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Abstract

Let G be a connected graph of order n with Laplacian eigenvalues
i1 > p2 > -+ > pn = 0. The Laplacian-energy-like invariant (LEL
for short) of G is defined as LEL = Y°7")' \/fii. In this paper, we
consider the asymptotic behavior of the LEL of iterated line graphs
of regular graphs. In addition, the formula and asymptotic formula
of the LEL of the square (resp. hexagonal, triangular) lattices with
toroidal boundary condition are obtained.
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1 Introduction

Let G be a simple graph with vertex set V(G) = {v;,va,...,vn}. Denote
by A(G) and D(G) the adjacency matrix and the diagonal matrix with
the vertex degrees of G on the diagonal, respectively. The matrix L(G) =
D(G) — A(G) is called the Laplacian matrix of G, for details on Laplacian
matrix see [9]. Since A(G) and L(G) are real symmetric matrices, their
eigenvalues are real numbers. So we can assume that A\; > A2 > -+ 2 A\,
(resp., 1 = pa > --- > pn) are the adjacency (resp., Laplacian) eigenvalues
of G. We write \;(G) and p;(G) instead of A\; and p;, respectively, when
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more than one graph are under discussion. It is well-known that p, = 0
and the multiplicity of zero is equal to the number of connected components
of G, see [1].

The Laplacian-energy-like invariant of a graph G (LEL for short) de-
fined by

n—1
LEL(G)=)_ Vi (1)
i=1

was first introduced by J. Liu and B. Liu [8]. The motivation for introducing
LEL was in its analogy to the earlier studied graph energy [2, 4] and
Laplacian energy ({5]. In [14], it was shown that LEL describes well the
properties which are accounted by the majority of molecular descriptors:
motor octane number, entropy, molar volume, molar refraction, particularly
the acentric factor AF parameter, but also more difficult properties like
boiling point, melting point and partition coefficient LogP. In a set of
polycyclic aromatic hydrocarbons, LEL was proved [14] to be as good as
the Randié index and better than the Wiener index. For further results on
the LEL, the readers refer to the comprehensive survey [7).

The rest of this paper is organized as follows. In Section 2, we determine
the growth rate of the LEL of iterated line graphs of an r-regular graph
G. We prove that their growth rates are independent of the structure of
G and only dependent on r and the number of vertices of G. In Section 3,
we explore the asymptotic behavior of the LEL of a square lattice (resp.,
hexagonal lattice, triangular lattice) with toroidal boundary condition. We
show that the growth rate of the LEL of these toroidal lattices is only
dependent on the number of vertices of them.

2 The LEL of iterated line graphs of regular
graphs

In this section, we will explore the asymptotic behavior of LEL of iterated
line graphs of regular graphs.

The line graph £(G) of a graph G is the graph whose vertex set is in
one-to-one correspondence with the set of edges of G where two vertices
of £(G) are adjacent if and only if the corresponding edges in G have a
vertex in common. If G is a graph and £(G) = £(G) is its line graph,
then £*(G),k = 2,3,..., defined recursively via L¥(G) = L(LF-1(G)),
are the iterated line graphs of G. It is both consistent and convenient
to set G = L%(G). Recently, several papers on iterated line graph have
been published [3, 8, 12, 15]. For example, Yan et al. [15] considered the
asymptotic behavior of the number of spanning trees and the Kirchhoff
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index of iterated line graphs of a regular graph G. An upper bound for
incidence energy of the iterated line graph of a regular graph G is obtained
in [3].

Let G be a regular graph of order ng and of degree ro. Then £*(G) is
regular for s = 1,2,...,k. Denote by n, and ry the order and degree of
L*(G), respectively. Then

ng = —l-rk_lnk_l and T, =2r¢-1-2, k=1,23,...

2
and so
k-1 k-1
n Mo ] 97 93+l 4 9 = 9Fp, —2k+1l L 9 2
k—'27H7‘3—2kH( To — +2), 71x=2"r0 + (2)
=0 j=0
fork=1,2,...

Lemma 2.1 [8] Let G be an ro-regular graph of order ng. Then
LEL(L*(G)) = LEL(L*Y(G)) + /2rk—1(nk — nk—1), k=1,2,...

Lemma 2.2 [15] Let {yk}r>0, {fx}x>0, {gr}r>0 be three sequences satis-
fying the following recurrence relation:

Yk+1 = fryx + 9k, k2 0.
Then

k k
Yksr = (yo +Zhe) II 7

i=0 3=0

where hy, = S410k, k41 = ([Timo f)™ 0 =1.

Theorem 2.3 Let G be an r-regular graph of order n. Then

k

LEL(LHG)) ~ o _"2k+1 = g(zfr — 231 1 9) (k= o0). (3)

Hence the asymptotic value of the LEL of iterated line graphs of a regular
graph is independent of the structure of G.

Proof. Let 7, and ny be defined as (2). Then £*¥(G) is an r¢-regular graph
of order ni. By Lemma 2.1,

LEL(L¥(@G)) = LEL(L*"*(G)) + V/2rk—1(nk — nk—-1), k > 1.
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Set yx = LEL(L¥(G)), fx = 1, g& = V2re—1(nk — nk-1), k = 1,2,....
Then

Ye+1 = fx¥e + gk, yo = LEL(G),k > 0.

By Lemma 2.2, we obtain

k
LEL(L*(G)) = LEL(G) + Y_ V2ri(nis1 — ny). ()

=0

Let ¢; = m(ni.ﬂ -n;),1=1,2,...,k—1. Note that r; = 2‘r—2‘+1+2,
ng = & H;._'__(l, ;. Obviously, if 7 > 2, then rx — o0, (k = 00). Hence, for
alli=0,1,2,...,k— 1, we have

k t; [\/ 2r.n.+1 V2rin; ]
Tk 41 \/_'nk+1 \/7'_k'n-k+1
k\/ 2Tt'zTFI‘ n]-O T‘j _ k 21‘.'-27-1 H;;:-', Tj
k
"'kW _1._0 '\/——Erf HJ:O Tj
2k—1 /.21._1‘; 2k—t+l /2:;

= —

Hj=i+l 7j HJ—: J

- 0 (k= oo).

Lett = max ¢;. It is clear that
0<i<k—1

. kt
e Sy
. LEL(G)
A e (5)

im V2ri(ne41 — i) V3.

k—ro0 nk+1\/F;: =
By (4), we deduce that

VIR(niss =) _ LEL(LHY(G)) ]
Nk+1/Tk = Nkp1yTe ©)

LEL(L*Y(G)) < LEL(G) Z:_o V2ri(niy1 — ni)
Ner1y/Te nk+l\/_ Tt 14/Tk e
+ V2rk(neer — )
Nk+14/Tk
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It follows from (5), (6) and (7) that

. LEL(L*Y(G)) _
e A

which implies the result in the theorem. )

Corollary 2.4 Let G be an r-regular graph of order n. Then

k+1

im LEL(L*Y(G)) — V3

k=00 nk+1\/ﬁ
Remark 1 It should be pointed out that, in [11], the authors showed that
the energy (the energy of a graph G is defined as the sum absolute values of
eigenvalues of G) of iterated line graphs of a regular graph is independent of
graph structure. Here, Theorem 2.3, in a sense, supports the point of view
in [6] that the Laplacian-energy like invariant is an energy like invariant.

3 The LEL of some toroidal lattices

In this section, we consider the asymptotic behavior of the LEL of a square
lattice (resp., hexagonal lattice, triangular lattice) with toroidal boundary
condition.

The following lemma is well known.

Lemma 3.1 [1] The Laplacian eigenvalues of the Cartesian product Gy x
G: of graphs Gy and G, are equal to all the possible sums of eigenvalues of
the two factors:

pi(G1) + pi(G2), i=1,2,...,|V(G1) ], i=12,...,]V(G2)|. (8)

Let P,, and C,, be the path with m vertices and the cycle with n vertices,
respectively.

Theorem 3.2 Let P,, x P, be the square lattice with free boundary condi-
tion. Then

m—1n-1 T T
LEL(Pn x Pp) = Z Z \/4—2cosz—1E —2cos£r;
=0 j=0 m n
LEL(Pn, x P,) = 1.91618mn. 9)
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Proof. Recall that [10] the Laplacian spectrum of P,, is
2 —cos%r,i =0,1,...,m—1.

By applying Lemma 3.1 we can easily determine the Laplacian spectrum
of P x P, is

u,-j(PmxPn)=4—2cos%—2c05%,05i5m—1,0$j$n—1.

It follows from (1) that

m—1n-1

LEL(Ppy x P,) = Z Z\/4—2cos% —2cos%.

i=0 j=0

Hence,

T us
lim LEL(Pn x Pv) _ i/ / V4 —2cosz — 2cosyd,d,,.
o Jo

m,n—0o mn w2

Using the computer software Mathematica, we have

i LEL(Pm x Pn)

m,n—o00 mn

~ 1.91618.

Thus
LEL(P, x P,) =~ 1.91618mn.

Recall that the Laplacian spectrum of Cj, is
2—cosz‘;—7r, ji=0,1,...,n-1.
By Lemma 3.1, the Laplacian eigenvalues of the Cartesian product P, x C,
and Cp, X C,, are pij(Pn xCyp) = 4—2cos 2 —2cos 2'{1 and p;j (Cm xCyp) =
4—2cos% —20053-,?, 0<i<m-1,0<j<n-1, respectively. An
argument analogous to the proof of Theorem 3.2 establishes that

LEL(Pp, x Cy) = LEL(Cp x Cy) ~ 1.91618mn. (10)

Remark 2 It follows from (9) end (10) that P, x Py, P(n xCy, and C,,, xCh,
have the same asymptotic LEL(~ 1.91618mn), that is, the asymptotic LEL
of square lattices is independent on the three boundary conditions (i.e., the
Jfree, cylindrical and toroidal boundary conditions).
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Figure 1: (a) The hexagonal lattice H(m,n). (b) The triangular lattice
graph T(m, n).

The hexagonal lattice with toroidal boundary condition, denoted by
H(m,n), is illustrated in Figure 1(a), where (a1, 1), (a2,b2), -+, (@am+1,
bm+1); (01, dl)’ (cl,d2): (Cg, d3)1 (cn-l; d’n)? (Cn, bm+1) are edges in H(mrn)

Theorem 3.3 Let H(m,n) be the hezagonal lattice with toroidal boundary
condition. Then

LEL(H(m,n)) = zm:z": (\/.';4- V3 +2cosa + 2cos 8 + 2 cos(a + B)

=0 j=0

+1/3 - v/3+2cosa +2cos B + 2 cos(a +ﬂ)) )

24 2w .
where o = 2%, B = 25,

LEL(H(m,n)) ~ 3.28747(m + 1)(n + 1).

Proof. Denote by L{H(m,n)) the Laplacian matrix of H(m,n). It follows
from Eq. (6.2.2) [13] that L(H(m,n)) is similar to the block diagonal
matrix whose diagonal blocks are H(%,7),0 < i < m,0 < j < n, where

. 3 -1-¢i, -¢
H(i, j) = ( i -3 ntl m+1 )
( ) -1- §n+1 - mi’i—l 3
€ = cos 2% + isin Z%,i2 = —1. Thus the Laplacian eigenvalues of H(m,n)

are

2T 25w 2im 25w
/ D) am o AT
3+ 3+2cosn+1+2cos +1+ cos(n+1+ +1), (11)

0<i<m0<j<n
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It follows from (1) and (11) that

LEL(H(m,n)) = Zm:i<\/3+\/3+2cosa+2cosﬂ+2cos(a+ﬁ)

=0 j=0

+\/3— \/3+2cosoz+2cosﬁ+2cos(a+ﬂ)) ,

- T - _2jm
where o = a1 B= 3 +1 Hence

LEL(H(m,n))
mzﬂwmm

2r  p2m
= 4ﬂ,2 / (\/3+\/3+2cosa:+2cosy+2003(:c+y)

+\/3 — v/3+2cosz + 2cosy + 2 cos(z + y)) d.d,.

Similarly, using the computer software Mathematica, we easily get

LEL(H(m,n))

i m+Dntl) = 3.28747.

Therefore
LEL(H(m,n)) ~ 3.28747(m + 1)(n + 1).
]

Denote by T'r(m,n) the triangular lattice with toroidal boundary con-
dition. T'r(m, n) can be regarded as an m x n square lattice with toroidal
boundary condition with an additional diagonal edge added, in the same
way, to every square, see Figure 1(b) for an illustration, where (al,bl)
(a2=b2) (amv m) (cl)dl) (621 d2)) Ty (cn d‘n) (dI,CZ) (d2,63), )
(dn_l,cn), (dmcl) = (bm,a1); (b1 ,a2), (b2,a3),- -, (bm-1,am) are edges
in Tr(m,n).

Theorem 3.4 Let Tr(m,n) be the triangular lattice with toroidal boundary
condition. Then

LEL(Tr(m,n)) = "z:mz: (\/6 —2cosa — 2cos B — 2cos(a+ﬁ)) ,

i=0 j=0
where o = %2 g = U7,

LEL(Tr(m,n)) ~ 2.37047mn.
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Proof. Let L(Tr(m,n)) be the Laplacian matrix of T'r(m,n). By Eq.
(6.1.1) [13], the eigenvalues of L(Tr(m,n)) are

6 — 2os——2c 2'7 cos(-z—"—r+2i7-r-),
m n m

0<i<n-10<j < m-—1. Hence by the definition of LEL, we
immediately get

n—lm-1

LEL(Tr(m,n)) = Z Z (\/72cosa 2cos B — 2 cos(a +ﬂ))

i=0 j=0

where a = -2%’1, B = %-nﬁ The rest of the proof is then fully analogous to
the proof of Theorem 3.3. O

Remark 3 It follows from Remark 2, Theorem 3.3 and Theorem 3.4 that
the growth rate of the LEL of a square lattice (resp., hezagonal lattice,
triangular lattice) with toroidal boundary condition is only dependent on

the number of vertices of it.
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