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Abstract

We examine under what conditions there exists an association
scheme on the set of lines of a regular near hexagon with quads of
order (s, t2) through every two points at distance 2. All regular near
hexagons with such an association scheme are determined in the case
s > tz. Unfortunately, the case 2 > s is still open.
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1 Definitions and overview

A near polygon S = (P, L,]) is a partial linear space with the property
that every line L contains a unique point g nearest to any given point
p. Here distances d(:,-) are measured in the collinearity graph. This is
the graph whose vertices are the points of S, with two different vertices
adjacent whenever they are collinear in S. If d is the maximal distance
between two points, then the near polygon is called a near 2d-gon. A near
0-gon consists of one point, a near 2-gon is a line, and the class of the near
quadrangles coincides with the class of the generalized quadrangles (GQ’s,
[7])) which were introduced by Tits in [9]. Near polygons themselves were
introduced by Shult and Yanushka in [8] because of their relationship with
certain line systems in Euclidean spaces. Generalized 2d-gons ([10]) and
dual polar spaces ([8]) form two important classes of near polygons.

A near polygon S is said to have order (s,t) if every line is incident with
exactly s + 1 points and if every point is incident with exactly ¢ + 1 lines.
We will assume that S is a regular near hexagon with parameters (s,¢,%2),
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i.e. S has order (s,t) and every two points at distance 2 have exactly to +1
common neighbours. We will also assume that every two points at distance
2 are contained in a unique quad, i.e. a set @ of points satisfying

o if z,y € Q and d(x,y) = 1, then every point on the line through z
and y belongs to Q;

e if z,y € Q and d(z,y) = 2, then every common neighbour of z and y
belongs to Q;

o the points and lines of S which are completely contained in Q define
a GQ of order (s, t2), t2 > 1.

By Proposition 2.5 of [8], quads certainly exist if s > 2 and ¢ > 1. In the
sequel, we will use the same notation for the quad and its corresponding
generalized quadrangle. The unique quad through two points z and y at
distance 2 will be denoted by Q(z,y). Similarly, the unique quad through
two intersecting lines K and L will be denoted by Q(X, L). For a point
z and a line K of 8, let d(z, K) denote the minimum distance between z
and a point of K. For every point z (respectively every line K) and every
i €N, let I';(x) (respectively I';(K')) denote the set of all points at distance
i from x (respectively K). If z € T'j(K), then the unique quad through
z and K will be denoted by Q(z,K). For two lines K and L of S, let
d(K, L) denote the minimum of d(k,!) over (k,!) € K x L. By Lemma 1
of [5], there are two possibilities. Either there exist unique points k € K
and ! € L such that d(K, L) = d(k,!), or, for every k € K, there exists a
unique ! € L such that d(K, L) = d(k,[). In the latter case K and L are
called parallel (||). Taking into account the possible values of d(K, L), one
can even distinguish into five possibilities:

o K = L: we say that (K,L) €Rg;

e KNLis a point: we say that (K,L) € Ry;

¢ K||L and d(K, L) = 1: we say that (K,L) €Ry;
e KL and d(K, L) = 1: we say that (K, L) €Ra;
e K||L and d(K, L) = 2: we say that (K, L) € Ry.

Here R;, i € {0,...,4}, is a relation on the line set £ such that £ x £ is the
disjoint union of Ro, R1, Rz, R3 and R4. If (K, L) € R, then the unique
quad through K and L will be denoted by Q(K, L). For a fixed line K of
S, we define n;(K) = |{L € L|(K,L) €R;}|. In the following section we
will show that n;(K) does not depend on K. For every pair (K,L) €R;,
the intersection number pj.k(K , L) is defined as the number of lines M sat-

isfying (K, M) €R; and (L, M) €Ry. If pj-k(K , L) is independent from the
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pair (K, L) €R; or if no confusion is possible about the choice of the pair
(K, L) we will write pJ » instead of pj k(K L). In the following section we
will prove that all intersection numbers p_,, « are constant if ¢ is not equal to
4. An example shows that the intersection numbers pJ « are not necessarily
constant. Nevertheless we will prove that all intersection numbers pj, are
constant as soon as p3, is constant. If all intersection numbers are constant,
then the structure (£, {Ro, R1, Rz, R3, R4}) is a so-called symmetric asso-
ciation scheme, see [1]. In the last section all regular near hexagons with
s > tp and constant intersection numbers are determined. Unfortunately,

the case s < to is still open.

2 The intersection numbers

Let S = (P, £,]) be a regular near hexagon with parameters (s, ,t2) and
suppose that every two points at distance 2 are contained in a unxque quad.

The total number v of points in S is then equal to 1+ s(t + 1) + "—:2(-%1-2 +

13—:%%"12. For every point-line pair (z, K), we have one of the following
possibilities.

(A) If d(z, K) = 2, then t; + 1 lines through z have relation Rz with K
(the £ + 1 lines through z which are contained in the quad Q(z,y)
with y the unique point of K nearest to ). The remaining ¢ —t2 lines
through z have relation R4 with K.

(B) If d(z, K) = 1, then one line through z has relation R; with K and
the other t5 lines of Q(z, K) through the point z have relation Ro
with K. The remaining ¢ — t2 lines through z have relation R3 with

K.

(C) If d(z, K) = 0, then one line through z has relation Rg with K, while
the other ¢ lines have relation R; with K.

For every line K of S, we have I’ (K)| = st(s+ 1) and I'y(K) = v — (s +

1) - [Ty(K)| = Lletlie-ts) By (4), (B) and (C), we then immediately

have that no(K) = 1, n1(K) = (s+1)t, na(K) = Dl = gp4, ng(K) =

T3 (K (¢ = ta) = (s + 1)(¢ - t2) and my(K) = ICa (K (e-ts) "(:;;2)2.

As a consequence the intersection numbers pt are constant for all {,5 €
{0,...,4}. Clearly, also pf; is constant for all ¢,5 € {0,...,4}. If (K,L) €
R;, then [KNT;(L)| does only depend on i and j and not on the particular
choice of (K, L) in R;. Because of (A), (B) and (C), it then immediately
follows that also the intersection numbers p‘ij are constant for all 7,7 €

{©,...,4}.
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Lemma 1 Leti € {0,... ,4'} be fized. Then Pl is constant for all j,k €
{0,...,4} if and only p},, phs and ph; are constant.

Proof. This lemma follows from the following facts:
(1) Pl is constant if j € {0,1};
(2) If p} is constant, then also p};j is constant and equal to p};;

(3) Logk<a P;-k(K, L) = n;(K) for every (K, L) €R,. 0

The intersection numbers pl,, p3; and pl,

Let (K,L) €Ry, put KNL = {z} and let Q := Q(K, L). If (K, M) € Ry and
(L, M) € Ry, then K and L are lines of Q(z, M); hence Q(z, M) = Q(K, L).
In the generalized quadrangle Q(K, L) there are exactly sta(tp — 1) lines
disjoint from K and L; hence p}, = sta(t2 — 1). Since (K, M) € Ry implies
that d(M, L) < 1, we necessarily have that pj, = 0; hence also pl, is
constant. Now, define X = {M € L|(K,M) €Rs and (L,M) €Rs}.
Suppose now that M € X. Let v and v denote the unique points of M at
distance 1 from K and L respectively. If u # v, then d(z,u) = d(z,v) = 2,
such that d(z,w) = 1 for a certain point w on wv. This is impossible
since u is the unique point of M at distance 1 from K. Hence u = v. If
u # x, then u is collinear with two points of Q) and hence is contained in
Q. There are now s2t; points in Q not collinear with z and every such
point is contained in ¢ — ¢ lines not contained in Q. In this way, we obtain
8%t5(t —ta) lines which have relation R3 with both K and L. There are also
s(ty — 1)(t — t2) lines intersecting @ \ (K U L) in a point collinear with z
and each of these lines belongs to X. Through every point y of I'y(z) \ Q,
there are exactly (¢ — 2t3) lines not contained in Q(y, K) U Q(y, L) and
each of these lines belongs to X. Adding all contributions, we find that
Py = 8%ta(t—ta)+s(ta—1)(t—ta) +s(t—t2)(t—2t2) = s(t—ta)(sto+t—ty—1).

The intersection numbers p2,, p3, and p?,

Let (K, L) €R; and put Q := Q(K, L). Suppose that (K, M) € Ry, then
either Q(K,M) = Qor QU K,M)NQ =K. If Q(K,M)NnQ = K, then
every point of M has distance 2 to every point of L. Now Q contains
st3 — sty — t + s lines disjoint with K and L and each of these lines has
relation Ry with both K and L. Hence p3, = st — sty — o+ s and p33 = 0.
We now prove that also p3; is constant. Put X := {M € L|(K,M) €Rs
and (L, M) €Ra}. For every M € X, let ups, respectively vps, denote the
point on M which is collinear with a point ), of K, respectively a point v},
of L. If ups = vps then this point belongs to @ since Q is geodetically closed.
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If upr # vum, then M is disjoint from @ and d(u)y,v),) = 1. In the quad Q,
there are (s+ 1)(st; — 1) points disjoint from KU L. Through each of these
points, there are t — t; lines not contained in Q. All (s+1)(t —t2)(stz — 1)
lines obtained this way have relation R with K and L. There are now
s + 1 lines intersecting K and L. Through each such line, there are é -1
quads different from Q and each such a quad contains st3 lines disjoint
from Q. Each of these lines has relation Rs with both X and L. Hence
P33 = (s + 1)(t — ta)(stz — 1) + (s + 1) 5582st] = (s + 1)(¢ — t2)(2st2 — 1).

The intersection numbers p3,, p3, and p3,

Since p2; = 0, also p3, = 0. We now prove that also p3; and p3; are
constant. Let (K,L) € Rz and let p and ¢ denote those points of K and
L respectively such that d(p,q) = 1. Put X := {M € L|(K,M) €R
and (L,M) €R3} and Y := {M € L|(K,M) €Rs and (L, M) €Ra}.
For every line M € X, let ras denote the unique point of M collinear with
a point ups of L, and let vps denote the unique point of K collinear with
. Since d(up, vm) < 2, one of the following possibilities occurs:

(a) vvy =pand uy =gq;
(b) vm =pand upm # g;
(¢) vm #pand upy =q.

Let N;, i € {a,b,c}, denote the total number of lines of type (i). If M
is a line of type (a), then the point ) belongs to the line pg. There are
now s — 1 points = in pq \ {p,q}. In the quad Q(z, K), there are then
to lines through z different from pg. Since pd, = 0 each of these lines
belongs to X. Hence N, = (s — 1)t;. Counting triples (z,y, M) with
zT€ L\{Q}a yE Fl(p)nrl(z)nM’ q #y and (KaM) GRZ gives Nb = St%'
Counting triples (z,y, M) withz € K\ {p}, y e T1(g)NT1(z)N"M, p #y,
(K,M) €R; and M N L = 0 gives N. = sta(t2 — 1). It is now clear that
P33 = Na + Nj + N, is constant. If M € Y, let up and vy denote those
points of M which are collinear with v, € K and v), € L. We distinguish
the following cases:

(1) up =vp, vy =p and vy, = g;
(2) upm =vm, Uy =p and v, # g
(3) upm =vpm, uj # p and vy, = g;
(4) upm =vnm, Wy # p and vy, # g;

(5) um # vm, ujy = p and v}, =g;
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(6) um # vm, uyy =p and vy, # g;
(7) um #vm, vy #pand vy =g
(8) unr # vag, uhy #p and vy # 4.

Let N;, i € {1,...,8}, denote the number of lines of type (i). If M is a
line of type (1), then uus lies on the line pg. From the ¢ + 1 lines through
a point z of pq \ {p,q}, one coincides with pq, 2t have relation Ry with
either K or L, and the other ¢t — 2¢; have relation R3 with both K and L.
Hence Ny = (s — 1)(t — 2t3). Counting triples (z,y, M) with z € L\ {q},
yei(p)NTi(z)N M,y #qand M €Y, gives No = sta(t — 2t3). For
reasons of symmetry, we have that N3 = Np. If M is a line of type (4),
then (u}y,un,v)y) is a path of length 2. But d(ujy,,v),) < 2 implies that
either uj, = por v, =¢. So Ny = 0. If M is a line of type (5), then
(pg, M) € R2 and hence the quad Q(pgq, M) can be defined. There are now
& —2 quads through pq different from Q(pg, K) and Q(pg, L). In each such
a quad there are st? lines disjoint from pg and every such line belongs to
Y. Hence N5 = sta(t — 2t2). Suppose now that M is a line of type (6).
Since d(g,up) = d(g,var) = 2, there exists a point w on M collinear with
g, a contradiction. Hence Ng = 0. Similarly N7 = 0. If M is a line of type
(8), then (u)ys, upr,vm, v)y) is a path of length 3. Moreover up ¢ Q(pg, K)
and vy € Q(pg, L). Fix now a point z € K \ {p} and a point y € L\ {q}
and consider all (¢ + 1)(¢2 + 1) paths of the form (z, 21, 22, y).

o Exactly one path satisfies z;) = p and z, = gq.
o Exactly to paths satisfy 2; = p and 2; # q.
o Exactly {3 paths satisfy z; # p and 2z = p.
o Exactly t3 paths satisfy z; € Q(pg, K) and z, ¢ Q(pq, L).
o Exactly t3 paths satisfy z; € Q(pg, K) and 2, € Q(pg, L).
o The remaining tt; + ¢t — t; — 2t2 paths satisfy z;z, € Y.
Hence Ng = s2(tta+t—to—2t2). It is now clear that also p3; = Ny+---+Nj

is constant.

The intersection numbers pi,, p3; and pi,

We have seen that the numbers n2(K) and ny(K) are independent from
the chosen line K. We respectively have ny = styt and ny = "’ﬂt:—:—’-ﬁ
The intersection number p3, is also constant and equal to ng — p2; — P3 -
P32 — P33 = stat — 1 — (s +1)(t2 — 1) — (st? — sto — to +5) — 0 = sta(t — ta).
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If p4, is constant, then nop3, = n4pj, and hence -"—j?'-’i 53("—"'1 € N. The
unique near hexagon with parameters (s,t,t2) = (2 11, 1), see [3] and (8],
proves that this condition is not always satisfied. Nevertheless we are able
to prove the following result.

Theorem 1 If p}, is constant, then all intersection numbers are constant.

Proof. Suppose that pj, is constant. Let (K,L) €Ry. Countlng triples
(z,y,M) with z € K, y € T'y(x) nr‘l(L) N M and M||K gives p§s + (s +
Dply = (s + 1)(t2 + 1)ta, proving that p3s is constant. It remains to show
that also p3, is constant. Put X := {M € L|(K,M),(L, M) €Rs}. For
every M € X, let upy, respectively var, denote the unique points of M at
distance 1 from a point u}, of K, respectively a point v}, of L. We consider
the following cases:

(1) up # vm and d(uly, Vi) = 25
(2) um = vm;
(3) um # vm and d(u)y, viy) = 3.

Let N;, i € {1,2,3}, denote the number of lines of type (i). Suppose now
that the line M is of type (1). Let Q := Q(u};,v}y). Since u), has distance
2 to vy and v),, there exists a point w on vpv), collinear with ups. Since
Q is geodetically closed, w € Q, vm € Q and up € Q. Hence the line M
is completely contained in Q. There are now s + 1 quads R intersecting
K and L and all (1 + t2)(1 + st2) — 2(1 +t2) — (1 +t2)(t2 — 1) lines in
such a quad not containing RN K, RN L or any common neighbour of
these two points have relation Rg with both K and L. This proves that
= (s+ 1)[(1 + t2)(1 + st2) — 2(1 + t2) — (1 + t2)(¢2 — 1)}. Counting all
triples (z,y, M) withz € K, y € T1(z) NI (L)NM and MN(KUL) =
gives that (s 4+ 1)(ts + 1)(t — 1) = Na + pi; + p3, + (s + 1)p5,, proving
that Ng is constant. Counting all 4-tuples (z,y,2, M) with z € K, y €
LNT3(z), z € T1(z) NTa(y) NT1(K) NT2(L) N M and d(y, M) = 1 gives
(s+1)s(t —tz —1)(t2 + 1) = Na + sp3s, proving that Nj is constant. Hence
P33 = N1 + N2 + Nj is also constant. o

Examples

In (8] it was proved that the following incidence structure 7 is a regular
near hexagon with parameters (s, t,t2) = (2,14, 2). The points, respectively
lines, of T are the blocks, respectively triples of two by two disjoint blocks,
of the unique Steiner system S(5,8,24) ([2]). By [4], T is the unique
regular near hexagon with parameters (s,t,t2) = (2,14,2). Also by [4],
page 59, p5, is constant and equal to 1. Hence all intersection numbers
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are constant. Every other known regular near hexagon with s > 2, ¢t > 1
and constant intersection numbers is classical, i.e. satisfies d(z,Q) < 1 for
every point z and every quad Q. By Cameron [6], a near hexagon with
this property necessarily is a dual polar space, i.e. the points, respectively
lines, of the near hexagon are the maximal, respectively next-to-maximal,
singular subspaces of a polar space of rank 3, and incidence is reverse
containment. The cube with (s + 1)3 vertices and parameters (s, ¢, t2) =
(5,2,1) is an example of a classical near hexagon. The other classical
near hexagons are listed in the following table. The classical near hexagon
related to Q(6, q) is isomorphic to the one related to W (5, q) if and only if
q is even.

POLAR SPACE TYPE (s,t,t2)
Q(6,9) quadratic | (g,9°+¢,9)
W(5,9) symplectic | (¢, +¢,9)

Q~(7,9) quadratic | (¢%¢*+q,9)
H(5,q°) hermitian | (g,9% + 4%, ¢%)
H(6,q%) hermitian | (¢°,¢* + ¢%,¢°)

Proposition 1 Let S be a regular near hezagon which is also classical,
then pj3, is constent.

Proof. Let K and L be two lines such that d(K,L) = 2 and let k& and
{ be two points on K and L such that d(k,!) = 2. If M is a line having
relation R with K and M, then there is a point on M collinear with &
and . The quad through that point and the line K necessarily contains
M. Now, let m be one of the t; + 1 common neighbours of k and I, and
put @ := Q(m, K). Let ¢ denote an arbitrary point on L different from
l. Since § is classical, g is collinear with a (necessarily unique point) ¢’
of Q. Since Q is geodetically closed d(g,z) = d(g,q’) + d(¢’,z) for every
point z € Q. Hence m and ¢’ are collinear. The line mq’ clearly is the
unique line through m having relation R, with K and L. This proves that
Phy=ta+ 1. m]

3 The case s >t

Theorem 2 Every nonclassical regular near hexagon with parameters (s, t, ;)
satisfying:

(?) every two points at distance 2 are contained in a unique quad,
(52) s > to,

(#ii) ph, is constant,
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is either isomorphic to T or to the unigue near hexagon whose collinearity
graph is the incidence graph of the unique biplane of order 2.

Proof. Suppose that S satisfies the conditions of the theorem. If s =1
then ¢ = 1, and the condition pj, = -Q;"_'—:z)tg € N implies that ¢ € {2,3}.
If t = 2, then S necessarily is a cube, but this contradicts the fact that S
is nonclassical. If ¢t = 3, then the collinearity graph I" of S is the incidence
graph of a block design D. From the parameters of S, we easily derive that
D has 7 points and 7 blocks, every point (block) is incident with 4 blocks
(points) and every two points (blocks) are incident with 2 blocks (points).
By [2] D is the unique biplane of order 2. A description of I easily follows.
Take an arbitrary vertix and label it co. Label the vertices adjacent with
oo with the elements of X := {1,2,3,4}. Every vertex at distance two from
oo has two common neighbours adjacent with co and hence corresponds to
a subset of size two of X. This correspondence clearly is bijective. Take
now a point u at distance 3 from oo, and let {a, b} and {c, d} denote the two
points at distance 2 from co which are not adjacent to u. We necessarily
have that {a,b} N {c,d} = 0. [If for instancea =c=1,b=2and d =3,
then {1,4}, {2,4} and {3,4} would be three common neighbours of v and
the point with label 4.] As a consequence the three points at distance 3
from oo correspond to the three partitions of X in two subsets of size 2. If
K and L are two lines satisfying d(K, L) = 2, then we may suppose that
K = {00,a} and L = {{b, ¢}, {{a,b},{c,d}}} with {a,b,¢,d} = {1,2,3,4}.
The line M = {¢, {a,c}} clearly is the unique line having relation Ry with
both K and L; hence pd, = 1. If s > 2 and if S is not a dual polar
space then, by Lemma 25 of [5], 1 +¢ > (1 + s)(1 + st2). Since s > i,
1+t > (14 t2)(1 +t2), or equivalently p3, = gft—_’:-'l—) < 1. Since p3, > 1,
1+t = (1+st2)(1+s) and s = t;. By Theorem 5 of 2[5] these properties are
sufficient to conclude that S is isomorphic to 7, the near hexagon related
to S(5,8,24). m]
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