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Abstract

An important invariant of an interconnection network is its sur-
face area, the number of nodes at distance ¢ from a node. We derive
explicit formulas, via two different approaches: direct counting and
generating function, for the surface areas of the alternating group
graph and the split-star graph, two Cayley graphs that have been
proposed to interconnect processors in a parallel computer.

Introduction

Given a node u in a graph G, a question one may ask is how many nodes
are at distance i from u for i € [1, D(G)], where D(G) is the diameter of
G. In other words, we want to calculate the quantity of |{v|dg(u,v) = ¢}|.
This quantity is referred to, in the literature, as the “Whitney numbers
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of the second kind of the poset” {19, or the “surface area of a node with
radius 7" {12]. We choose to use the latter term in this paper. This quantity
is especially well defined for node symmetric graphs, which constitute the
majority of the interconnection networks with mesh being one of the few
exceptions, as the surface area for any node in a node symmetric graph G
equals that for any other node in G. We can thus discuss the surface area
of such a graph G.

The surface area of a graph can find several applications in network per-
formance evaluation, e.g., in computing various bounds for the problem of
k-neighborhood broadcasting [8] in interconnection networks, and in deriv-
ing the “transmission of a graph” [23], defined as the sum of all the distances
in a graph G, an indicator for the speed of an average communication. This
notion of transmission is also suggested to achieve the generalized Moore
bound, an important concept in extremal graph theory.

As a result, this surface area problem has been studied for a variety of
graphs, including the star graph (19, 18, 20, 12, 29, 26, 27, 4], the mesh [24],
the (n, k)-star graph [28, 5], the k-ary n-cube [25], the rotator graph [6], and
the WK-Recursive and swapped network [13].

The surface areas for some of the node symmetric networks are straight-
forward. For example, the surface area of the n-dimensional binary hyper-
cube network, with radius i € [0,n], is (7). It is also relatively easy to see
the surface area of the complete transition network [11, 17] of n dimensions
with radius ¢ is s(n,n —4),i € [0,n — 1], where s(—, —) refers to the sign-
less Stirling numbers of the first kind [21, §4.3]; while that of the adjacent
transposition network, i.e., the bubble-sort graph|16), is I, ;,i € [2,n), the
number of permutations with n symbols and ¢ inversions (An explicit for-
mula for I, ; is given in [2, Eq. 2.5].). Unfortunately, such “easy solutions”
are the exception rather than the norm. The solution of this surface area
problem is often quite involved and challenging as reported in the afore-
mentioned research.

Another issue is that, out of all the results obtained so far, only few of
them are given in the ideal closed-form, namely, a finite sum of standard
and basic operations, including that of power and factorials, and the rest
in the form of either a recurrence or an explicit form, where the number of
summands is bounded by a polynomial of the involved parameter(s). For
example, for the star graph, several different but equivalent recurrences
are given in, e.g.,[19, 20, 29]); and several different explicit formulas in
(19, 26, 12, 4, 27].

Besides satisfying an academic curiosity via its derivation, an explicit
formula often leads to a simpler and more space efficient solution as com-
pared with a recurrence since the maximum size of the problem that we can
solve via a recurrence is bounded from above by the size of the system stack,
while an explicit formula only needs a constant amount of space. Moreover,
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an explicit formula can sometimes be further simplified to a closed-form ex-
pression (For numerous examples of such simplification, readers are referred
to 10, §5].).

In this paper, we provide explicit formulas of the surface areas for the
natural and rich classes of the alternating group graph [14] and the split-
star graph [3] via two different approaches, namely, the direct counting and
generating functions.

The rest of this paper proceeds as follows: Sections 2 is on the direct
counting approach. Specifically, we discuss a general process of deriving the
surface areas of a node symmetric graph of permutation groups in Section
2.1. We then present, in Section 2.2, some of the basic notions related to the
alternating group graph and an explicit formula of its surface area using
the general scheme as discussed in Section 2.1. The generating function
treatment of the problem for the alternating group graph is given in Section
3. Section 4 discusses the surface area of the split-star and concludes this

paper.

2 An approach based on direct counting

2.1 A general process of deriving surface areas

Let (n) denote {1,2,...,n}, n > 2, S, the collection of all the n! permu-
tations of (n), and let e denote the identity permutation 12---n. It is well
known that every permutation v(# e) of S, can be expressed as a product
of disjoint cycles of length at least 2; which is unique except for the order
of these cycles. We refer to such a factorization as the cycle structure of v,
denoted as C(v).

Moreover, any cycle, C = (c1,¢2,...,¢4),q = 2, can be factorized into
a product of g — 1 transpositions: (c1,¢q) © (¢1,69-1) © -+ © (€1, ¢2), which
puts every symbol ¢; € C, j € [1, g], to its original position in e. It turns out
that the above product is a shortest one of this nature [7, Lemma 1]. Here
compositions are taken from right to left as usual. Hence, the concatenation
of all such shortest products, associated with the cycle structure of v, leads

to a minimum transition string that changes v to e.
For example, let v be 647251893, then C(v) = (16)(24)(3789) and the
following gives a shortest transition that changes v to e.

647251803 19 147256893 %% 127456803 &7

128456793 % 120456783 & 123456789.

On the other hand, the specific structure of G, a graph defined on S,
often places certain restriction on the nature of the transpositions permitted
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in G, which clearly defines a shortest path between v and e in G. If we
can somehow derive dg(C(v),e), a distance formula in terms of the cycle
structure of v in G, we can readily derive an explicit formula for the surface
area of G of radius ¢, by enumerating all the cycle structures that satisfy
the property that dg(C(v),e) = i.

In other words, for n > 2,1 € [1, D(G)), let Bg(n, ¢) stand for the surface
area of G with radius ¢, then

Bg(n,i) = |{v|v € G and dg(C(v),e) = i}|.

As both the alternating group graph and the split-star graph have n!/2
vertices, any naive approach would have to examine each vertex, thus re-
quiring (n!) steps to find the surface area. This is clearly not acceptable.
The ideal solution is to have a closed-form formula for Bg(n,:). However,
empirical study suggests that it is unlikely to have a closed-form expression
for Bg(n,1) for these two graphs. So the next best hope is to obtain an
explicit formula. In this paper, we also include (signless) Stirling numbers
of the first kind as a basic operation due to the known explicit formula
for these numbers. By following such a direct counting approach, we have
derived the respective surface areas of the star graph [27] and the (n, k)-star
graph [28]. We now derive the surface area of the alternating group graph.

2.2 The surface area of the alternating group graph

For i € [3,n], let g = (1,2,i), g7 = (1,,2) and let Q = {g}|i € 3,n]}u
{g7|¢ € [3,n]}, AGn(V, E), the alternating group graph of dimension n,
AG,, for short, is defined in[14] as follows: V is the collection of all the
even permutations in Sn; and for all u,v € V| (u,v) € E iff for some
gEQUu=gou.

When compared with a star graph [1] of the same dimension, an alter-
nating graph has half the nodes, but nearly twice the degree. It is both
node and edge symmetric. There is also a Hamiltonian path between any
pair of nodes in such a graph, and all the cycles with length between 3 and
n!/2 can be embedded in AG, with dilation 1.

Let v € AGy, an even permutation in Sy, and let b(v) and g(v) stand
for the number of symbols and that of the cycles in C(v), respectively. The
following distance formula, i.e., the length of the shortest path between v
and e in AG,, in terms of C(v), is given in {14, Lemma 3.2] (A trivial cycle
is a cycle of size one):
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[ 1. b(v) + g(v) —3 if 1 and 2 belong to the same
cycle in C(v);
2. b(v) +g(v) —4 if 1 and 2 belong to distinct
non-trivial cycles in C(v);
daca (C(v).€) = 4 3. b(v) + g(v) —2 if exactly one symbol of 1 and 2 M
belongs to a trivial cycle in C(v);
4. b(v) + g(v) if both 1 and 2 belong to trivial
cycles in C(v).

.

For example, 1342 = (234), i.e., it contains three symbols, one cycle,
and its cycle structure falls into Case 3. Thus, d((234),e) =3+1-2=2.
Indeed, one shortest path between 1342 and e consists of two edges:

1234 13 4132 157 1349,
In the rest of this paper, we use b and g in place of b(v) and g(v), when the
context is clear.

The diameter of the alternating group graph is given as |3 — 3| by
maximizing the above distance formula.

We first characterize all the even permutations in S,,. Let v € S,, and
let C; = (d1,da, ..., dg(;)) be a cycle in C(v), the following product is clearly
a shortest factorization of C; :

C; = (d1,dg()) 0+ - 0 (d1,d3) 0 (d1,d2).

Since all the cycles in C(v) are disjoint, we have the following formula
for the length of a shortest representation of a permutation v € S, as a
product of transpositions:

> @) -1 =b-g.
i€(1,9(v)]

Since the parity of the length of such transposition products is an in-
variant [22, Corollary 3.7, we have the following result:

Lemma 2.1 Letv € S,, and let b and g be the number of symbols and that
of the cycles in C(v), its cycle structure, then v is even iff b — g is even.

Let Bag(n,i) be the number of nodes at distance ¢ from e in AGy,.
Since the four cases as given in Eq. 1 are mutually exclusive, we have that

Bag(n,i) = Bi(n,i) + Bz(n,1) + Bs(n, 1) + Ba(n,?),

- where, Bi(n,t) stands for the number of cycle structures falling into Case k,
k €[1,4), of Eq. 1.
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For the case when both 1 and 2 belong to the same cycle in C(v), there
are exactly (3-7) ways of choosing b symbols out of n symbols to construct
g9(= 1) cycles. Obv1ously, b<n.

Let Cy be the cycle where both 1 and 2 occur, containing c¢;(> 2)
symbols. To construct C;, we only need to select ¢; — 2 symbols out of b—2
symbols, in (b ~2) ways, thus ¢; < b. Furthermore, with any such a chosen
set of ¢; symbols, we can construct (¢; — 1)! distinct cycles.

We now have b—c; symbols left to construct the remaining g — 1 cycles,
each containing at least two symbols.

This number of factorizing n symbols into i cycles, each of which con-
tains at least two symbols, denoted as d(n,%), is discussed in[21, §4.4].
Based on Eq. 4.18 [21): forn > 2i > 1,

dni) = 3 (- y(3)stn =i -3

j=0

Recall that s(—,—) stands for the signless Stirling numbers of the first
kind, which can be represented by an explicit formula themselves[12, Egs. 5
and 6)].

Since v # e, g 2 1. On the other hand, since each cycle contains at least
two symbols, 2g < b. As, for this case,b=i—-9g+3,29<i—g+3, ie,
39 < i+ 3. Thus, g < |42], by[10, Eq. 3.7(d)]. Finally, 2<¢; <b=
i-g+3.

To summarize,

Bini) = ¥ - glseven](z 3)( b-2 )(cl—l)'d(b—cl,g—l)

b,g.cy

th—zg-fs[zlsodd]( g+l)(i;g_-;1)

g=1 c1=2

(aa-1d(i—-g—ec1+3,9g-1).
where [i is odd], in Iverson’s convention (15, §2.1], is given as follows:

.. 1, ifiis odd,
[¢ 1s odd] = { 0, otherwise;

since b — g is even iff 7 — 2g + 3 is even iff 7 is odd.
Similar argument can be used to compute By (n, i), B3(n, ), and By(n, 1),
leading to the following theorem:

Theorem 2.1

Bag(n,i) = Bi(n,i) + Bz(n,i) + Ba(n,i) + Bs(n,1), (2)
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where

'."%"J i—-g+3 i— g + 1
By(n,i) = g qz_zlzw(’dd]<z—g+1)< o 2 )
(s -1)d(t—g—c1+3,9-1);

Ba(n,i) = ij t—zg-fz,—gi—cx i even]( g+2 ) ( ic—lg_-|i2 )

g=1 ¢1=2 cp=2

( et ) (1= Dl — 1)'d(E — g +4 -1 = ez, 9 = 2);

L2
B3(n,i) = 2 Z [¢is e'ven]( g+1 )d(i—g+2,g);

g=1

and
L%) 9
By(n,i) Z [¢ is even] ( n- ) d(i—g,9).

We remeark that Theorem 2.1 is an explicit formula with O(n?) sum-
mands where Stirling numbers are treated as basic operations. Moreover,

the bottleneck is in computing Ba(n, ).

3 A generating function approach

3.1 A general framework

Generating functions are a powerful tool to deal with sequences of numbers
and play an important role in enumerating combinatorial structures. In
this section, we apply the generating function approach to the problem of
finding an explicit formula for the surface area of the alternating group
graph.

From Eq. 1, we see that the distance from node v to the identity
in an alternating group graph depends only on the cycle structure of v
and the positions of the symbols 1 and 2. The number of permutations
with a specific cycle structure can be captured in the following exponential
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generating function: e*+='/2+2°/3+ where the term z'/i means that we
allow an i-cycle, a cycle of length i. (See 3.3.5 in [9] or 3.5 in [30].) This
generating function can be used to count the number of permutations with
respect to a specific cycle structure. A popular example is the number of
derangements on n symbols. Since a derangement is a permutation with
no fixed points, the exponential generating function is e¥ /2+=°/3+ that
is, dropping z in the exponent. We will adjust this generating function to
obtain the following propositions that will be crucial in our calculation.

Proposition 3.1 Let Dy, , be the coefficient of z™y" /m! in

ez—;y’ ((1 _lzy)y +( +a:y)y) )

Then Dy, , is the number of even permutations of length m (that is, on m
symbols) with the property that the number of non-trivial cycles in the cycle
structure plus the number of symbols in the non-trivial cycles is r.

Let Fy, » be the coefficient of z™y" /m! in

s (e -0+ ).

Then Fy,  is the number of odd permutations of length m with the property
that the number of non-trivial cycles in the cycle structure plus the number
of symbols in the non-trivial cycles is r.

Proof: Let z mark a symbol, y mark a symbol in a non-trivial cycle, z
mark a non-trivial cycle and w mark an even cycle in the cycle structure of
a permutation. Then the generating function (exponential in z, ordinary
in ¥, z and w, it is ordinary in y as the labelling part has been taken care
of by the exponential marker z) is

f(z,y,z,w) = e=tawy’e (24272 3+ 2wy'at /4.
We will only prove the first claim as the proof for the second one is

similar.
Note that

z + zwy?az? /2 + 24323 /3 + 2wtz A+ =
z 1 zw 1 zw 1

2 1
m—xyz+§lnl—xy—-2'ln1+:cy+Tln_1—:cy+?lnl+zy'

Since we are only interested in even permutations, we want even numbers
of even cycles in the cycle structure. So we only want even powers of w.
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This can be accomplished by computing (f(z,y, z,w) + f(z,v, z,—w))/2.
Once we have this, the marker w no longer serves its purpose and we set

w = 1. Hence we have g(z,y,z) = (f(z,v,2,1)+ f(z,v, 2, —1))/2. Now the

coefficient of %y”zq of g(z,y, z) is the number of permutations of length
m whose cycle structure has exactly p symbols in g non-trivial cycles. Note
that if we replace z by y, the coefficient of fn—";y’ in g(z,y, ) is the number
of permutations of length m with the desired property.

Proposition 3.2 Let h(}(z,y) be a function obtained by first differentiat-
ing
eZT—TYz 1 2
(e o)

with respect to y, then multiplying by y, and then letting z = y, and let
11l be the coefficient of z™y" /m! in hN(z,y). Then

Eyt],r = Z PCm.p.0s

ptg=r

where Crm p,q s the number of even permutations of length m whose cycle
structure has ezxactly p symbols in g non-trivial cycles.

Proof: From the proof of Proposition 3.1, we have

et -2z

9(z,9,2) = —5 <(1 _lzy)z + (1+xy)‘) :

So the coefficient of %y”zq in g(z,y,2) is the number of permutations
of length m whose cycle structure has exactly p symbols in g non-trivial
cycles. Differentiating with respect to ¥y maps y? to py?~! and multiplying
by y maps the result to py?. Now the result follows as in the proof of
Proposition 3.1 o

Proposition 3.3 Let hi?%(z,y) be a function obtained by first differentiat-

ing
e*—TYz 1 .
2 ((l—wy)‘ +(1+a:y))

with respect to y, then multiplying by y?, then differentiating with respect
to y, and then letting z = y, and let E,[,E]r be the coefficient of z™y" /m! in
hi?(z,y). Then

ER, = Z p(p+1)Crmpyg-
pra=r
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Proof: Similar to the proof of Proposition 3.2.

We will use Propositions 3.1, 3.2, and 3.3 to compute Bag(n,i). We
start with By(n, ) as it is the easiest. We want the number of even permu-
tations, v, of length 7, where each of symbols 1 and 2 belongs to a trivial
cycle in C(v) and that b(v) + g(v) = ¢. Since each of 1 and 2 belongs to a
trivial cycle, we may exclude them. Therefore we are really looking for an
even v’ on n — 2 symbols with b(v') + g(v') = i. Hence By(n,i) = Dy—g .

We now consider B3(n, ). We want the number of even permutations, v,
of length n, where exactly one of symbols 1 and 2 belongs to a trivial cycle
in C(v) and that b(v) + g(v) = ¢ + 2. We may assume that 1 belongs to a
trivial cycle whereas 2 belongs to a non-trivial cycle in C(v) and multiply the
resulting answer by 2. We first count the number of such even permutations
with 1 in a trivial cycle and with no restrictions on the symbol 2. Then we
are really looking for an even v’ on n— 1 symbols with b(v') + g(v') = i+ 2.
Hence this number is Dp,_; ;12. But we have overcounted those with each
of 1 and 2 belonging to a trivial cycle and there are D,_z ;42 such even
permutations. Hence B3(n,i) = 2Dp—_1 42 — 2Dp_2;42.

We now consider Ba(n, ). We want the number of even permutations of
length n, v, where the symbols 1 and 2 belong to distinct non-trivial cycle
in C(v) and that b(v) + g(v) = i + 4. We consider 4 cases.

1. The symbol 1 belongs to a cycle of length 2 and the symbol 2 belongs
to a cycle of length 2. There are (n — 2)(n — 3) ways to choose a
companion for 1 and a companion for 2. We note that there is only
one way to form a cycle with two symbols. Now we delete these
four symbols and we are really looking for v’ on n — 4 symbols with
(b(v') +4) + (9(v') +2) = i + 4. We note that the +2 comes from
the two non-trivial cycles containing the symbol 1 and the symbol
2 respectively, and the +4 comes from the 4 symbols that we need
to count. Since we have preselected two 2-cycles, v’ is even. So the
answer is (n — 2)(n — 3)Dp—4,i—2.

2. The symbol 1 belongs to a cycle of length at least 8 and the symbol
2 belongs to a cycle of length 2. There are (n — 2) ways to choose
such a companion for 2. Now we delete the symbols 1, 2 and the
companion for 2. Again there is only one way to form a cycle with
two symbols. So we are really looking for v’ on n — 3 symbols with
(b(v") +3) + (9(v') + 1) = i + 4. The question is should v’ be even or
odd which we will answer later. We note that the +1 comes from the
non-trivial cycle containing the symbol 2, and the +3 comes from the
3 symbols (1,2 and the companion of 2) that we need to count. So
one may think that the answer is (n — 2)D,_3 ;. But this is incorrect
as we need to insert 1 into one of the g(v’) non-trivial cycles, and
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there are b(v’) ways to do it. So the number we want is (n— 2)E,[,11 3,0

This of course assumes that v’ is even. We will now Justlfy this. Since
we have preselected a 2-cycle, one may think that v’ should be odd.

However, inserting the symbol 1 into the non-trivial cycles will change
the parity of v'. Hence v’ should be even.

3. The symbol 1 belongs to a cycle of length 2 and the symbol 2 belongs
to a cycle of length at least 3. The number we want is (n — 2)E,[1113,i.

4. The symbols 1 and 2 belong to different cycles of length at least 3. We
withhold the symbols 1 and 2. So we look for v’ on 7 —2 symbols with
(b(v')+2) + (g(v') +0) = i+4. We note that the +2 comes from the 2
symbols (the symbols 1 and 2) that we need to count. The question is
whether v’ should be even or odd. For each v/, we need to insert the
symbols 1 and 2 into two distinct non-trivial cycles. We will first relax
the “distinct” requirement. Then there are b(v’) ways to insert 1 and
then there are b(v') + 1 ways to insert 2. Two such insertions preserve
the parity of the permutation. So v’ should be even and the required
number is E) n—2i+2- But we have relaxed the “distinct” requirement.
So we have to subtract those configurations with 1 and 2 inserted in
the same non-trivial cycle in the cycle structure of v'. To accomplish
this, we restart the process. We want 1 and 2 to be in a cycle of length
at least 4. (Note that we indeed want 4 and not 3.) We withhold the
symbols 1 and 2. For each 2 < j £ n—2, we consider the case in which
we have j symbols together with 1 and 2 to form a cycle of length
j+2. There are (j+1)! ways to rearrange these j+2 symbols. Now we
look for v/ on n—j—2 symbols with (b(v')+j+2)+ (g(v')+1) =i+4.
We note that the +1 comes from the non-trivial cycle containing the
symbols 1 and 2, and the +(j +2) comes from the j + 2 symbols that
we need to count. If j + 2 is even, then v’ should be odd. If j +2 is
odd, then v’ should be even. So this number is Dp_j_2;—;41 if j +2
is odd, and F,_j_2i_j41 if j + 2 is even. So the number we want is

1?—2 2 ?:22 (n-—2) (G+IDFn—j—2,i—j+1 Where DFy_;—2 d—jtl =
n—j—2,i-j+1 if j i8 odd and DFyn_j_2i ji1 = Fn_j_2,i—j41 if j is
even.

So the desired number is (n—2)(n—3 )Dn_q,i_2+2(n—2)E,[,113 it E,[flz 2=

E?__zz n—2) G+ DFp_jo2,i—jt1-

We ﬁnally consider Bj(n,i). We want the number of even permutations
v of length n, where the symbols 1 and 2 belong to the same cycle in C(v)
and that b(v) + g(v) = 7 + 3. We withhold the symbols 1 and 2. For each
0 < j € n— 2, we consider the case in which we have j symbols together

with 1 and 2 to form a cycle of length j + 2. There are (5 + 1)! ways to
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rearrange these j + 2 symbols. Now we look for v' on n — j ~ 2 symbols
with (b(v') + 7 + 2) + (g(v') + 1) = ¢ + 3. We note that the +1 comes
from the non-trivial cycle containing the symbols 1 and 2, and the +(j +2)
comes from the j + 2 symbols that we need to count. Again v’ is either
even or odd depending on the parity of § + 2. This number is D,,_,-_g,,-_j
if j +2is odd and Fy,_j_3;—; if j + 2 is even. So the number we want is

Yisa ("G + 1)!DFn-j-2,i-j Where DFn_j_2-;j is Da-j-a4-; if j is
odd and Fn_,_z i—j if j is even.

Finally, we have

Bag(n,i) = Da-2i+2Da-1,i+2 = 2Dn-2,42 + (n — 2)(n — 8) Dn_4,i-2(3)
+2(n — 2)E.l1113 it Er[12-1-2.i+2 ()
n—-2
n— ,
- Z ( i )(J + 1) Dnj-2,i-j+1
j=2,0dd J
n—2 n— 2
- Z: i )(] + D)IFpoj-2,i-j+1 (5)
j=2,even
-2),.
( i (4 +1)!Dn-j-2,-5
3=0, odd
n-2
( )(J + D Fnej-2,i-5. (6)
,even ] .

3.2 Computing D, ,, F, r, E[l]r and E'r[r21]r

We start with the well-known generating function for the signless Stirling
numbers of the first kind s(p, k),

L = > s(p,k)wkg. (7)

(1= P2k>0

We set w = y and ¢ = zy to obtain

= L bt (®)

A—zy) L=,

and setting w = —y and t = —zy, we get

Qo) = g = 3 O ©
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We remark that (1 + t)* is the generating function for the signed Stirling
numbers of the first kind. So Eq. (9) is related to it.

Throughout this discussion, we use the standard notation of [z%y?) f(z, y)
to denote the coefficient of z%y® in f(z,y). Now

z—zy? 1
Dy = m![:z:"'y"](.Z 5 <(1 ~ 29 +(1+ :cy)y) .

By using Eqgs. 8 and 9, we have

Z 1+ (-1)"**)s(p, k)y”*

p2k>0

D, » = m!fz™ y'] o

Therefore

m! +k 2
Dy = 5 z (1—+%Di)p—-)-8(p k)(z m—pyr—p-k]ez-xy )

p2k20
But ]
J i
- ez(l—yz) = sz' ( )( l)l 2

j20t=0 I’

So
+k
Dmr = m! 1+ (=15 k m-—p _1)(r=p—k)/2_
U P D B el (AP (S

An almost identical derivation gives

_m (1= (=1)"*% 1 m—p _q\(r=p—k)/2
Fnr =3 Z P! ) oy ((r—p-k)/2)( b ‘

p2k20

We remark that we now have an explicit formula correspondmg to (3,5,6)
in the expression of Bag(n,i). Since Dp, contains O(m ) summands,
(3) contains O(n?) summands and (5,6) contain O(n®) summands. The
remaining work is to find an explicit formula for the expression in (4) and

to bound the number of summands. To obtain El,l.],r, we compute

zyle® 1

ey ) . ,
2 ((1—$y)”+1+(1+xy) 1_(l—nc:cj)“_(l-'-xy) )

To obtain E,l,z,],r, we compute

r(z,y) =

zy2e®— Y’ ( zy? + Ty
(

MA(z,y) = 5 T—zg)+

5 + (zy® — zy)(1 + zy)¥ 2
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2 — 2zy?
2
(f—!—/—-:zT; + (zy? - 2)(1 + a:y)”) .

We can find explicit formulas for ,lrl,],r and E,l?,],r by obtaining formal
power series expansion of ?T:}%W and (1 + zy)¥~? where 8 = 0,1. This
can be done as follows: For positive integer 8, we use Eq. 7 with w = y+ 3
and ¢ = zy for zpypep and w = —~y+ S and t = —zy in Eq. 7 for
(1 + zy)¥~P together with the binomial theorem to expand (y + BA)¥ in
the first case and (y — B)* in the second case. The resulting formulas for
E,[,p_,- and E,I,%],r will have O(m3) summands which implies the total number
of summands in the explicit formula for Bag(n, 1) is O(n®). However, an
alternate way will result in O(m?) summands in the explicit formulas for
E,[-,l.],,- and E,[;‘:],, which we now present. Notice that this will not reduce
the overall complexity as the bottleneck of O(n3) summands is in (5,6).
Differentiating Eq. 8 and Eq. 9 with respect to x gives

+ (2 = 2zy%)(1 + zy)¥ !

+

2 p—1 p—1
y +kT +k_T
—— = s(p, k)py® = s(p, k)y? (10)
(1 -zt pz%o P! 15:»zzkzo (o —1)!
and
p—1
V(l+ay)'™t = Y (-1 Eps(p, kPt E—
p2k20 P
= Z (=1)P+*s(p, k)yP* zp-lr (11)
1<p2k20 (p -1
Therefore,
1 zpP-1
—— S ,k y”+k—2—— 12
Ty =, 2 ey (12
and
p—1
A+ay)t= Y (~1)Ptes(p, k)yPt-z (13)
1<p2k>0 (p—1)

Now we are ready.

2 a:—xy'2 1
El, = milamy 22 ( ( +(1 +wy)”")

2 1—zy)ytl
" xy2ez—:cy2 1
-mlfz"yT]—=— ((1 Tt (1+ :cy)v) .
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The second term is

iy () =
: y 3 \{-zy)¥ Y

( )!(m 1)|[Im—1yr—2]e _2”’ ((1 _lzy)v + (1 +$y)ll)

= mDm—l,r—2-
For the first term, we use Eq. 12 and Eq. 13 to get
ﬂ!. Z (1 + (_1)!:+k) s(p, k)[wm—pyr—p—klez—zyz.
1crskz0 @)

So all that remains is to extract the coefficient of e*~*¥" which is given
earlier. Hence

w o ™ A+ (=1PHe) M=P ) _q)r-p-k)/2
B =T e @m0 i o )Y

—mDm—_1,r-2.

‘We now consider E,[,r‘;]r by getting the power series expansion for hl?(z, y).
Differentiating Eq. 12 and Eq. 13 with respect to z gives

_yo+d Y
(1 —ay)sr? 1s;§c>o e B)p — 1)o* -1
-2
= e "
25?22"203 P (»-2)! (14)
and
Wy-DA+a)’? = Y (LPRsp, k- Pt S
1<p2k20 (p—1)!
B
2<p>k20 (p—2)!

Recall that E2). = m![z™y7]hl?(z,y) where
2 z—-zy°
(2] _ zy’e zy(y +1) _ y=2
Wz, y) i (R + ouly - 11+ 2v)
2 — 2zy?
(1 - )y+1

2
+ ﬁy—ﬁ + (zy? - 2)(1 + :z:y)”) .

+ (2= 2zy%)(1 + zy)¥ !
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The first term is

=m (1 + (=1)PT%) 1 m-p o \(rpk)/2
T 2 acohn0 (p-2)! 8(P,k)(m_p)! ((r-—p_ k)/2)( 1)irr

by using Eq. 14 and Eq. 15. For the second term, we use Eq. 12 and Eq.
13 to get

_"i". m=1, r—2] c—zy2 y—1
22[::: ¥y e = xy)y+l+(1+xy)

ml o o 4 oo 1 _
—25 (e 2y e il ((—1_——x—y)7f7+(1+$y)” 1).

Hence, the second term is

S da 1
ZZ; () e

]

<p2k20
-p (r—-p—-k)/2
(<r k)2 )‘ D
k-

0+( —1)+h) 1
1_223 ) L gy
i
(r-

k>0
For the third term, we have

p)!

1 (r-p=k~2)/2
2)/2 ) (-1)

! 1
'm?[:z:rn—2y"‘4]e‘°-==!l2 (-———(1 . +(1+ zy)y)
m! 1

_2?[mm—1yr—2]e:—:y (m + (1 + xy)y) .

Hence, the third term is
T3 =m(m —1)Dm-2,r-4 = 2mDpm—1 r-2.
So
ER¥ =T +To+Ts.

3.3 Summary of the generating function approach

We have established an explicit formula for Bag(n,i). A closer look reveals
that some of the sums are of similar nature. Here we record our result in
terms of these similar sums for easy reference.
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Theorem 3.1 Let

1+ (—1)P+k) 1
U*+(m,r,0,6,6) = (A +(-D77) k) ——————
( D I e
m=pte ) _p)r-p-k-8)/2
(r—p—k-29)/2 ’
and
- (1= (=1)"*%) 1 m-—p (r—p-FK)/2
v \T) = , k -1 P ,
(m,7) pzzk:zo | s(p )(m—p)! (r—p—k)/2 (-1)
Then :
Dm,r = 22:‘1’4-(777', 7',0,0, 0),
!
Fry= %\Il'(m, r),
| |
Bl = %\Il"‘(m, r,1,0,0) — %\I’"'(m ~1,7-2,0,0,0),
and

|
B, = Tut(m,n,2,0,0)+mi(¥*(m,n1,0,0) - ¥¥(m,n,1,-1,2)

!
+1n2—'(‘1'+(m -2,7-4,0,0,0) — 2¥*(m - 1,7 — 2,0,0,0)).

Moreover,
Bag(n,i) = Dn-2:+2Dn-1,42 = 2Dn 2,42+ (n = 2)(n — 3)Dn—g,i-2
+2(n - 2)E,[,113,.- + E1[1,212,i+2
=2 (n-2
- Z ( ; )(j + I Dp_j_2i-j+1

j=2,0dd

n—-2 n—2
- > ( : )(j + D251
j=2,even N J
n-2

n—2\,,
+ > ( i )(.7+1)!Dn—j—2,i—j

j=0,0dd

n—2
n—2\,.
+ Y ( ; )(J+1)!F,,_,-_2,,._,..

j=0,even
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Remarks:

4

1. We count the number of terms in the explicit formula given in The-

orem 3.1. The formulas for ¥+ and ¥~ are double sum with the
number of summands bounded by O(m?). So the numbers of sum-
mands in Dy, Fr,, ES, and E&, are O(m?). Therefore, the
number of terms in Bag(n,i) is O(n®).

. The bottleneck for the O(n®) analysis is the four sums of Dy, ,’s

and Fp,.'s, that is, those corresponding to (5) and (6). Since the
z—zy?

generating function of Dy, r is £ ( ﬁ—+cyW -1+ wy)y) , it seems
unlikely that we can further reduce the double sum, or at least we are
unable to. This is not to say that the four sums will not reduce to
something simpler but rather we cannot deduce any possible reduction
through cancellation. For example, these four sums can be combined
so that if there are O(m) expressions for Dy, , — Dy, -1 and For-
Fon r-1, then the overall complexity will reduce to O(n?) summands.

. The bottleneck is from the four sums and they come directly from the

combinatorial setup, not the generating function. Given the seem-
ingly difficult task of breaking the bottleneck from the generating
function side, one may want to pursue a completely different combi-
natorial setup before applying the generating function technique. We
did follow this approach to obtain two additional explicit formulas but
the technique involves stepping beyond the realm of alternating group
graphs and requires additional efforts. Although the new formulas are
more aesthetically pleasing as they look simpler, the complexity did
not improve since they are O(n®) and O(n?) respectively. So we will
not present that approach here.

Conclusion

We have discussed two different approaches to deriving explicit formulas for
the important parameter of surface area for the alternating group graph.
The surface area of the split-star will be derived indirectly later (see below).
The formulas from both Theorem 2.1 and Theorem 3.1 have been verified
with computer programs for small values of n against results obtained by
the breadth first search. For example, the surface area sequence for AG;
is (1,6,18,27,8). Additional data are given in Table 1. But perhaps more
importantly, these two techniques are general enough that they have the
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potential to be used for obtaining such formulas for other networks, espe-
cially the many symmetric ones described in [16] that are based on Cayley
graphs of permutation groups.

Table 1: Sample data for Bag(n,t)

2

n0[1]2] 3] 4 5 6 7 [ 809
[Z][1[0]J0] 0] 0 0 0 0 [0]o0O
B3[[1]2]0] 0] 0 0 [ 0 0 0O
41461 0 0 0 0 00
5[[1]6]18] 27 [ 8 0 0 0 [0]0
6 1] 8 [36]102] 152 | 58 | 3 0 0O
7 | 11060 250] 680 [1010] 450 | 50 | 0 [ O
81

12 { 90 { 495 | 1,960 | 5,190 | 7,749 | 4,008 | 640 | 15

One may wonder why two vastly different methods are given considering
that one approach (the direct counting) is much simpler than the other. The
first method has the beauty of simplicity without the need of any advanced
mathematical techniques. Moreover, the explicit formula obtained is much
simpler than the second one. Although the generating function method
requires more space, all the work in Sections 3.2 and 3.3 are just algebra.
The crucial part is the encoding in Section 3.1, which is just as short as the
first method. Nevertheless, the resulting formula is still more complicated
than the one obtained by the first method. So why is the second method
presented? Part of the answer is that the number of summands is actually
smaller by a factor of n. Furthermore, researchers in this area would like to
know the surface area for popular classes of interconnection networks. Up
to this point, only the solutions to the (n, k)-star graph [28] (which include
the simpler star graph) are published. We believe both methods deserve to
be presented as it is unclear which method (or even both) can be extended
to find surface areas of other large classes of interconnection networks.
Moreover, the generating function approach has a higher potential to be
used to carry out asymptotic analysis for the results so obtained.

We now briefly discuss the derivation of the surface area of another
potential interconnection topology, the split-star, as suggested in [3]. For
n > 2, a split-star graph, denoted as S2, is defined as follows: for any
u,v € Sy, (u,v) € E iff for some i,j € [1,n], v can be obtained from u
by applying a transposition (1,2); or by applying e 3-rotation, (1,2,k),k €
[3,n). We can follow either one of the two approaches discussed to derive
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an explicit formula for the surface area of the split-star graph. On the
other hand, it turns out that a split-star graph is closely related to the
alternating group graph in the sense that a split-star graph consists of two
copies of alternating group graphs: one consisting of even permutations in
Sn, another (an isomorphic copy of AG,) consisting of odd permutations,
together with a perfect matching between each even permutation and an
odd one. Therefore, to route an even permutation to e in S2, we simply stay
in the alternating graph AG, consisting of even permutations; otherwise,
we first follow an edge corresponding to the (1,2) transposition to go to an
even permutation in the aforementioned AG, and then continue the routing
within this latter graph. Hence, for all n > 2 and k € [1, D(S?(n))], where
D(S%(n)) is given as | 3] — 2 in (3], we have

Bsa (n,i) = Bag(n,?) + Bag(n,i —1).
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