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Abstract

In 2003, Li introduced a concept called implicit weighted degree,
denoted by id“(v) for a vertex v in a weighted graph. In this paper,
we prove that: Let G be a 2-connected weighted graph which satisfies
the following conditions: (a) The implicit weighted degree sum of any
three independent vertices is at least m; (b) For each induced claw,
each induced modified claw and each induced P; of G, all of its edges
have the same weight. Then G contains either a hamiltonian cycle
or a cycle of weight at least 2m/3.

Keywords: Weighted graph; hamiltonian cycles; heavy cycles; im-
plicit weighted degree

1 Introduction

Throughout this paper, we consider only finite undirected and simple graphs.
For notation and terminology not defined here can be found in [2].

Let G = (V(G), E(G)) be a graph and H be a subgraph of G. For
a vertex u € V(G), the neighborhood of v in H is denoted by Ny(u) =
{ve V(H): uv € E(G)} and the degree of u in H is denoted by dy(u) =
|Ng(u)|. If G = H, we always use N(u) and d() in place of Ng(u) and
dg(u), respectively. We use Na(u) to denote the set of vertices in G which
are at distance 2 from u. And we call Na(u) the 2-neighborhood of u.

In study of hamiltonian problem, Zhu, Li and Deng found that some
vertices may have small degrees, but the vertices around them have large
degrees, such as the vertices in their neighborhoods and 2-neighborhoods.
And we hope to use some large degree vertices to replace small degree
vertices in the right position considered in the proofs, so that we may

O* This work is supported by the Scientific Research Foundation for Doctors in Qufu
Normal University (No. 2012015).

ARS COMBINATORIA 115(2014), pp. 211-218



construct a longer cycle. This idea leads to the concept of implicit degrees
of vertices [8].

Definition 1 (/8]) Let v be a vertez of a graph G. If No(v) # 9 and
d(v) > 2, then set k = d(v) — 1, My = max{d(u) : u € N2(v)} and mg =
min{d(u) : u € N3(v)}. Supposed; <dy <d3g<...<dp <dps1 <...be
the degree sequence of vertices of N(v) U Na(v). Then the implicit degree
id(v) of v, is defined as

max{d(v),ma}, ifdx < mg;
id(v) = ¢ max{d(v),dk+1}, ifdx = m2 and drs1 > My;
ma.x{d(v),dk}, Zfdk > mg and dk+1 < Mg.

If Na(v) = 0 or d(v) < 1, then id(v) = d(v).

Clearly, id(v) > d(v) for each vertex v from the definition of implicit degree.

A graph G is called a weighted graph if each edge e is assigned a non-
negative number w(e), and w(e) is called the weight of e. Clearly, an
unweighted graph can be regarded as a weighted graph in which each edge
is assigned a weight 1. The weight of a subgraph H of G and the weighted
degree of a vertex v in G are defined as

w(H) = Z w(e) and d¥(v) = Z w(uv), respectively.
e€E(H) ueN(v)

A path P in a weighted graph G is called a heaviest longest path if P is a
longest path of G, and w(P) is maximum among all longest paths in G.
In [7], Li extended Definition 1 into weighted graphs as follows:

Definition 2 ([7]) Let v be a vertex of a weighted graph G. If Np(v) # 0
and d(v) > 2, then set k = d(v) — 1, my = min{d¥(u) : u € Ny(v)} and

3’ = max{d”(u) : u € Na(v)}. Supposedy <dy <---<dp,, <--- be
the weighted degree sequence of vertices of N(v)U Na(v). Then the implicit
weighted degree id™ (v) of v is defined as

max{d¥(v),my'}, ifdy <my;
id®(v) = ¢ max{d”(v),d¥,,}, fdf >m¥ anddy,, > My,
max{d¥(v),dy},  otherwise.
If No(v) = 0 or d(v) < 1, then id¥(v) = d¥(v).

Clearly, id¥ (v) > d¥(v) for every vertex v.
Let o(G) be the independent number of a graph G. For a positive
integer k£ < a(G), we define 0x(G) = min{d(z,) + d(z2) + ... + d(zx) :
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Z1,T2,..., Tk are k independent vertices in G} and iox(G) = min{id(z,) +

id(z2) + ... +id(zx) : 1,%2,...,Zx are k independent vertices in G}. For
a weighted graph G, let o’(G) = min{d¥(z;) + d¥(z2) + ... + d*“(=zx) :
T1,%3,..., Tk are k independent vertices in G} and io}’(G) = min{id*(z1)+

id¥(z2) + ... +1id¥(xx) : T1, %2, ..., Tk are k independent vertices in G}. If
k > a(G), then they are all equal to +oo.

We call the graph K; 3 a claw, K3 + e (e is an edge between two
nonadjacent vertices in K; 3) a modified claw. A path with ! vertices is
denoted by F,.

A graph G is called hamiltonian if it has a hamiltonian cycle, i.e. a
cycle that contains all vertices of G. There are many results about the
existence of heavy cycles in graphs in terms of the weighted degree sum of
independent vertices. The following two theorems are well-known.

Theorem 1 ([1]) Let G be a 2-connected weighted graph with 03’ (G) > m,
then G contains either a hamiltonian cycle or a cycle of weight at least m.

Theorem 2 ([3]) Let G be a 2-connected weighted graph which satisfies
the following conditions:

(1) o3 (G) 2 m;

(2) For each induced claw and each induced modified claw of G, all of its
edges have the same weight.

Then G contains either a hamiltonian cycle or a cycle of weight at least
2m/3.

Now, we have the folowing question: Can ¢¥'(G) > m in Theorem 2 be
replaced by iy’ (G) > m? If the answer is affirmative, then we can give a
generalization of Theorem 2. In this paper, we give a partial answer to this
problem.

Theorem 3 Let G be a 2-connected weighted graph which satisfies the fol-
lowing conditions:

(i) io¥ (G) 2 m;

(ii) For each induced clow, each induced modified claw and each Py of G,
all of its edges have the same weight.

Then G contains either a hamiltonian cycle or a cycle of weight at least
2m/3.

We postpone the proof of Theorem 3. Here we give a graph G with
0y (G) > o¥(G). It is said that we can get a heavier cycle by using
Theorem 3 than using Theorem 2.

Example 1 Let G be a graph as Figure 1, where K,, is a complete graph
and x,z are adjacent to every vertez of each Ky, N(y) = {z,z}. We
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assign weight 2 to each edge of G. It is easy to verify that d*(z) = d¥(z) =
4m +2,d"(y) = 4 and d*(u) = 2(m + 1) for any u € V(2K,,). And by the
definition of implicit weighted degree, we can get that id“(z) = id¥(z) =
4m + 2,id"(y) = 2(m + 1) and id¥(u) = 2(m + 1) for any u € V(2K.,).
Then 0¥ (G) = 4m + 8 and io}(G) = 6(m + 1).

0
A

z
Figurel

2 Proof of Theorem 3

Our proof of Theorem 3 is based on the following three lemmas.

Lemma 1 (f1]) Let G ba & non-hamiltonian 2-connected weighted graph
and P = z173 ...z, be a heaviest longest path of G. Then there is a cycle
C in G with w(C) > d*(z1) + d¥(zp).

Lemma 2 ([5]) Let G be a k-connected graph with at least three vertices.
If k > a(G), then G is hamiltonian.

Lemma 3 ([6]) Let G be a 2-connected graph such that io3(G) > ¢, then
G contains either a hamiltonian cycle or a cycle of length at least 2¢/3.

Lemma 4 Let G be a non-hamiltonian 2-connected weighted graph that
satisfies the conditions of Theorem 3. Suppose there exist two edges e;
and e; such that w(e;) # w(ez), then there erists o heaviest longest path
P =zx15...2p with d¥(z1) + d¥(zp) 2 2m/3.

We postpone the proof of Lemma 4 in next section.
Proof of Theorem 3 Let G be a weighted graph satisfying the conditions
of Theorem 3. If a(G) < 2, then G is hamiltonian by Lemma 2.

Hence we assume a(G) > 3. If all edges of G have the same weight
t. When t = 0, there is nothing to say. Suppose ¢t # 0. By Definitions 1
and 2, we have id"(v) = t(id(v)) for every v € V(G). Hence, io3(G) =
10y (G)/t = m/t. Then, by Lemma 3, G contains either a hamiltonian
cycle or a cycle C of length at least 2m/3t. If G is not hamiltonian, then
w(C) =t x |E(C)| > t x (2m/3t) = 2m/3.

Suppose there exist two edges e; and e; such that w(e;) # w(ez) and G
is non-hamiltonian. Then there is a heaviest longest path P = z,z5...x,
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with d¥(z1) + d¥(zp) > 2m/3 by Lemma 4. Therefore, there is a cycle C
in G with w(C) > d¥(z1) + d¥(zp) = 2m/3 by Lemma 1. The proof of
Theorem 3 is complete.

3 Proof of Lemma 4

Let P = z1z3 ... zp be a path of a graph G, define N(z;)~ = {z; : zi4121 €
E(G)}. To prove Lemma 4, we need the following two lemmas.

Lemma 5 ([7]) Let G be a 2-connected weighted graph and P = z1z3...%p
be a longest path of G. If d¥(zx1) < id¥(x,) and 212, & E(G), then either
(1) there is some z; € N(z1)~ such that d*(z;) 2 id¥(z1); or

(2) N(z1) = {Z2, %3, .. Td(z1) 41}, €°(T;) < id¥(z1) for any z; € N(z1)~
and id¥(z;) = min{d¥(v) : v € Na(z1)}.

Lemma 6 ([4]) Let G be a 2-connected weighted graph satisfying condition
(ii) of Theorem 3. If there are two edges with different weights, then each
pair of vertices of G are at distance at most 2.

Proof of Lemma 4 Let G be graph satisfying the conditions of Lemma
4.
Claim 1. There exists a heaviest longest path P = z;73...z, such that
id¥(zy) + d¥(zp) = 2m/3.
Proof. Suppose to the contrary that id“(z,) + id*(z,) < 2m/3 for any
heaviest longest path P = z;z5...Z,. We choose a heaviest longest path
P =z1x5...zp such that id¥(z,) + id¥(z;) is as large as possible.
Assume without loss of generality that id“(z;) < m/3. Since G is
non-hamiltonian, z,z, ¢ E(G). From the choice of P, we can get that
N(z1) U N(zp) € V(P) and there is no cycle of length p. Since G is
2-connected, z; is adjacent to at least one vertex other than zs. So
3 <k <p-—1, where k = max{i : z1z; € E(G)}.

Case 1. N(z1) = {z2,%3,...,Zk}-
Since G — zi is connected and P is a longest path of G, there must exist
an edge z,T, with r < k < s. We choose such an edge z,z, such that
(I) s is as large as possible;
(II) 7 is as large as possible, subject to (I).

Case 1.1. s> k+2,

Claim 1.1. w(z1Zr4+1) = W(Z,Tri1)-

Proof. If r < k — 1, by the choice of zx and z,, we have z,z, ¢ E(G)
and z,417s ¢ E(G). So {z,,Z1,%r41,%s} induces a modified claw. Then

W(Z1ZTr41) = W(TrZry1)-
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Suppose 7 = k — 1. By Lemma 6, we have d(z,z,) = 2. So zxz, €
E(G). Now {zx,z1,Tk-1,Zp} induces a modified claw. So w(z;zx) =
w(ZTp—12k)- O
Claim 1.2. w(z,-12,) = w(z,2,).

Proof. If z,z,—1 € E(G), we have r1z,—; ¢ E(G) and z1z, ¢ E(G)
by the choice of zx. Then {z,,z1,Z,-1,%;} induces a modified claw. So
W(Ts-125) = W(Tpzs).

Suppose z,xs_1 ¢ E(G). Since z,z,41 ¢ E(G) by the choice of z,,
{Ts,Zr,Ts—1,Zs41} induces a claw or a modified claw. Thus w(zs—1z,) =
w(T,rzs). O

It follows from Claims 1.1 and 1.2 that z,_1Z5—2... Zr41Z1%2 ... TrTs
Ts41- .- Tp is a heaviest longest path different from P. Since G has no cycle
of length p, z,_1z, ¢ E(G). Therefore, {z1,z,—1,7,} is an independent
set of G. Then id¥(z,—_1) + id¥(z,) = m — id¥(z1) > 2m/3, contrary to
the choice of P.

Case 1.2. s=k+1.

Since G — k.11 is connected, there must exist an edge z;z, with k+1 <
t < p by the choice of z, and z;. Choose such an edge z;z, such that ¢ is
as large as possible.

Claim 1.3. w(z1Zr41) = wW(ZrTrs1).

Proof. If r < k—1, by the same proof as in Claim 1.1, we get w(z;z,41) =
w(ZrTr41). Suppose 7 = k—1. By the choice of zx and z,, we have 1z, ¢
E(G) and zx—17¢ ¢ E(G). Then {Tk, 21, k-1, z:} induces a modified claw.
So w(:t:la:k) = w(xk_lxk). (m}
Claim 1.4. w(z,ZTi41) = W(TkTis1)-

Proof. Since G has no cycle of length p, z,z, ¢ E(G) and z:z, ¢
E(G). By Lemma 6, we have d(z,,z,) = 2. So Zi4+12, € E(G). Then
{Tk+1, T+, Tk, Tp} induces a claw or a modified claw. Thus w(z,Try)) =
W(TeTrt1)- m]
Claim 1.5. w(z;—1z;) = w(Tkz:).

Proof. If zxxz:—1 ¢ E(G), then zxz¢y1 ¢ E(G) by the choice of z;.
Thus {z¢, Tx,Te—1,Zr} induces a claw or a modified claw. So w(zx,_1z,;) =
w(zpe).

Suppose zxz:~1 € E(G). By the choice of zx, z1z:—1 ¢ E(G) and
z17¢ € E(G). Then {zy,z1, 2:—1, T} induces a modified claw. So w(z;_;z;)
= w(TkTt). a

It follows from Claims 1.3, 1.4 and 1.5 that ;1,2 ... Tk 1T, Ty . ..
T1Tr41Zr42 - - - TkTeTeq) . . . Tp is a heaviest longest path of G different from
P. Since G has no cycle of length p, z:—12, ¢ E(G). Therefore, {z1, T¢—1,zp}
is an independent set of G. Then id"(z,_1) + id*(zp) > m — id¥(z,) >
2m/3, contrary to the choice of P.
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Case 2. N(zy) # {z2,Z3,..., %k}

Choose z, ¢ N(z;) with 2 < 7 < k such that r is as large as possible.
Clearly, z,z; € E(G) for each ¢ with 7 < i < k. Let j be the smallest index
such that j > r and z; ¢ N(x1) N N(z,). Since 2,41 € N(z1) N N(z,) and
Zry1 € N(z1) N N(z,), we have r +2 < j < k 4 1. We have the following
claim:

Claim 2.1. w(Z1Zr41) = W(ZrTry1)-

Proof. If r < k — 1, since G has no cycle of length p, zr;17, ¢ E(G).
By Lemma 2, we know d(zr4+1,%p) = 2. So there exists a vertex z, such
that z, € N(zr41) N N(zp). Now {Z),Zr41,%s,2p} induces a Py or a
modified claw, which implies that w(z1z,4+1) = w(z,zp). At the same
time, {Zr, Tr+1, Ts, Tp} induces a Py or a modified claw, which implies that
w(ZrTrs1) = wW(TsTp). Therefore, w(T1Tr11) = W(TrTri1)

Suppose r = k — 1. If zxz, € E(G), then {xy,1,Tk—1,%p} induces
a claw. So w(zizi) = w(Tk-1Zk). Suppose zxzp, ¢ E(G). By similar
arguments as 7 < k — 1, we get W(Z1Zr41) = W(TrTry1)- |

By Claim 2.1, £,Zy_1 ... Z1Zr+1Zr42 - . . Tp be a heaviest longest path of
G different from P. Since G has no cycle of length p, z,z, ¢ E(G). There-
fore, {z1,2,,2p} is an independent set of G. Then id*(z,) + id¥(z,) >
m — id¥(z1) > 2m/3, contrary to the choice of P. Now we complete the
proof of Claim 1. O

By Claim 1, we can get a heaviest longest path P = z125...2, in G
such that id¥(z,) + id¥(zp) > 2m/3. We choose such a heaviest longest
path P = z1Z3...%p in G such that d¥(z,) +d¥(z,) is as large as possible
and suppose d* (z1)+d"(zp) < 2m/3. We assume without loss of generality
that d¥(z1) < id¥(z,).

Case 2.1. There is some z; € N(z1)™ \ {z1} such that d¥(z;) > id"(z1).
Claim 2.2. w(:z:lzj.,.l) = W(xj$j+1).
Proof. If z;41z, € E(G), since G has no cycle of length p, {Z;+1,21,%;, Tp}
induces a claw or a modified claw. So w(z1Z;4+1) = w(z;Zj41)-
Suppose z;+1Zp ¢ E(G). By similar arguments as in Claim 2.1, we can
get that w(z1zj41) = w(T;z41). 0
It follows from Claim 2.2 that z;z;_1...21Z;41%;42. .. Tp be a heaviest
longest path different from P. But d¥(x;) + d¥(zp) > id¥(z1) + d¥(z,) >
d¥(z1) + d¥(z,), contrary to the choice of P.

Case 2.2. d¥(z;) < id¥(z,) for each z; € N(z;)~ \ {z1}.

By Lemma 5, N(z1) = {z2,23,...,2x} and id*(z;) = min{d*(u) : u €
Ny(z1)}, where k is defined as in Claim 1. With similar arguments as in
Case 1, we choose an edge v,v; as in Case 1 and have the following claim.
Claim 2.3. w(z1Tr41) = W(ZrTr+1). (]
Claim 2.4. s > k+1.
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Proof. Suppose s = k+1. By Lemma 2, d(z),,) = 2. Since G has no cy-
cle of length p, zxz, € E(G). Now 212 ... TrTh41ZTk42 - - - TpThTh—1 ... Trsl
z; is a cycle of length p, a contradiction. m]
Claim 2.5. w(z,-1%,) = w(z,zs)-
Proof. If z,z,., € E(G), then {z,,z,,%5_1,zs} induces a modified claw,
which implies that w(z,-1z;) = w(z,z;).

Suppose z,x;-; ¢ E(G). Then {z,,%,,2,_1,Zs41} induces a claw or a
modified claw. So w(z,—1zs) = w(z,z,). m]

It follows from Claims 2.3 and 2.5 that T,_1Zs—2...Trs121%2. .. T, 25
Zs41 ... Tp is a heaviest longest path. By the choice of z, we have z;z,._; ¢
E(G). Sod(z1,%,-1) = 2. Thusd¥(z,—1) > id¥(x;). Therefore, d¥(z,_;)+
d¥(zp) 2 id¥(z)) + d*(z,) > d¥(z;) + d¥(z,), contrary to the choice of
P. The proof of Lemma 4 is completed. m]
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