpXp+10
and P; = ym%nz...NpNMp+16 both are paths of length p+ 2 connecting v and
4, so drs.,,r) (7,0) £ p+ 2. Hence drs.p,r)('y, 8) =p+2. So P, and P; are
two shortest path between + and & in T"". Since the path P; does not lie
entirely in (Wg,) because x; € Wog for i =1,2,...,p+ 1, (Wa,) is not a
convex subgraph of "™, Thus I'"" is not a partial cube for p > 2 and
n > 71 2 p+ 2 by Theorem 2.1. The result follows. a

Proof of Theorem 1.1. By Lemma 2.2 and Corollary 2.4, T*" is a
partial cube if p =1, or p > 2 and 7 < p+ 1. By Lemma 2.5, I'"™ is not
a partial cube for p > 2 and r > p+ 2. So the result follows. O
Proof of Corollary 1.2. The sufficiency is obvious. Now we prove the
necessity. By Theorem 1.1, if TP isa partial cube, then p=1, or p > 2

and r < p+ 1. By Lemma 2.2 and Corollary 2.4, 1",(,”") is an isometric
subgraph of Q,, if it satisfies one of these two conditions. ]

3 Proof of Theorem 1.5

For an isometric subgraph G of @Q,, suppose uv is an edge of G such that
u, v differ in k** coordinate. By Theorem 4 of [16], the following lemma is
immediate.

Lemma 3.1. Let ne be any edge of G. Then ne € F,, if and only if n and
€ differ in ezactly the k** coordinate.
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Proof of Theorem 1.5. By the definition of almost-graph the necessity
is obvious.

So we now consider the sufficiency. Suppose I'?" is a partial cube. By
Corollary 1.2, T%" is an isometric subgraph of Q,,. Let uv be any edge of
I and p and v differ in only it* coordinate. Let @ = ajaz...an, and 8
be any two vertices of (Uy,). Let s : = drpin (e, 8) = H(e, B). It suffices
to show that d(y, (e, B) = s. We prove this by induction on s.

For the case s = 1 the result is obvious. For s > 2 suppose it is
true for distance s — 1. Let B’ = bibs...b, and o/ be the neighbors of
B and a in (U,,), respectively. By Lemma 3.1, H(f',a) = s+ 1. Let
ai; # by, for j = 1,2,...,5+1 and z_.,, < ij; if 51 < j2. Then B and
B’, and o and o differ exactly in the if* coordinate and H(a/,8') = s
by Lemma 3.1. Let 7 be the neighbor of B on some shortest ¢, 3-path
and v, § differ in the z"‘ coordinate. Then v € W,,,. Wlthout loss of
generallty, suppose i; < zk Let 4 be the string such that 4/ and v differ
only in if* position. If ' € V(I"(p ) ); then vy’ € F,,, by Lemma 3.1. Since
dien (o, "y) H(a,v) = s—1, by the induction hypothesis there exists an
a, B-path of length s lying entirely in (U,,).

Now assume v/ ¢ V(Fs," ')). First we consider the case p = 1. Since
v’ and v differ only in i{* position we have b;, = 1. By dr(p ~(f,a') =
H(f',o') = s, there must exist a vertex ¢’ on some shortest o, 3’-path
such that & and A4 differ in only " h coordinate, where i, # ij,%k. Let
€ be the string obtained from &’ by changing b;, from 1 to 0. Obviously
e€ V(T'®") sincep=1. Thene € V(I'¥") and e¢’ € F,, by Lemma 3.1,
and d,,)(, €) = H(a,€) = s — 1 by the induction hypothesis. So there
exists an «, B-path of length s lying entirely in (U,,).

Now we turn to the case p > 2. Note that » < p+ 1 by Theorem 1.1.
There are five cases: (1) ix = n; (2) 4% < n and b;, 41 = 0; (3) ik < n,
b,'k+1 =1, bik—l =1; (4) i <N, bik+1 =1, bik—l =0 and ij <1 —1; and
(5) ix < m, bijy+1 =1, by, —1 =0 and i; = ix — 1. Case (3) is impossible. In
fact, if b;, = 0, then there exist 101 in §'; if b;, = 1, then there exist 101
in 8. That is a contradiction. If (1), (2), or (4) holds, then b;, = 1 since
v & V(IT¥") and v € V(T'¥P™). If (5) holds, then b;, = 0. Otherwise
there exist a substring 101 in +, a contradiction.

Now we suppose b;, = 1. Based on the above discussion of (1),(2) and
(4), we distinguish three subcase.

Case 1. 4 < n, bj, 41 =1, bj,-1 =0and i; <4x — 1, or ix = n and

bik—l =0.
Obviously 7 > 2 if i, < n. Since 8’ and +’ differ in only i;-h coordinate,
bi; =0, i = i + pand bj;41 = --- = b;,—1 = 0. Let ¢, be the number of

consecutive 1s in front of b;; in v’ and t; be the number of consecutive 1s
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behind b;; in’. Then1<t; <rand 1<ty <r—1ifip <n,ort, =0if
i =n.

Since H(a’, ') = s, there must exist 7’ € V(T'™") on some shortest
o', B'-path such that 7’ and B’ differ in i* (i,, # 4j,4x) position. Let n
be the string obtained from 7’ by changing b;, to 1 —b;,. If i, = n, then
n€V(ITP") by by, =1. Ifix < nand t; > 2, then ip > ik OF iy < i,
son € V(ITP™) by b1 =0 and by, = 1. Ifn ¢ V(TP™), then ix < n,
t1 =1 and i,, = ix — 1. We distinguish two subcases.

Subcase 1.1. p=2.

Obviously j+1 = m. If k = s+1 or ig4+1 > ix+t2, then there exist 13+%2
in o' from the i;-" coordinate to the (ix + t2)** coordinate, so r > 3 + t,,
a contradiction to 7 < p+ 1. Hence k < s and 4x4) < i +1t2. If to = 1,
then dx41 = i + 1. If t2 > 2, we claim that ik +t2 € {ik41,... 9541}
Otherwise there at most t — 1 (t2 — 1 < r —2 < p— 1) 0s between the
it* and (ix + t2)** coordinates of o, a contradiction. Let 8’ be the string
obtained from B’ by changing b;, +¢, to 1 — b, +¢,, obviously & € V(I'P™)
by ik +t2 = n or b 4¢,+41 = 0. Let § be the string obtained from §’ by
changing b;, to 1 —b;,. Then § € V(T'P™) by b;,_1 = 0 and § € U, by
Lemma 3.1. So there exists an a, f-path of length s lying entirely in (U,,)
by the induction hypothesis.

Subcase 1.2. p > 2.

First we claim that j +1 # m. Otherwise there exists 0P~2 between the
i;-h and i* coordinates of o, a contradiction. Furthermore, i; + ¢ = 4t
and b;;4¢ = 0 for t = 1,...,p — 2. By a similar discussion as in Subcase
1.1, we can prove that k < s and 4x + t3 € {¢k41,...,%54+1}. Then we find
a vertex ¢’ obtained from B’ by changing b;, 4¢, to 1 — b;, 44, and a vertex
6 obtained from &’ by changing i{* coordinate from 1 to 0. Then 8¢’ € F, v
by Lemma 3.1. So there exists an a, S-path of length s lying entirely in
(U,v) by the induction hypothesis.

Case 2. ix <n,bj,;1=0and b;,_1 =1,0orix =nand b;,_; = 1.

Since 7' and v differ in only i{* coordinate and A’ and ¥ differ in
only t* coordinate, iy = i; + 7, b;41 = -+ = bj—1 = 1 and bi, = 0.
By H{(a',B’) = s, there must exist a vertex & on some shortest o', §'-
path, where ¢’ and 8’ differ in only i* (i, # i5,1x) position. Obviously
if iz < n, then i, # ix + 1, otherwise there exists a substring 1"+! in
B’, a contradiction. So by b;,41 =0 or iy = n, € € V(l‘s.” 'r)), where ¢
and ¢’ differ in only i{* position. Then e’ € F,, by Lemma 3.1, and
dw,,)(&,@) = H(e,a) = s — 1 by the induction hypothesis. Hence there
exists an c, B-path of length s lying entirely in (U, ).

Case 3. i, < n, bik—l =0 and b,'k+1 =0.

Since dp.n (o, 8') = H(e, ') = s, there must exist &' € V(I'P™) on
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some shortest o, '-path, where ¢’ and B’ differ in only it (i, # ij,1k)
position. Obviously by b;,_; = 0 and b;, ;1 = 0, one of the (i, — 1)** and
(ix +1)** coordinate of &’ must be 0. Let ¢ be obtained from &’ by changing
b;, from 1 to 0. Then £ € V(I'¥"”). Thus e¢’ € F,, by Lemma 3.1 and
dw,, H (e, &) = H(g,a) = s — 1 by the induction hypothesis. Hence there
exists an «, S-path of length s lying entirely in (UL, ).

Finally, suppose b;, = 0. Then (5) holds. We claim ix + 1 = ixy3. If
not, then there exist a substring 101 in o/, a contradiction. Let §’ be the
string obtained from 8 by changing b, +1 to 1 —b;, +1. Then &' € V/(I'P™)
by b;, = 0. Let J be the string obtained from 4’ by changing b;, to 1—b;,.
If § € V(I'P"), then the proof is completed. Now assume & ¢ V(I'%™),
Note that 6 g V(I'$™) if and only if there exist 101 in § from the ii* to
(% +t+1)** coordinates, where 1 <t < p—1. Since  and ¢ only differ in i;-"
and (i, +1)" positions, there exist 10°~11 in v from (ix+1)*" to (ix+t+1)"
coordinates if t > 2, a contradiction. So ¢t = 1. Then by a similar argument
as in Subcase 1.1, k +1 < s and ix +t + 2 € {ik+2,---,%s+1}, Where z is
the number of consecutive 1s starting at the (ix + ¢ + 1)** coordinate. Let
€’ be the string obtained from 8’ by changing b;, 4¢+, to 1 — b;, 4¢4. and
€ obtained from &’ by changing b;, to 1 —b;,. Then e¢’ € U,,,, by Lemma
3.1. So there exists an «, 8-path of length s lying entirely in (Uy,) by the
induction hypothesis. The result follows. m|

4 Proof of Theorem 1.4

The following lemma is a characterization of a median graph via almost-
median graph given by Imrich and Klavzar.

Lemma 4.1 ([5]). A graph is a median graph if and only if it is almost-
median and contains no Q3 as a convex subgraph, where Q3 stands for the
graph obtained from the hypercube Q3 by removing one of its vertices.

By Lemma 4.1 and Theorem 1.5, a Fibonacci (p,r)-cube is a median
graph if and only if it is a partial cube and contains no Q7 as a convex
subgraph.

Lemma 4.2. Letp=1andn>7r2>2,0rp>2 andr > 3. Then ren
contains Q3 as a convez subgraph.

Proof. Forp=1and n > r > 2, let X = {a,8,7,6,6,m,A} C V(TP
where o = 0*~7~11772100, B = O"~"-'1"-2101, v = 0™~"—117-2000,
§ = 0"~™117-2010, ¢ = 0"~ ""117-2001, = O"~""117"2011 and A =
0"~r-117-2110. Obviously, (X) & Q7. If (X) is not a convex subgraph
of TP™, then p = 0"~"-117-2111 € V(I'P"), which contains a substring
17+1, a contradiction.
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Forp>2andr2>3,let X' ={o/,8,9,0,¢,7,N} C V(l"(p"')) where
a = 03000, B’ = 0"_3100 v = 0”'3010 6' = 0"~ 3001 ¢ = 0"~3110,

7' = 03011 and X = 0n=3111. Obviously, (X') = If (X') is not a
convex subgraph of %™, then p' = 03101 ¢ V(I"ﬁf’ ")), which contains
a substring 101, a contradiction. The result holds. m]

Lemma 4.3. Let p > r and r < 2. Then the following statements are
equivalent.

(i) There exists a vertez a@ = aray...a, € TP such that a;, =a;, =
ai, =1 for some iy,12,i3 € {1,2,...,n};

(i?) There exist vertices oy, a2, a3 € 1"("’ , where o is obtained by

changing the z"‘ coordinate of some o € By, from1t00, j=1,2,3; and

(t4%) Qs is an induced subgraph of e,

Proof. Obviously (ii2) implies ().

Suppose (i) holds. Ifi; =1, thena; € %P7 Ifig = n, then az € P,
If i; > 1 and i3 < n, then at least one of a;;—1 and a;;41 is O by r < 2.
So a; can be obtained by changing the 1, h coordinate of o from 1 to 0 and
aj € P j=1,2,3. So (i) implies (u). Furthermore, strings oy, as, as
and a7 € I‘(p ", where ay, as is obtained by changing the i§* coordinate of
ai, s from 1 to 0, respectively, and ag, a7 is obtained by changing the i‘l"
coordinate of az, a5 from 1 to 0, respectively. Let X = {o5]5 =1,2,...,7}.
Then (X) = Q3. So (i) implies (3it).

Now we prove that (i7) implies (¢). First we consider the case r = 1.
Obviously, i, + p < iz and iz + p < i3 since 7 = 1. Then a;,; = 0 by
a3 € TP and a4t =0byoy € P ¢=1,... ,P- So a can be obtained
by changing the i{* coordinate of ag from 0 to 1 and a € TP,

Now we consider the case r = 2.

If iz = 4 + 1, then is + p < i3. Otherwise ap ¢ I'P". By oy € TP,
Qi+t =0, t =1,...,p. By oz € 1",(,"), i =1, orl < ¢ < p and
a;=0j=1,...,i1—1,0or4y 2 p+1land a;;—, =0,t =1,...,p. Thus
a can be obtained by changing 4i* coordinate of o from 0 to 1 and so
aeTPn,

If i3 = i3 + 1, then ¢; 4+ p < i, by a similar argument as above we have
aeriPm,

Now suppose i3 + p < i3 and i3 + p < i3. There are three cases to be
considered. If a;,4; = 1, then a;,_y = 0 by a3 € TP, ¢t = 1,...,p. If
a;,—1 =1, then it =0 by a; € I-\S‘p,r), t=1,...,p. If Qip—1 = Qjp41 =0,
then by oy € TP and a3 € TP7, Gig-t =0 and a;,4: =0,t=1,...,p.
In the above three cases, o can be obtained by changing i{* coordinate of
ap from 0 to 1 and & € TP". The result follows. m}
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Corollary 4.4. Letp > r and r < 2. Then TP contains no Q7 asa
conver subgraph.

Proof. Let X = {e,8,\,7,¢(,7,0} C V(l"s,”’r)) and (X) = Qj, where
a = ajaz...an, dQs-(a,B) = dQs-(a,A) =1, dQs-(a,n) = dQs-(a,() =
dQ (e, ) = 2 and dQ- (,8) = 3 (see Fig. 2). Suppose a and 9 differ in
exactly 4%, 1" and i§" coordinates. There are three cases to be considered.

a B

C 5
Fig. 2. An illustration to the proof of Corollary 4.4.

Case 1. f and a differ in i%* coordinate, A and « differ in 4" coordinate.

In this case 7 and % can be obtained from 8 by changing a;, and a;, to
1—a;, and 1 — a4, respectively, and ¢ can be obtained from A by changing
ai; to 1 —a;,. Let x be the string obtained from o by changing a;, to
1 — a;,, which can be obtained from ¢ by changing 1 - a;, to a;, and also
can be obtained from v by changing 1 — a;, to a;,. We only need to show
that x € V(I‘S.p ‘r)). If not, we claim that a;; = 0, ai;, = 1 and a;;, = 1.
In fact, by x ¢ V(CP™), a € V(TP™) and r < 2 we have a;, = 0; by
¢ e VITP), r <2 and a;,—; = 0 or a;,p; = 0 we have a;, = 1; by
x ¢ V(ITP™), vy € VITP™) and r < 2, we have a;, = 1. Hence the ith

h and i§" coordinate of & are 1, 1, and 0, respectively, the ith, b a.nd
zg" coordlnate of 4 are 0, 1, and 1, respectively, and the t*, i{* and "
coordinate of ¢ are 1, 0, and 1, respectively. By Lemma 4.3, x € V(F(p’r))
contradiction. Thus x € V(I"S.p ")). So (X) = Q3 is not a convex subgraph
of TP,

Case 2. 3 and a differ in i%* coordinate, A and o differ in i§* coordinate.

In this case 1 and v can be obtained from 8 by changing a;; and a;, to
1-a;, and 1 —a;,, respectively, and ¢ can be obtained from A by changing
a;, to 1 — a;,. By a similar discussion as in Case 1, x € V(I"s.p ")), where
x is obtained from o by changing ai, to 1 —a;,. Hence (X) = Q3 is not a
convex subgraph of P,

Case 3. fand & dlﬁ"er in i§* coordinate, A and o differ in 74" coordinate.

In this case n and 7 can be obtained from 8 by changing a;, and a;, to
1-a;, and 1 —a;,, respectively, and ¢ can be obtained from A by changing
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ai; to 1 —a;. Let x be the binary string obtained from a by changing
@i, to 1 —a;,. By a similar discussion as in Case 1, x € V(I"S;"")). Hence
(X) = Q3 is not a convex subgraph of "™, D
Proof of Theorem 1.4. By Lemma 4.2, T is not a median graph for
p=landn>r>20rp2>2andr >3 By Theorem 1.5 and Corollary
4.4, T%" is a median graph for p > r and r < 2. Finally, T{™ = Q, of
course is a median graph. The result follows. ]
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