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Abstract

Let S1, Hy be simple connected graphs. Let Sy, be a generalized
star on 7l + 1 vertices with central vertex v. Let H, be a graph of
order m, with a specified vertex v of degree m—1. Let G = G[r,{, Hy)
be the graph obtained by taking one copy of Sy and one copy of
H,, and then attaching the vertex v of H, to each vertex of Sy,
except the central vertex of Sr,i. In this paper, we shall give the ad-
jacency (Laplacian, signless Laplacian) spectrum of G in terms of
their corresponding spectrum of Sy; and H, and further extended
to the adjacency(Laplacian, signless Laplacian) characteristic poly-
nomial of the general graphs.
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Introduction

Throughout this article, all graphs considered are simple and undi-
rected. Let G = (V(G), E(G)) be a graph with vertex set V(G) = {v1,v2, ...,
vp} and edge set E(G) = {e1,€3,...,em}. The adjacency matrix of G, de-
noted by A(G), is an n x n symmetric matrix such that a;; = 1 if vertices v;
and v; are adjacent and 0 otherwise. Let d; = dg(v:) be the degree of vertex
v; in G and D(G) = diag(dy,dz,...,dn) be the diagonal matrix of vertex
degrees. The Laplacian matrix and the signless Laplacian matrix of G are
defined as L(G) = D(G) — A(G) and Q(G) = D(G) + A(G), respectively.
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Given an n x n matrix M, denoted by
F(M; X)) =det(M, - M)

the characteristic polynomial of M, where I, is the identity matrix of size n.
The adjacency eigenvalues of G, defined as 0(G) = (A1(G), A2(G), ..., A\n(G)),
where A1(G) € A2(G) £ ... € Ap(G) are called the A-spectrum of G. Simi-
larly, the eigenvalue of L(G) and Q(G), denoted by I(G) = (u1(G), u2(G), ...,
pn(G)) and S(G) = (q1(G),42(G), ..., gn(G)), respectively, are called the
L— spectrum and Q— spectrum of G accordingly. It is well known that
graph spectrum store a lot of structural information about a graph; see [3]
and the references therein.

For certain families of graphs it is possible to identify a graph by look-
ing at the spectrum. More generally, this is not possible. In some cases,
the spectrum of a relatively larger graph can be described in terms of the
spectrum of some smaller (and simpler) graphs using some simple graph
operations. There are results that discuss the spectrum of graphs obtained
by means of some operations on graphs like the disjoint union, the join
of graphs, deleting or inserting an edge, the complement, etc. See the sur-
vey article by Mohar [4]. In [6], the following new graph operations are
introduced.

A star on n vertices, denoted by S,, is a tree in which there is a vertex
of degree n — 1. Let T be a tree. For a vertex w in T, a branch at w of T'
is a component of T' — w. If w is an identified vertex of T of degree r, we
identify the neighbors of w in T as w;, w, ..., w,, and we denote the branch
of T resulting from the deletion of w and containing w; by 7,1 = 1,2, ..., r.

Definition 1 A generalized star is a tree T having at most one vertex
of degree greater than 2. Suppose that we have a vertex w of degree r of
a generalized star T', whose neighbors w;, ws, ..., w, are pendent vertices of
their branches T3, 75, ..., T., respectively, and each of these branches is a
path. Then we refer to w as a central vertex of T. If T; is a path of order
pist = 1,2,...,7, then the generalized star T is denoted by S[pi, p2, vy Pr)-
If py = ps = ... = pr =, then we denote the generalized star by S, ;.

Example 1: The trees S(3,2,3,3] and S5 3 in Figure 1 are generalized
stars, with central vertices w and @, respectively.
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5[3,2,3,3] 55,3
Figure 1. Generalized stars.

Definition 2 Let F,H be connected graphs. v be a specified vertex
of H, and uy, s, ..., ux € F. Let the graph G = G[F,u3,ua,...,ux, Hy] be
the graph obtained by taking one copy of F and k copies of H,, and then
attaching the ith copy of H, to the vertex u;,i = 1,2,...,k, at the vertex v
of H,(identify u; with the vertex v of the ith copy). Then the copies of the
graph H, that are attached to the vertices u;,¢ = 1,2, ..., k are referred to
as pockets, and we describe G as a graph with k pockets.

Example 2: Let F, H, of order 4,5, respectively, in Figure 2. The vertex
v of H, has degree 4. The G = G|F, u, H,| is shown in Figure 2.

In [6], the Laplacian spectrum of graphs with pockets were computed
in terms of the Laplacian spectrum of F and H,. Let G = G|r, !, H,] be the
graph obtained by taking one copy of S;; and one copy of Hy, and then
attaching the vertex v of H,, to each vertex of S,,;, except the central vertex
of Sy1. In this paper, except 2! eigenvalues, we describe all other eigenvalues
G|r,l, H,} using the adjacency(Laplacian, signless Laplacian) spectrum of
Sr1 and H,, respectively. In a more general case, we describe the character-
istic(Laplacian, signless Laplacian) polynomial of G[F,u1,us, ..., ux, Hy].

F H, G[F,ul, Hv]
Figure 2. Graph F and H,, G[F,u;, H,).

2 Preliminaries

In this section, we determine the characteristic polynomials of graphs
with the help of the coronal of a matrix. The M — coronal Tps()) of an
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n X n matrix M is defined [2,7) to be the sum of the entries of the matrix
(M, — M)™!, that is
Trm(A) = 1,T(M, — M)~ '1,,.
where 1,, denotes the column vector of dimension n with all the entries
equal one.

It is well known (2, Proposition2] that, From Cui and Tian, [2], if M is
an n X n matrix with each row sum equal to a constant ¢, then

n

TN =y— (1)

In particular, since for any graph G with n vertices, each row sum of
L(G) is equal to 0, we haveTy(c)(A) = %

Tyey(N) = ; (2)

The Kronecker product of matrices A = (a;;) and B, denoted by AQ B,
is defined to be the partition matrix (a;;B). See [1]. In cases where each
multiplication makes sense, we have

MM ® MaMy = (M ® M3)(M; ® My)

This implies that for nonsingular matrix M and N, (M ® N)~! =
M~'® N~1, Recall also that for square matrices M and N of order k and
s, respectively. det(M ® N) = (detM)*(detN)®.

If G, = (W1, E1) and G; = (V,, E) are two graphs on disjoint sets of
m and n vertices, respectively, their union is the graph G; U Gy, and their
join Gy V Gy is the graph obtained from the union G; U G by adding all
edges between a vertex of G; and a vertex of Ga.

Lemma 1 ([5]) Let G; and G, be graphs on disjoint sets of m,n
vertices, respectively, and G = G1 V G. Let I(G1) = (u1, p2, ..., 4m) and
I(G2) = (71,72 -++¥a)- Then

I(G) = (0,n + p2, ey B + M + Y2, o0y M+ Yo, m + 7).

2.1 The adjacency spectrum of graphs with pockets

In this section, we describe the adjacency characteristic polynomial
of G{r,l, Hy} and all other adjacency eigenvalues of G(r,{, H,] except 2{ +1
eigenvalues using the adjacency spectrum of S,; and H,, respectively.
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Proposition 1 Let G = G|r,{, H,] and T4(z)(A) be the A-coronal of
H. Then the characteristic polynomial of A(G) is

Faer ) = Unan O det0lrss = Taan @) (o 7, ) = AlSwa)

Proof Since v is of degree m — 1, H, can be written as H, = {v} VH,
where H is the graph obtained from H,,, after deleting the vertex v and the
edges incident to it, the adjacency characteristic polynomial of G is given

by

( or
Mry1 — A(Sri) -17_,® ( I )
fa(d) = det of \T
\ -1p-10® ( I ) AIrl(m—l) - AH)® I,
OT
/\Irl-l-l - A(Sr,l) —1£_1 ® ( Irl )

= det OT T

| im0 (f, ) G- A8
= det((Mm-1 — A(H)) ® I) x detB,

where
T 0T
B = )\IrH-l - A(Sr,l) - (lm—l ® < I ! ))
of \T
(Mot = AE) @ L) ma® (7, )

is the Schur complement of ((AMm—1 — A(H))® I1). Thus, the result follows
from

det(Aln_y — A(H) ® I1) = (det(Alm—1 — A(H)))™

and

il

T
detB = det(Mris1 = A(Srt) = (171 ® ( I ))
r

-\NT
(Mmoy “A(H))®Irl)-1(1m—1®< ?: ) )

= det(Mpq1 — A(Sr1) - (1,TT,L_,(AIm_1 —A(H)) 1-1)

o . )1a( 7, ) )

0 0
= det(/\I‘rl+1 —TA(H)(A)< 0 I ) —A(Sr,l)).
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Hence, the adjacency characteristic polynomial of G is

rl 0 OT
Fao ) = Gaan W) det\ass = Taan® (o 7, ) = ASra)

The proof is completed. O

Proposition 1 enables us to compute the adjacency spectrum except
2l + 1 eigenvalues when H,, is a complete graph K,,.

Theorem 2 Let G = G|r,l, Kn]. Suppose that a(Sr1) = (91,92, -y Tri1)-
Then

(i) —1 € o(G) with multiplicity (m — 2)rl,

(i) The eigenvalues

(m-2+m)+(m—-m)*+4n
2
with multiplicity (r — 1) for each eigenvalue 7;(i = 2,7 +2,...,(1 — 1)r + 2)
of S(r,1).

Proof Since Kr,_; is (m — 2)-regular with m — 1 vertices, (1) implies
that

m—1
Ta(km-1)(A) = e E—

The only pole of Ty(xk,._,)(A) is A = m — 2. By Proposition 1, —1 is an
eigenvalue of G with multiplicity of (m — 2)rl. The remaining eigenvalues
are obtained by solving A— x2=1os = 7, for each i = 2,742, ..., ((~1)r+2,
and this yields the eigenvalue in (ii).

Note we obtain mri — 2! eigenvalues of G. The other (mrl+1) — (mrl -

2l) = 2l 4 1 eigenvalues of G must come from the only pole A = m — 2 of
Ta(ay(A). This completes the proof of theorem. O

Next, we consider a more general case. Let G = G[F,uy, ug, ..., ug, Hy)
be the graph as defined in Definition 2. Then we describe the characteristic
polynomial of G using the characteristic polynomial of F and H,,, when v
has degree m — 1.

Theorem 3 Let G = G[F,uy,uy, ..., uk, Hy]. Then
k I, oT
fa)(A) = (fauny (V) detON L = Tay N | g 5 ) — A(F)).

Proof With a proper labeling of vertices, the adjacency matrix of G
can be written as
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I®1T _
A(G)=( Ay (B ))
( k®lm-1 0) I, @ A(H)

The result refines the arguments used to prove Proposition 1. O

2.2 The Laplacian spectrum of graphs with pockets

In this section, we give the Laplacian characteristic polynomial
of Gr,l,H,] and all other Laplacian eigenvalues of G[r,!, H,] except 2!
eigenvalues using the Laplacian spectrum of S,; and H,, respectively.

Proposition 4 Let G = Gir,l, H,] and Ty(g)()) be the L-coronal of
H. Then the characteristic polynomial of L(G) is

fue) = (fL(H)({I\, —1))"det(Alri41 — ((m — 1) + Ty (A = 1))

0
o 1, )~ L)

Proof Since v is of degree m — 1, H, can be written as H,, = {v} VH,
where H is the graph obtained from H,, after deleting the vertex v and
the edges incident to it, the Laplacian matrix of G can be written as

0 07 T oT
180+ (8 minm ) 97, )

L(G) = T ’
nao( ], ) EE oL

0 (m—-1)1I, Iy

0 oT oT
let C = , D= yand F = (L(H) + In—1) ® Iy.
Thus the Laplacian characteristic polynomial of G is given by

_ Mg - L(Set)-C 1L_,®D
fue) = det| | DT Mrim-1) = F
— get| M- L(S)-Cc 17 _,D
1,19 DT (A=1In_y - L(H))® In

= det((\ = 1)Im—1 — L(H)) ® I;) x detB,

where

0 of T o7
B = AI,-H.] - L(Sr,l) - 0 (m — l)Irl (lm—l ® Irl )
T

(A = Vs —L(H))®Irt)”‘(1m-l®( %x ))T
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is the Schur complement of (A —1)Im—1 — L(H)) ® I1). The result follows
from
det((A — 1)1 — L(H)) ® Is1) = (det(A — 1) Iy — L(H)))™
and

0 oT
detB = det((Myi41 — L(Sp1) — ( 0 (m—1)ly ) -17_®

(5, )l = (EE) + It} @ 1)

o \T
(lm—1® ( Irl ) )
0 oT

= det((/\Ir1+1 - L(Sr,l) - ( 0 (m _ l)Irl ) - (117;1—1®

( ‘}z ))((,\— im_y —L(H))®-’rl)"(1m-1®( ?T, )T)

o of
= det(Al41 — L(Sr) — (m —1) ( 0 I ) = Treny(X = 1)

0 0
(6 &)
0 0
= det(Mr41 — ((m = 1) + T (A — 1)) ( 0 I, )) = L(Sr1))-
Hence, the Laplacian characteristic polynomial of G is

fuey) = (foan(d — 1) det(Mrgr — (m = 1) + Ty (A — 1))
0 oT
( 0 Irl ) _L(Sr,l))'

The proof is completed. O

The following Theorem 5, first addressed in [6], is an immediate con-
sequence of Proposition 4. We remark that here our method is straight-
forward and different from that of Theorem 4 in [6]

Theorem § Let G = G[r,l, H,). Suppose that I(H,) = (0 = 71,72, ...,
Ym) and I(Sy1) = (0 = 63,82, ..., 6r141). Then

(i) 0 € I(G) with multiplicity 1,

(ii) v; € I(G) with multiplicity r! for every eigenvalue j = 2,...,m — 1
and

(iii) The eigenvalues

6;+m:’c\/(6,~+m)2-—46,-
2

with multiplicity (r — 1) for each eigenvalue §;(i = 2,7+ 2,...,(I — 1)r + 2)
of L(S;1).
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Proof Since H, = HV {v}, using Lemma 1, we have the eigenvalues of
H are —1,73 — 1, ...,m — 1. By Proposition 4, v;(j = 2,...,m — 1) are the
eigenvalues of G repeated r! times, 0 is an eigenvalue of G with multiplicity
1. Since the sum of all entries on every row of Laplacian matrix is zero, (2)
implies that

m-—1
Teay(A=1)=5—7

The only pole of Tyg)(A —1) is A = 1, so the remaining eigenvalues
of G are obtained by solving A — (m — 1) — =L = §; for each i = 2,r +
2,...,( = 1)r + 2 and this yields the eigenvalues in (iii).

Note we obtain mrl + 1 — 2! eigenvalues of G. The other (mrl 4+ 1) —
(mrl +1 — 21) = 2l eigenvalues of G must come from the only pole A =1
of T (zry(A — 1). This completes the proof of theorem. O

Next, we consider a more general case where G = G[F, u;, ug, ..., uk, Hy).
Then we describe the Laplacian characteristic polynomial of G using the
Laplacian characteristic polynomial of F' and H,, when v has degree m —1.

Theorem 6 Let G = G[F,u;,us,...,uk, H,]. Suppose that I(H,) =
(0= v1,72, .-, Ym) and I(F) = (0 = o, @, ..., 0n k), then
fueyN) = (fran —1))rdet(M — ((m — 1) + Tray(A - 1))

Lot )—L(F)).

Proof With a proper labeling of vertices, the Laplacian matrix of G

can be written as
(m—-1)I, 0T ) L®1T )
0

L(G)=(L(F)+( 0 0
( ILi®1 0 ) I. @ (L(H) + I;n-1)

The result refines the arguments used to prove Theorem 5. The proof
is completed. O

2.3 The signless Laplacian spectrum of graphs with
pockets
In this section, we give the signless Laplacian characteristic polyno-
mial of G[r,!, H,] and all other signless Laplacian eigenvalues of G[r, !, Hy]
except 2! + 1 eigenvalues using the signless Laplacian spectrum of S, and
H,, respectively.
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Proposition 7 Let G = G[r,!, Hy] and Tg#)(A) be the Q-coronal of
H. Then the characteristic polynomial of Q(G) is

fayN) = (foun(A —1))det(Mpr — ((m = 1) + Toy (A = 1))
0 of
( 0 Iy ) _Q(STJ))'

Proof Since v is of degree m — 1, H, can be written as H, = {v} Vv H,
where H is the graph obtained from H,, after deleting the vertex v and the
edges incident to it. Thus the signless laplacian matrix of G can be written
as

0G) = Q(Sr,l)+( g O(;n ETI)Z{rz ) 1£_1®( ?: )
e f, ) @E+Inel

The rest of the proof is similar to that of Proposition 4 and hence we
omit details. O

Theorem 8 Let G = G[r, 1, K,]. Suppose that S(Sy1) = (1,72, .. Brt41)-
Then

(i) 2(m — 2) with multiplicity r! and

(ii) The eigenvalues

Bm + 7 — 4) £ /(m — m)® + dms
2

with multiplicity (r — 1) for each eigenvalue 7;(j = 2,7+ 2,...,(I — 1)r +2)
of Q(Sr1).

Proof Since K- is (m — 2)-regular with m — 1 vertices, by (1) we
have

m-—1
Tauen A =1 = 37 —5m 3

The only pole of Ty (M) is A = 14-2(m—2). By Proposition 7, 2(m—2)
is an eigenvalue of G' with multiplicity of ri. The remaining eigenvalues are
obtained by solving A — (m — 1) — ,\—_1-mT_(;T§5 = 1); for each i = 2,r +
2,..,(1 = 1)r + 2, and this yields the eigenvalue in (ii).

Note we obtain mr! — 2l eigenvalues of G. The other (mrl+1) — (mrl —
2l) = 2141 eigenvalues of G must come from the only pole A = 1+2(m —~2)
of Tqoay(n)- This completes the proof of theorem. O
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Next, we describe the signless Laplacian characteristic polynomial of G
using the signless Laplacian characteristic polynomial of F' and H,, when
v has degree m — 1.

Theorem 9 Let G = G[F,uy,uz, ..., ux, Hy). Then
faey®) = (o - 1))*det(AL, — ((m — 1) + T (A — 1))

W% )-emn.

Proof With a proper labeling of vertices, the signless Laplacian matrix
of G can be written as

1), oT Io1T
um=(mm+0m0“ 0) (ko ) )
(Lol 0) I ® (QUH) + In_y)

The result refines the arguments used to prove the Proposition 7. O
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