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Abstract

This paper is based on the splitting operation for binary ma-
troids that was introduced by Raghunathan, Shikare, and Waphare
[Discrete Math. 184 (1998), p.267-271] as a natural generalization of
the corresponding operation in graphs. In this paper, we consider the
problem of determining precisely which cographic matroids M have
the property that the splitting operation, by every pair of elements,
on M yields a cographic matroid. This problem is solved by proving
that there are exactly five minor-minimal matroids that do not have
this property.
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1. Introduction

Fleischner [5] defined the splitting operation for a graph with respect to a
pair of adjacent edges as follows:

Let G be a connected graph and let v be a vertex of degree at least three
in G. If z = vv; and y = vv, are two edges incident at v, then splitting
away the pair z,y from v results in a new graph G, obtained from G by
deleting the edges z and y, and adding a new vertex v, adjacent to v
and v,. The transition from G to G, is called the splitting operation on
G. For practical purposes, we denote the new edges v;,,v; and v 4v; in
G, by z and y, respectively. (See Figure 1 for an illustration).

ARS COMBINATORIA 115(2014), pp. 219-237



<>
v2 G 2 Gy
Figure 1

The splitting operation has important applications in graph theory. For
example, Fleischner [5] used this operation to characterize Eulerian graphs
and also gave an algorithm in terms of this operation to find all distinct
Eulerian trails in an Eulerian graph. Tutte [12] characterized 3-connected
graphs, and Slater [10] classified 4-connected graphs using a slight variation
of this operation.

Raghunathan et al. [11] defined the splitting operation for binary ma-

troids as follows:
Let M be a binary matroid on a set S and A be a matrix over GF(2) that
represents the matroid M. Consider elements z and y of M. Let A, , be the
matrix that is obtained by adjoining an extra row to A with this row be-
ing zero everywhere except in the columns corresponding to = and y where
it takes the value 1. Let M, be the matroid represented by the matrix
Az . We say that M, , has been obtained from M by splitting the pair of
elements z and y. The matroid M, will be called the splitting matroid.

Alternatively, the splitting operation can be defined in terms of circuits
of binary matroids. Let M = (S,C) be a binary matroid on a set S together
with the set C of circuits. Then M, , = (S,C’) with C’ = Cp U C;, where
Co={CeC:z,yeCorz¢C,y¢C}; and
C,={CiuC;:C,Cr € Ciz € C1,y € C2,C;NCy = ¢ and C; U C,
contains no member of Cp}.

Note that an arbitrary circuit of M, contain either both z and y or
neither.

Several results concerning splitting operation have been explored in [1],
[7], [8], and [9].

Let M(G) and M*(G) denote the circuit matroid and the cocircuit
matriod, respectively of a graph G. For undefined notation and terminology
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in graphs and matroids see [6].

It was shown in [11] that if z,y is a pair of adjacent edges in a graph G,
then M(G:y) = M(G)z,y. However, if  and y are non-adjacent, then
M(G)z,y may not be graphic. Shikare and Waphare (9] characterized
graphic matroids whose splitting matroids are also graphic as follows:

Theorem 1.1 (Shikare and Waphare (9]). The splitting operation, by any
pair of elements, on a graphic matroid yields a graphic matroid if and only
if the circuit matroid of the corresponding graph has no minor isomorphic

to the circuit matroid of any of the following four graphs.

Figure 2
O

The splitting operation on a cographic matroid may not yield a co-
graphic matroid. In the following theorem, we characterize cographic ma-
troids M for which M; , is cographic for every pair z,y of elements of M,

which is the main result of this paper.

Theorem 1.2. The splitting operation, by any pair of elements, on a co-
graphic matroid yields a cographic matroid if and only if it has no minor
isomorphic to one of the matroids M(H;) and M(H;), where the graphs

H, and Hy are given in Figure 3.

H 1 H. 2
Figure 3
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2. The splitting operation and minors
In order to prove the main theorem, we provide some necessary results.

Lemma 2.1 (Shikare and Waphare [9]). Let z and y be noncoloop elements
of a binary matroid M and let (M) denote the rank of M. Then the fol-
lowing statements hold.

(?) z and y are in series in My ,;

(i4) y is a coloop in M.y, \ {x} while = is a coloop in Mz, \ {y};

(#4i) Mz = M if and only if z and y are in series in M;

(i) r(Mzy) = (M) + 1 if and only if z and y are not in series in M;

(v) if 21,22 are in series in M, then they are in series in M.,

(1) Mo/ {2} \ {4} & Moy /W) \ {2} = Moy \ {z,4} = M\ {z,y};

(vit) if  is a coloop in M, then x and y are both coloops in M, and
further, Mz /{z,y} = Mz \ {z,y} = M\ {z,y}; and

(viti) if = is a loop in M, then M, /{z} = M\ {z}. ]

The following results are well known.

Lemma 2.2 (Oxley [6]). A binary matroid is cographic if and only if it
has no minor isomorphic to Fr, Fy, M(Ks), or M(K33). O

Lemma 2.3 (Oxley [6]). A binary matroid is graphic if and only if it has
no minor isomorphic to Fy, F7, M*(Ks), or M*(K33). O

Notation. For convenience, let F = {F7, F7, M(Ks), M(Ks33)}.

Lemma 2.4. Let M be a cographic matroid and let z,y € E(M) such that
M., is not cographic. Then there is a minor N of M such that no pair of
elements of N is in series and Ny ,/{z} = F or N;,/{z,y} = F for some
FekF.

Proof. The proof is similar to the proof of Theorem 2.3 in [9). ]

Definition 2.5. Let M be a matroid in which no pair of elements is in series
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and let F € F. We say that M is minimal with respect to F if there exist
two elements = and y of M such that M, ,/{z} = F or M;,/{z,y} = F.

Corollary 2.6. Let M be a cographic matroid. For any z,y € E(M), the
matroid My, is cographic if and only if M has no minor isomorphic to a

minimal matroid with respect to any F' € F.
Proof. The proof follows from Lemma 2.1 and Lemma 2.4. O

Lemma 2.7. Let F € F and let M be a binary matroid such that either
M. y/{z} = F or M y/{z,y} = F for some z,y € E(M). Then the fol-
lowing statements hold.

(2) M has neither loops nor coloops;

(i) = and y cannot be parallel in M,

(441) if z1 and z2 are parallel elements of M, then one of them is either x
ory;

(i) if Mzy/{z} = F, then M has at most two pairs of parallel elements
and there is no 3-circuit in M containing both x and y;

(v) if Mg,y /{z,y} = F, then M has at most one pair of parallel elements
and there is no 3-circuit or 4-circuit in M containing both  and y;

(vi) if Mz, /{z} = M(K33) or Mzy/{z,y} = M(Kaz3), then every odd
circuit of M contains T or y and also, M has at most one pair of parallel
elements; and

(vid) if Mg /{z} & M(K;5) or Mz y/{z,y} = M(Ks), then every odd co-

circuit of M contains z or y.

Proof. The proof follows from Lemma 2.1 and from the fact that F' does
not contain loops, coloops and 2-circuits. (]

A matroid is Fulerian if its ground set can be expressed as a union
of disjoint circuits of the matroid (see [3]). A matroid is bipartite if every
circuit of it has an even number of elements. Welsh [3] proved that a binary
matroid is Eulerian if and only if its dual is bipartite. It is easy to see that
a binary matroid M is Eulerian if and only if the sum of columns of A is
zero, where A is a matrix over GF(2) that represents M. Raghunathan et
al. [11] proved that a binary matroid M is Eulerian if and only if M, is
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Eulerian for every pair of elements z and y.

Lemma 2.8 (Shikare and Waphare [9]). Let M be a loopless binary ma-
troid and x,y € E(M). Then (i) Mg y/{z} is Eulerian if and only if M
is Eulerian; and (ii) if M is a circuit matroid of a graph G and z,y are
non-adjacent edges of G such that Mz /{z,y} is Eulerian then either G is
Eulerian or the end vertices of x and y are precisely of odd degree. O

Lemma 2.9 (Mills [1]). Let M be a binary matroid and =,y € E(M). If C*
is a cocircuit of M containing both = and y with |C*| > 3, then C* - {z,y}

is a cocircuit of Mg . O

3. The splitting of cographic matroids

In this section, we obtain the minimal matroids corresponding to the four
matroids F7, F7, M(K33) and M(Kj), and use them to give a proof of
Theorem 1.2.

Lemma 3.1. Let M be a cographic mairoid. Then M is minimal with
respect to the matroid F; if and only if M is isomorphic to one of the two
matroids M(G:) end M(G2), where G and G2 are the graphs of Figure 4.

3
5 Y
N\ 4
z z 3\ |lw
PNED
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Gl Gz
Figure 4

Proof. Suppose that M is isomorphic to M(G;) or M(Gs). It follows from
the matrix representation that M(G1)z,,/{z} = F7 and M(G2)z,,/{z,y} &
F;. Further, no two elements of M are in series. Thus, M is minimal with
respect to Fr.

Conversely, suppose that M. ,/{z} = F; or M, ,/{z,y} = F; for some
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z,y € E(M). Then |E(M)| = 8 or 9. Suppose that M is not graphic.
By Lemma 2.2 and Lemma 2.3, M has M*(K33) or M*(Ks) as a mi-
nor. Hence |E(M)| > 9. So M is isomorphic to M*(K33) and further,
M, /{z,y} = F;. Therefore any two elements in M are in a 4-circuit,
which is a contradiction to Lemma 2.7(v). So M is graphic. Thus, the
result follows from Lemma 3.1 of [9). O

Lemma 3.2. Let M be a cographic matroid. Then M is minimal with
respect to the matroid F; if and only if M is isomorphic to the matroid
M(G3), where G3 is the graph of Figure 5.

Y7 \4
/3

) w
z

1
G; Figure 5

N

Proof. One can easily check from the matrix representation that
M(G3)z,y/{z} = F;. Therefore M(G3) is minimal with respect to F7.

Conversely, suppose that either M., /{z} & F; or M;,/{z,y} = F7
for some z,y € E(M). If M is graphic, then the result follows from Lemma
3.2 of [9]. If M is not graphic then by Lemma 2.2 and Lemma 2.3, M =
M*(K33), which is a contradiction to Lemma 2.7 (v). O

Lemma 3.3. Let M be a cographic matroid. Then M is minimal with
respect to the matroid M (K3 3) if and only if M is isomorphic to one of the
circuit matroids M(G4), M(Gs), M(Gs) and M*(G7), where G4, G5, Gs
and G are the graphs of Figure 6.

1
6 1 1
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Figure 6
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Proof. From the matrix representation, it follows that M(G4);,,/{z}

& M(K33), M(Gs)sy/{z} = M(K33), M(Gé)z,y/{z,y} = M(K33) and
M*(G7)z,y/{z,y} = M(K33). Therefore M(G,4), M(Gs), M(Gs) and
M*(G+) are minimal with respect to the matroid M (K3 3).

Conversely, suppose that M is a minimal matroid with respect to the
matroid M(K33). Then there exist elements z and y of M such that
Mg, /{z} = M(K33) or M, ,/{z,y} = M(Ks3).

Case (i). M;,/{z} = M(Ks3).

Then |E(M)| = 10 and by Lemma 2.1, r(M) = r(M; ) -1 = r(M; ,/{z}) =
r(M(Ks,3)) = 5. We claim that M is graphic. By Lemma 2.2 and Lemma
2.3, it suffices to prove that M does not have M*(K33) and M*(K;) as
a minor. Since r(M) = 5, it cannot have a minor isomorphic to M*(Kj)
of rank 6. Assume that M has a minor isomorphic to M*(K33). Since
r(M*(K3,3)) = 4, there exists an element ¢ in M such that M/q = M*(Kj3).
This implies that M* \ ¢ = M(Ka3) = M, /{z}. As M does not contain
a pair of elements in series, the matroid M* is simple. Hence M* is a cycle
matroid of the graph G depicted in Figure 7. One of the vertices vy, ve, v3

q Uy
m V2 U3
Figure 7

is not an end vertex of z and y. Let C be a cocircuit of M* corresponding
to this vertex of G. Then C N {z,y} = ¢ and further, C is a 3-circuit of
M. Therefore C is a circuit in M . This implies that M ,/{z} contains a
circuit of size at most 3, a contradiction. We conclude that M is graphic.
Let G be a graph such that M = M(G). As r(M) = 5 and |E(M)| = 10,
G has 6 vertices and 10 edges. Being a minimal matroid, no two elements
of M are in series. Hence, by Lemma 2.7(¢), G has minimum degree at
least 3. Thus, degree sequence of G is (5,3,3,3,3,3) or (4,4,3,3,3,3). Fur-
ther, G is planar because M is cographic. It follows from considering the
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circuits of M(Ks3) and of M(G);,y and Lemma 2.7 that G cannot have
(i) two or more edge disjoint triangles, or (i7) a circuit of size 3 or 4 or 6
containing both z and y. By Appendix 1 of [4], every simple planar graph
with 6 vertices and 10 edges contains two or more edge disjoint triangles.
Therefore G is non-simple and by Lemma 2.7(vi), G has exactly one pair
of parallel edges. Suppose the degree sequence of G is (5,3,3,3,3,3). Then
G can be obtained from a simple graph with degree sequence (4,3,3,3,3,2)
or (5,3,3,3,2,2) by adding an edge in parallel between vertices of degree 2
and degree 4, or between two vertices of degree 2, respectively. There are
3 non-isomorphic simple graphs with degree sequence (4,3,3,3,3,2) (see Ap-
pendix 1 [4]). Two of them contain disjoint triangles and hence we discard
them. From the remaining graph, we obtain the graph G4 of Figure 6.
By Appendix 1 of [4], there are only 2 non-isomorphic simple graphs with
degree sequence (5,3,3,3,2,2). As each of these contains disjoint triangles,
the graph G cannot be obtained from any of these graphs.

Suppose that G has degree sequence (4,4,3,3,3,3). Then G can be ob-
tained from a simple graph with degree sequences (3,3,3,3,3,3), (4,4,3,3,2,2)
or (4,3,3,3,3,2) by adding an edge in parallel between two vertices of degree
3, two vertices of degree 2, or a vertex of degree 2 and a vertex of de-
gree 3, respectively. There are 2 non-isomorphic simple graphs with degree
sequence (3,3,3,3,3,3) (see Appendix 1 [4]). Both of them are discarded

because one contains disjoint triangles and the other is non-planar.

Now, there are exactly 5 non-isomorphic simple graphs with degree se-
quence (4,4,3,3,2,2) (see Appendix 1 [4]). Out of these, two graphs are
discarded because they contain disjoint triangles. In the other two graphs,
vertices of degree 2 are not adjacent and hence after adding a parallel edge
between two vertices of degree 2, we obtain a simple graph. Hence we dis-
card them also. From the remaining one simple graph, we obtain the graph
of Figure 8 of the degree sequence (4,4,3,3,3,3) by adding an edge in parallel.
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Figure 8

Since M., /{z} contains neither 2-circuits nor 3-circuits, every 3-circuit
and 2-circuit of G must contain = or y. Hence G is not isomorphic to the

graph of Figure 8.

Suppose G is obtained from a simple graph of degree sequence
(4,3,3,3,3,2). There are exactly 3 non-isomorphic simple graphs with degree
sequence (4,3,3,3,3,2) (see Appendix 1 [4]). Out of which, two contain
disjoint triangles and hence are discarded. From the remaining one, we
obtain the graph G5 of Figure 6 as a choice for G.

Case (ii). M /{z,y} = M(K33).

Subcase (i). Suppose that M is graphic.

As r(M(Kag3)) = 5, r(Mzy) = 7. Hence 7(M) = 6 and |E(M)| = 11.
Let G be a graph corresponding to M. Then G has 7 vertices, 11 edges
and has minimum degree at least 3. Therefore the degree sequence of G
is (4,3,3,3,3,3,3). Further, G is planar. It follows from Lemma. 2.7 that G
cannot have (i) more than two edge disjoint triangles, or (i) a cycle of
length other than 6 which contains both = and y, or (i%Z) a triangle and a

2-circuit which are edge disjoint.

Suppose that G is simple. The four graphs given in Figure 9 are the only
non-isomorphic simple graphs each with degree sequence (4,3,3,3,3,3,3)(see
[9]). Suppose that G is isomorphic to one of them. Observe that, in each
of the graphs (¢) and (#i%) of Figure 9, there are no suitable = and y which
belong to only a 6 cycle. Further, the graph (iv) of Figure 9 is not planar
as it has K33 as a minor. Therefore G is isomorphic to the graph (i) of
Figure 9 which is the graph Gg of Figure 6.

DN
S P S5

(i4) (i)
Figure 9 (iv)
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Suppose that G is not simple. By Lemma 2.7, G has exactly one pair
of parallel edges. Thus, G can be obtained from a simple graph with de-
gree sequence (4,3,3,3,3,2,2) or (3,3,3,3,3,3,2) by adding an edge in parallel.
However, any simple graph with degree sequence (4,3,3,3,3,2,2) can be ob-
tained from a simple graph with degree sequence (4,3,3,3,2,1), (3,3,3,3,3,1),
(3,3,3,3,2,2) or (4,3,3,2,2,2) by adding a vertex of degree 2. All the simple
graphs with degree sequence (4,3,3,3,2,1) or (3,3,3,3,3,1) contain a triangle
(see Appendix 1 [4]). So, after adding a vertex of degree 2 and then a
parallel edge between two vertices of degree 2, we get a triangle and a 2-
circuit which are edge-disjoint. Now, from the graphs with degree sequence
(3,3,3,3,2,2) or (4,3,3,2,2,2), after adding a vertex of degree 2, there will
be 2 vertices of degree 2 which are not adjacent. So, by putting an edge
between these two vertices, we obtain a simple graph. Hence G cannot arise

from the graph with degree sequence (4,3,3,3,3,2,2).

Now, by [9], the non-isomorphic multi graphs obtained from a simple
graph with degree sequence (3,3,3,3,3,3,2) by adding an edge in parallel to
an edge having an end vertex of degree 2, are the graphs given in Figure
10. In graphs (%), (¢%), (iii) and (v) of Figure 10, there is a triangle and a
2-circuit which are edge disjoint. Hence these graphs are discarded. If G is
isomorphic to the graph (iv) of Figure 10, then both z and y are contained
in a 2-circuit or a 5-circuit, which leads to a contradiction.

DD @ D

(3) (i) (iv)
Figure 10

Subcase (ii). Suppose that M is not graphic.

Then M has a minor isomorphic to M*(K33) or M*(Ks). We claim that
M does not have M*(K3 3) as a minor. Suppose that M*(K3 3) is a minor
of M. Since r(M*(Ks3)) = 4, M/{p,q} = M*(K3z3) for some elements
p,q of M. Hence M*\ {p,q} = M(K33) = M;,/{z,y}. This implies that
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M* =2 M(G), where G is the graph of Figure 11 or Figure 12. Since no two

elements of M are in series, M* is simple.

Suppose that G is the graph of Figure 11. Then M has two triangles
corresponding to two 3-cocircuits containing edges incident at v; or vp. By
Lemma 2.7, each triangle in M must contain exactly one of = and y. This
shows that v; is an end vertex of either z or y for i = 1,2 in G. We may as-

sume that z is incident at v;. Then y is not incident at v;. If y is incident at

Y4 P Vs U1 Y4 q M

Vs g w3 v2

(%]
Figure 11 Figure 12

vg, then z,y belong a 4-cocircuit of M* and hence they belong to a 4-
circuit of M which becomes a 2-circuit in M. ,/{z,y}, a contradiction.
Hence x = vjv; and y is not adjacent to z in G. Therefore both z and
y belong to a 5-cocircuit of M* and hence belong to a 5-circuit of M, a
contradiction. Suppose that G is the graph of Figure 12. Then any two
elements of M* belong to a 3-circuit or a 4-circuit. Hence any two elements
in M belong to a 3-cocircuit or a 4-cocircuit. This means that M, ,/{z,y}
contains a coloop or a 2-cocircuit, a contradiction. Hence M has M*(K;)
as a minor. Since r(M) = 6 and |E(M)| = 11, there exists an element ¢
of M such that M \ ¢ = M*(Kj). This implies that M*/q = M(Ks). So
M* = M(G), where G is a simple graph with 6 vertices, 11 edges and has
degree sequence (4,4,4,4,4,2) or (4,4,4,4,,3,3). It follows from Appendix 1
of [4] that there is only one graph with degree sequence (4,4,4,4,4,2) and
G is isomorphic to this graph, which is the graph G7 of Figure 6. Also,
from Appendix 1 of [4], there are two non-isomorphic graphs with degree
sequence (4,4,4,4,,3,3). As there is no choice for z,y for these two graphs,
they are not isomorphic to G. a

Lemma 3.4. Let M be a cographic matroid. Then M is minimal with
respect to the matroid M(Ks) if and only if M is isomorphic to one of the
five matroids M(Gsg), M(Gy), M(G1), M*(G11) and M*(G12), where
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Gg, Gg, G190, Gh11 and G2 are the graphs of Figure 13.

4 5
gt JNo 8/~
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Figure 13

Proof. One can check that M(Gs)z,y/{z} = M(Ks), M(Go)z,y/{z,y} =
M(Ks), M(G10)z,y/{z,y} = M(Ks), M*(G11)z,y/{z,y} = M(Ks),
M*(G12)z,y/{z,y} = M(Ks). Therefore M(Gs), M(Gs), M(G10), M*(G11)
and M*(Gi2) are minimal with respect to the matroid M(K5).

Conversely, suppose that M is a minimal matroid with respect to the
matroid M (Ks) and let z and y be the elements of M such that M, /{z} =
M(Ks) or Mz, /{z,y} = M(Ks).

Case (i). M;,/{z} = M(Ks).

Then |E(M)| = 11 and 7(M) = 4. First we show that M is graphic. Sup-
pose that M is not graphic. Then it has M*(Ks) or M*(K33) as a mi-
nor. Since r(M*(Ks)) = 6, it cannot be minor of M. Hence M*(K33)
is a minor of M. Since M is cographic, M* = M(G) for some graph
G. As r(M*) = 11 — (M) = 7, G has 8 vertices and 11 edges. As
|E(M*(K3,3))| = 9, r(M*(Ksz3)) =4, M\ {p,q} = M"(K33) for some
elements p, g of M. Therefore M*/{p,q} = M(K33). By Lemma 2.8(3), M
is Eulerian. This implies that G is bipartite. Further, the degree sequence
of G is (3,3,3,3,3,3,2,2). Since no two elements in M are in series, G is sim-
ple. Such a simple bipartite graph can be obtained from a simple bipartite
graphs with degree sequence (3,3,3,3,3,2,1) or (3,3,3,3,2,2,2) by adding a
vertex of degree 2. It follows from Appendix 1 of [4] that two graphs of
Figure 14 are the only non-isomorphic simple bipartite graphs with degree
sequence (3,3,3,3,3,3,2,2). Clearly, in graph (i) of Figure 14, there does
not exist a pair p,q of edges such that M(G)/{p,q} = M(K33). If G is
isomorphic to the graph (ii) of Figure 14, then p, g, are in parallel class
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in M which contradicts to Lemma 2.7. This shows that M is graphic.

‘ q
(%) (%)

Figure 14

Suppose that M = M(G) for some graph G. Since r(M) = 4 and
|E(M)| = 11, G has 5 vertices and 11 edges. Obviously, G is non-simple
and planar. Further, the minimum degree of G is at least 3. By Lemma
2.8(i), G is Eulerian. Hence the degree sequence of G is (6,4,4,4,4). By
Lemma 2.7, G has at most two pairs of parallel edges. Thus, G is isomor-
phic to the graph Gj of Figure 13.
Case (ii). M;,/{z,y} = M(K5).
Then r(M) =5, r(M,,) = 6 and | E(M)| = 12. Suppose that M is graphic.
Let G be a graph corresponding to M. Then G is a planar graph with 6
vertices and 12 edges. Further, z and y together do not belong to a 3-circuit
or a 4-circuit. By Lemma 2.7, each odd cocircuit must contain exactly one
of z and y. Suppose that G is simple. Then by Appendix 1 of [4], the two
graphs of Figure 15 are the only simple planar graphs of 6 vertices and 12
edges. As any two edges of the graph (i) of Figure 15 belong to a 3-circuit
or a 4-circuit, G is not isomorphic to it. In graph (z) of Figure 15, except the
pair z,y shown in the figure, any two edges are in a 3-circuit or a 4-circuit.
If G is isomorphic to this graph, then by Lemma 2.8 (i1), M(G),,,/{z,y}

is not Eulerian, a contradiction.

T

=

@) Figure 15 (t)

Suppose that G is not simple. Then by Lemma 2.7(v), G has exactly
one pair of parallel edges. The graph G can be obtained from a simple
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graph on 6 vertices and 11 edges by adding an edge in parallel. There are 5
non-isomorphic simple planar graphs each with 6 vertices and 11 edges (see
Appendix 1 [4]) as shown in Figure 16. It follows from Lemma 2.7(3), (v)
and Lemma 2.8(77) that G cannot be obtained from graphs (4¢z), (iv) and
(v) of Figure 16. Suppose that G is obtained from graph (%) or (iZ). Then
G is isomorphic to one of the four graphs of Figure 17. By Lemma 2.7
(¢1), (i) and (vii), G is not isomorphic to graphs () and (i%) of Figure
17. Hence G is isomorphic to graphs (i%i) and (iv) of Figure 17 which are
the graphs Gg¢ and Gq of Figure 13.

oD

(@) (i) (id) (i) (v)
Figure 16
(%) () (44) (1)
Figure 17

Suppose that M is not graphic. Then M has M*(K33) or M*(Ks) as a
minor. Since r(M*(Kjs)) = 6 and (M) = 5, M connot have M*(K;) as a
minor. So M has M*(K3 3) as a minor. Asr(M) = 5and |[E(M)| = 12, M\
{p,q}/{r} & M*(Ka33) for some elements p,q,7 € E(M). This implies that
M*\ {r}/{p,q} = M(K33). Thus, M* = M(G), where G is a graph with
8 vertices and 12 edges. Since M has no 2-cocircuit, no two edges of G are
parallel, and therefore G is simple. By Lemma 2.7(v), M has at most one
2-circuit and hence G has at most one vertex of degree 2. Therefore the
degree sequence of G is either (4,3,3,3,3,3,3,2) or (3,3,3,3,3,3,3,3). We have
M(G) = M*\ {r}/{p,q} = M(K33) for some edges p,q,r € E(G) and
M, ,/{z,y} & M(Ks). As K33 does not contain a j-circuit for j = 1,2,3,
we have conditions
(?) G does not have two or more edge disjoint triangles, or
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(i) G does not have one triangle and one vertex of degree two contained in
a 4-circuit,

The simple graph with degree sequence (4,3,3,3,3,3,3,2) can be obtained
from a simple graph with degree sequence (3,3,3,3,3,3,2) or (4,3,3,3,3,2,2)
by adding a vertex of degree 2. Further, a simple graph with degree se-
quence (3,3,3,3,3,3,2) can be obtained from a simple graph with degree
sequence (3,3,3,3,2,2) by adding a vertex of degree 2. There are 4 non-
isomorphic simple graphs with degree sequence (3,3,3,3,2,2) (see Appendix
1 {4]). Any simple graph of degree sequence (4,3,3,3,3,3,3,2) obtained from
these 4 graphs of degree sequence (3,3,3,3,2,2) having no disjoint triangles
is isomorphic to one of the three graphs of Figure 18.

) (5) (i)
Figure 18

Suppose that a simple graph of degree sequence (4,3,3,3,3,3,3,2) is ob-
tained from a simple graph with degree sequence (4,3,3,3,3,2,2) by adding
a vertex of degree 2. Any simple graph with degree sequence (4,3,3,3,3,2,2)
can be obtained from a simple graph with degree sequence (4,3,3,3,2,1),
(4,3,3,2,2,2), (3,3,3,3,2,2) or (3,3,3,3,3,1) by adding a vertex of degree 2. By
Appendix 1 of [4], there are 4 non-isomorphic simple graphs with degree se-
quence (4,3,3,3,2,1). Any simple graph of degree sequence (4,3,3,3,3,3,3,2)
obtained from these 4 graphs contains disjoint triangles. Hence we dis-
card all of them. Now, there are 4 non-isomorphic simple graphs with
degree sequence (4,3,3,2,2,2) (see Appendix 1 [4]). The 2 graphs (i) and
(#%) of Figure 19 are the only non-isomorphic simple graphs of degree se-
quence (4,3,3,3,3,3,3,2) obtained from these four graphs of degree sequence
(4,3,3,2,2,2) which satisfy conditions (i) and (ii) above. It follows from Ap-
pendix 1 of [4] that there are 4 non-isomorphic simple graphs with degree
sequence (3,3,3,3,2,2). Except the graph (iii) of Figure 19, all simple graphs
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of degree sequence (4,3,3,3,3,3,3,2) obtained from the graphs of degree se-
quence (3,3,3,3,2,2) do not satisfy conditions (z) or (i¢) above. Similarly,
there is only one simple graph of degree sequence (3,3,3,3,3,1) (see Appen-
dix 1 [4]). Any simple graph of degree sequence (4,3,3,3,3,3,3,2) obtained

from this graph contains disjoint triangles.

Thus, the six graphs of Figure 18 and Figure 19 are the only non-
isomorphic simple graphs of degree sequence (4,3,3,3,3,3,3,2) which satisfy

conditions () and (iZ) above.

¢

(32) (#4)
Figure 19

(

By Lemma 2.7 and Lemma 2.9, every 3-circuit and 5-circuit of G must
contain exactly one of z and y. Further, no 4-circuit, 3-cocircuit, and 4-
cocircuit of G contains both z and y. There is no pair of edges z,y in graphs
(i3), (iii) of Figure 18 and graphs (i) and (ii) of Figure 19 which satisfy
these conditions. Hence we discard these graphs. Thus, G is isomorphic
to the graph (i) of Figure 18 or the graph (#ii) of Figure 19 which are the
graphs G;; and G2 of Figure 13.

Now, a simple graph with degree sequence (3,3,3,3,3,3,3,3) is obtained
from a simple graph having degree sequence (3,3,3,3,2,2,2) by adding a
vertex of degree 3 adjacent to vertices of degree 2. A simple graph with
degree sequence (3,3,3,3,2,2,2) is obtained from a simple graph with de-
gree sequence (3,3,3,3,1,1), (3,3,3,2,2,1) or (3,3,2,2,2,2) by adding two more
vertices adjacent to vertices of degrees 2 and 1. By the same proce-
dure as explained above, we construct simple graphs with degree sequence
(3,3,3,3,3,3,3,3). Figure 20 shows all non-isomorphic simple graphs each of
with degree sequence (3,3,3,3,3,3,3,3) which satisfy conditions (¢) and (i%)

on G.
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(2) )
Figure 20
By Lemma 2.7, G cannot have a 3-, 5-, or 7-circuit disjoint from z and y.
Also, both x and y cannot belong to the same 4-cocircuit of G. Since no pair
of edges (z,y) in graphs (¢) and (i) of Figure 20 satisfy these conditions,
G is not isomorphic to any of these graphs. ]
Now, using Lemma 3.1, 3.2, 3.3, and 3.4, we prove our main Theorem.

Proof of Theorem 1.2. Let M be a cographic matroid. On combin-
ing Corollary 2.6 and Lemma 3.1, 3.2, 3.3 and 3.4, it follows that M., is
cographic for every pair {z,y} of elements of M if and only if M has no
minor isomorphic to any of the matroids M(G;), i = 1,2,3,4,5,6,8,9, 10
and M*(G;), j = 7,11,12, where the graphs G; and G; are shown in the
statement of the Lemma 3.1, 3.2, 3.3 and 3.4. However, we have M(G3) &
M(G2)\{2} = M(Ga)/{5}\{6} & M(G5)/{BN\{7} = M(Ge)/{3, 4\ {9} =
M(Gs) \ {y’ 6, 7} = M(GQ)/{I} \ {21 5, 9} = M(GIO)/{y} \ {31 7, 9}' Also
M*(Gs) = M(G7)/{21\{3,y} = M(G11)/{7,4,6}\{8} = M(G12)/{8,5,3}\
{10}. Therefore M(G3) is a minor of M*(G;), M*(Gy1;) and M*(Gs).
Thus, M, is cographic if and only if M has no minor isomorphic to one of
the matroids M(G;) and M(G3). But the graphs G, and G are precisely
the graphs given in the statement of the theorem. 0
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