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Abstract
Let Su(k;|C1l,- - ,|Ckl) (k = 3) denote the n-vertex connected
graph obtained from k& cycles C1, - - - , Cx with unique common vertex

by attaching n — ), |C:| + k — 1 pendent edges to it. In this paper,
we show that among all n-vertex graphs with k edge-disjoint cycles,
the following graphs have minimal Kirchhoff indices: (i) n < 12.
$1(3;3,3,3); Ss(3;3,3,4); So(3;3,4,4); Sa(3;4,4,4) (n = 10,11);
312(3; 3, 3, 3), 512(3; 3, 3, 4), 512(3; 3, 4, 4) and 512(3; 4, 4, 4); 59(4; 3, 3,
3,3); 510(4;3,3,3,4); S11(4;3,3,4,4); S12(4;3,3,3,3); 512(4;3,3,3,4);
S12(4;3,3,4,4) and S12(4; 3,4,4,4); 511(5; 3,3, 3,3, 3); 512(5; 3,3,3,3,
3) and 512(5;3,3,3,3,4); (ii) n > 12. S.(k;3,---,3). In addition,
we obtain the lower bounds of Kirchhoff index of n-vertex graphs
with k edge-disjoint cycles

1 Introduction

In 1993, Klein and Randié [1] defined a new distance function named re-
sistance distance on the basis of electrical network theory. Let G be a con-
nected graph with vertices labelled as vy,vs,--- ,u,. They view G as an
electrical network N by replacing each edge of G with a unit resistor. The
resistance distance between v; and v;, denoted by r(v;,v;) (if more than
one graphs are considered, we write r(vs, v;) in order to avoid confusion),
is defined to be the effective resistance between them in N. Recall that the
conventional distance between vertices v; and v;, denoted by d(v;,v;), is
the length of a shortest path between them and the famous Wiener index
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W(G) (2] is the sum of distances between all pairs of vertices; that is,

W(G) =) d(v;,v)).

i<j

Analogue to Wiener index, the Kirchhoff index K f(G) [2] is defined as:
Kf(G) =) r(vi,v).

i<j

As an intrinsic graph metric and a relevant tool to characterize wave-
or fluid-like communication between two vertices [3], resistance distance
has been studied extensively in mathematics and chemistry, such as (4, 5,
6, 7). It is computed in a variety of ways, such as [1, 8, 9, 10, 11]. As a
new structure-descriptor (7], Kirchhoff index has attracted more and more
attention. On one hand, simple closed-form formulae or numerical values
of Kirchhoff index of some classes of graphs have been obtained, such as
complete graphs [12], cycles [12, 13], platonic solids [12, 14], some fullerenes
including buckminsterfullerene [15, 16, 17], distance transitive graphs [18],
circulant graphs [19], linear hexagonal chains [20], and so on [3, 17, 18, 21].
On the other hand, although the formulae of Kirchhoff index of some classes
of graphs are difficult to get, their sharp bounds for Kirchhoff index can be
obtained and graphs with extremal Kirchhoff index can be characterized
as well. Such as general connected graph [13], circulant graph [19].

Since Kirchhoff index and Wiener index of trees coincide [1] and Wiener
indices of graphs are extensively studied, so it is natural to consider Kirch-
hoff index of graphs with cycles. In Ref. [22] and (23], unicyclic graphs and
bicyclic graphs with extremal Kirchhoff index are characterized and sharp
bounds for Kirchhoff index of such graphs are obtained as well, respectively.
Now we generalize one result, that is, consider the lower bounds of Kirch-
hoff index of graphs with & edge-disjoint cycles (k > 3) and characterize
the extremal graphs. A graph with k edge-disjoint cycles contains k cycles
and any two cycles have at most one common vertices.

For convenience, we employ some notations. Let GX¥ be the set of n-
vertex connected graph with k edge-disjoint cycles C1,Cs,--- ,Ci. We
call cycles C; and C; adjacent if there is only one path P;; connecting
the two cycles (that is, the internal vertices of the path are not on any

k

cycle), and denote C; ~ C;. Let S = U V(C:)U( U V(Pi;)). Trees T;
=1 i~Cj
(1 £ 7 <|S]) is rooted v; € S. We say tree T trivial if |V(T)| = 1, i.e,,
T is a singleton vertex. Fig. 1 illustrates an example of graphs in G¥. Let
Sn(k;|Chl,- -+ ,|Ck|) denote the n-vertex connected graph obtained from
cycles Cy,- -+, Cx with unique common vertex by attaching n — > G +
k — 1 pendent edges to it. See Fig. 2.
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Fig' 2. Sn(k? 'Clta"' 7‘Ck|)-

In the second section, we characterize the extremal graphs with minimal
Kirchhoff index among all n-vertex graphs with k edge-disjoint cycles. By
Theorem 2.6, we obtain that the following graphs have the minimal Kirch-
hoff indices: (i) n < 12. For k = 3, 57(3; 3,3, 3); S8(3;3,3,4); So(3;3,4,4);
Sn(?’; 41 4’ 4) (Tl = 10a 11); 512(3; 31 33 3)) 512(3; 3) 3)

4), 512(3; 3,4, 4) and S12(3; 4,4, 4); for k = 4, S9(4;3, 3, 3,3); S10(4;3,3,3,4);
Sll (45 3a 37

41 4); 512(4; 31 31 3a 3); 812(4; 3’ 31 31 4)v 812(4; 37 3: 4a 4) and 512(4; 31 4’ 4) 4);
for k = 5, 511(5; 3, 3, 3, 3, 3); 512(5; 3, 3, 3, 3, 3) and 512(5; 3, 3, 3, 3, 4). (ii)
n > 12. S,(k;3,---,3). Then the lower bound of Kirchhoff index of n-
vertex graphs with k edge-disjoint cycles is derived as well.

2 The extremal graphs with minimal Kirch-
hoff index in GF

In this section, we first find out the graphs with minimal Kirchhoff index
when the length of the k cycles is fixed. Furthermore, we characterize the
extremal graphs of Kirchhoff index in G&.
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Lemma 2.1. [24] Let T be a n-vertez tree different from P, and S,,. Then
W(Sn) < W(T) < W(P,).
It is obtained in [24] that
W(S,) = (n— 1)

nd-n

12
Lemma 2.2. [1] Let = be a cut-vertez of a connected graph, and let a and
b be vertices occurring in different components which arise upon deletion of
z. Then

Kf(C,) =

r(a,b) = r(a,z) + r(z,b).

For v; € V(G), define K f,,(G) as the sum of resistance distances be-
tween v; and other vertices of G; that is,

Kfo (@)= > re(vi,v;).
v;€V(G)

n?—1

Kfv(cﬂ) = 6 ’

where v is a vertex of Cj,.
By Lemma 2.2, we obtain the following theorem in [23].

Theorem 2.3. [23] Let x be a cut-vertez of a connected graph G such that
G — z has ezactly two components Gy and G3. Let G' be the subgraph of
G induced by V(G;) U{z} (i =1,2). Then

Kf(G) = Kf(GD+K f(Ga)H(IV(GD)I-1)K f(Co)+(IV(G2) |- K f2(G)).

Lemma 2.4. Let G be a connected graph. Assume that S, and Sy are two
stars of G with centers vy and va, and u; and uy are leaves of Sy and S5,
respectively. If K f, (G) < K fu,(G), let G' = G — vauy + viuy. Then

Kf(G) < Kf(G).

Proof. For any two vertices v, v1 € V(G)\{uz},rc(vk,v1) = 7o (v, w).
While

Kfuz(G,) = Kf“l (G,) = Kfux(G)_TG(ul’u2)+2 < Kfux(G) < Kfuz(G)
Therefore,

Kf(G") = Kf(G) - Kfu,(G) + K fuy (G') < Kf(G).
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The following Theorem show that among G¥, when the length of cycles
C1,Cs, -+ ,Cy is fixed, Sp(k;|Ci|,: - ,|Ck|) has minimal Kirchhoff index.

Theorem 2.5. Let G € G¥ with cycles C1,Ca,- -+ ,Ck. If G # Sa(k;|C1],
-+, |Ckl), then Kf(G) > Kf(Sn(k;|Cul,---, |Ckl)).

Proof. Suppose that graph Go € GX with cycles C;,C3, - - - , Ci, has minimal
Kirchhoff index. For Gy, we prove the following Claims.

Claim 1. For any C; and Cj, if C; ~ Cj, then P;; is of 0 length.

Suppose to the contrary that there is one path P;; joining C; and C}
with length I (I > 1) (whose endpoints lie in C; and Cj, respectively). Let
e = uv be an edge of P;;. Let G; be the graph obtained from Gop by first
contracting e, then attaching a pendent edge ua to u. Assume that Gg;
and Gy are two components of Go — e and G1; and G2 are copies of Go;

and Go2 in Gy, respectively. See Fig. 3.
a
Gll GIZ

Ga G
'u € 14 \v

G, G
Fig. 3. Graphs Gy and G;.

In the following, we prove K f(G1) < K f(Go).

For z,y € V(Go1)\{u} or V(Go2)\{v}, e, (z,¥) = re,(z,y); and for
T € V(GOI)\{u}vy € V(GO2)\{U}’ e (:z:,y) = rGo(xw y) -1< rGo(xvy)'
On the other hand,

Z TGO(:B,‘U)= Z er(xsa’)’

:I:GV(GOI) tGV(Gn)
Z reo (T, u) = Z re, (z,a).
€V (Go2) z€V(Gy2)
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So
K £4(Go) + K f4(Go)
=Kfu(Go)+ D reo(@u) +Kfu(Gu)+ Y. ra(z,v)

z€V(Go2) z€V(Go1)

=Kfu(Cu)+ Y re,(za)+Kf(Gr)+ Y, ral(z,a)
IGV(Glg) IEV(GU)

=(Kfu(Gll) + Kfu(GIZ) + TG, (aa u))
+( Z TG, (z,a) + Z re, (z,0) — g, (a,u))

z€V(Gi2) z€V(Gn1)
=K f.(G1) + K fa(G1).

By the definition of Kirchhoff index, we obtain K f(G;) < K f(Go). This
contradicts the hypothesis. Hence Claim 1 holds.
Claim 2. T; is star with v; € S as center (1 < < |S]).

k
By Claim 1, we know that S = U V(C;). Without loss of generality,

=1

suppose that tree T rooted v; € S is not star. Let G2 be constructed from
Go by first deleting all edges of Tj, then connecting all isolated vertices to
vj; that is, T} is a star in G with center v;, denoted by S;. For Gy, vjisa
cut vertex, T; and Go — (V(T}) — v;) are two induced subgraphs of Gg. By
Lemma 2.1, K f(S;) < K f(T}). On the other hand, K f,,(S;) < K fu,(T}),
by Theorem 2.3, K f(G2) < K f(Go), which contradicts the choice of Gg.
Hence Claim 2 holds.

k
By Claim 1, we know S = U V(C;) and let A C S collect all the

=1
vertices shared by at least two c;cles.
n
Claim 3. Let B=S\A = {v1,--,v}. If 3 |Ci] <n+k—1, then
t=1

T: (1 <1< r)is trivial.

Suppose that T; rooted v; € B is not trivial, then there is a vertex u € A
such that u and v; are on the same cycle, and T; and T, are both stars by
Claim 2. Let Gg; be the component of Go — u containing T; and Go; be
the subgraph induced by V(Gg,) U V(Ty.). And let Gg be the subgraph of
Go induced by V(Go)\V(Go1) U{u}.

If Kfy;(Go1) < K fu(Go1), construct Gy by identifying v; of Go; with
© of Ggz. Then by Theorem 2.3, K f(Gj) < K f(Go), a contradiction. If
Kfo;(Go1) 2 K fu(Go1), assume that a and b are leaves of T, and T},
respectively. Then

K fa(Go1) = Kfu(Gor) = 1+ |V(Go1)| - 1,
Kfy(Go1) = Kfy;(Go1) =1+ |V(Gar)| — 1,
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80 K f5(Go1) = K fo(Go1). Let Gy = Go —v;b+ub, and let Gp, be the copy
of Goz in G} and Gj; be the subgraph of G induced by V(Gp)\V (Gp2) U{u}.
By Lemma 2.4, Kf(G};) < Kf(Go1). Also K fu(Gp;) < K fu(Go1), since
Kf.(Gy) = Kfu(Go1) — 7Go, (b,u) + 1. By Theorem 2.3, we obtain
K f(Gp) < Kf(Go), a contradiction. Hence Claim 3 holds.

Claim 4. All cycles have exactly one common vertex.

Conveniently, we denote the common vertex u;. If not, without los-
ing generality, there is cycle C; which does not contain u; and has a
common vertex u; with some cycle C;. Let Go; be the subgraph of Gy
induced by V(C;) UV (Ty,) and Goz be the subgraph of Go induced by
V(Go)\V(Go]) U{u.-}. Then Kfu(Goz) < Kfu.» (Goz). Since

K fu,(Go2)

= Y reuw+r Y rlew)
z€V(Cj) z€(V(Go2\V(C;))

= Y rlzu)+ > r(z,u) + |V (Co2)\V (C;) (2, us)
zeV(C;) z€(V(Go2)\V(C}))

= K fu(Goz) + |V (Go2)\V(Cj)|r(u, us).

Construct G} by identifying u; of Go1 with u of Go2. By Theorem 2.3,

KF(Gh) = Kf(Gor) + K f(Goa) + (IV(Gor)l — 1)K fu(Go2) + (IV(Goz)| — 1)
K fu(Go1) < Kf(Gor) + K f(Goz) + (IV(Ga1)| — 1)K fu,(Goz) + (IV(Goz)]
— 1)K fu,(Go1) = K f(Go).

A contradiction. Hence Claim 4 holds.
Summing up, we prove that Go is Sn(k;|Ci],- -+ ,|Ckl). |

By Theorem 2.5, we know the graph with minimal Kirchhoff index in
Gk must be in {Sp(k;|Ci|,-+,|Ckl) | 3L |Ci| S n—2k—2for 1 <i<k}
In the following, we will investigate how long the length of the cycle is, the
Kirchhoff index is minimal.

Theorem 2.6. In GE, the following graphs have minimal Kirchhoff indices:
() n<12.

(a) k = 3. S(7;3,3,3),;50(3; 3,4,4),;51(3;4,4,4) (n = 10,11); S12(3; 3, 3, 3),
512(3; 3) 37 4); 512(3; 31 4, 4) and 312(3! 4, 4’ 4)

(b) k=4. 59(4; 3,3,3, 3)! 310(4; 31 3,3, 4): 511(4; 3,3,4, 4); 312(4; 3) 3, 3) 3))
512(4; 3: 31 37
4), S12(4;3,3,4,4) and S12(4;3,4,4,4).

(c) k=5. $11(5;3,3,3,3,3);512(5; 3,3,3,3,3) and 52(5;3,3,3,3,4).
(ii) » > 12. Sn(k;3,3,...,3).
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Proof. When n = 7, S7(3;3,3,3) is the unique graph, and has minimal
Kirchhoff index. When n = 8, there are only two graphs: Sg(3;3,3,3) and
58(3;3,3,4). Since K f(S5(3;3,3,3) =33 and K f(S5(3;3,3,4) = %1, then
S5(3;3,3,4) has minimal Kirchhoff index.

For n > 9, in S,(k;|Ci|,--- ,|Ck|), all cycles have unique common ver-
tex u and there is a unique tree rooted u. Since all cycles are symmetric,
without loss of generality, we take cycle C; with length ! as an example
and analysis how long it is, the Kirchhoff index is minimal. Let Go; be
the subgraph of S, (k;|C1],--- ,|Ck|) induced by V(S,(k;|C1],--- ,|Ck]) —
C1) U{u} and Goz be cycle C;. Let Gp,; be the copy of Goy in S, (k;|Ci| —
1,---,|Ck|) and G, be the subgraph of S,(k;|Cy| —1,---,|Ck|) induced
by V(Sn(k; |C1| = 1, -+, |Ck|) — Gg;) U{u}. By Theorem 2.3, we compute

Kf(Sa(k;|C1l,+ -, |Ck])) = Kf(Sn(k; [C1] = 1,--+,|Ck]))
=K [f(Go1) + K f(Goz) + (IGo1| — 1)k fu,(Goz) + (|Goz| — 1)k fu, (Go1)
—[Kf(Goy) + K f(Gog) + (IGo1| = 1)kfu, (Go2) + (IGhe] — 1)k fu, (Goy))
_ —302 4 (4n + 3)l + (12 — 14n)
12 ’

Let
g(l):==32 + (dn+3)l +(12-14n) (3<I<n-—14),

and
h(n) := Dgy = 16n? — 14dn + 153 (n > 7).

When n > 9, h(n) > 0. The two roots of g(l) are

_ 3+4n—/(4n - 18)2 - 171

L 5

and

_3+4n+4/(4n—18)2 171
5 .
Simple calculations show that l; > n —4, hence | <n —4 < Is.

Case 1. 9 <n < 11. Then 4 < l; < 5 and ! < 7. This indicates that
for I > 5, g(l) > 0, namely, Kf(Sn(k;|C1],...,|Ck])) > Kf(Sa(k;|Cy| -
1,...,]|Ck|)). On the other hand, g(4) < 0, K f(Sn(k;4,...,|Ck|) < Kf(S,
(k;3,...,|Ck]). So when the length of the cycle is 4, the Kirchhoff index
is minimal. By the symmetric of cycles in S,(k;|Ci|,:-- ,|Ck|), we obtain
that Sy(3;3,4,4), So(4;3,3,3,3), Sn(3;4,4,4)(n = 10,11), S10(4; 3,3, 3, 4),
511(4;3,3,4,4) and 51,(5;3,3,3,3,3) have minimal Kirchhoff index.

Case 2. n = 12. [} = 4 and | < 8, namely, g(4) = 0. Hence
Kf(S12(k;4,...,|Ck]) = Kf(S12(k;3,...,|Ck|). On the other hand, for
l > 5, g(l) > 0. That is, Kf(S12(k;|C1],- -+,

lz
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|Ck])) > Kf(S12(k;|C1| = 1,...,|Ck])). So when the length of cycle is
4 or 3, the Kirchhoff index is minimal. By the symmetric of cycles in
{Sn(k;|Cil, -+, |Ck|), we have that S12(3;3, 3, 3), 512(3; 3,3,4), 512(3;3,4,4)
and 312(3; 47 47 4); 512(4; 3a 37 3’ 3)1 Sl2(4; 3’ 3) 3’ 4)’ Sl2(4; 3) 31 4) 4) and 512(4;
3,4,4,4); S12(5;3,3,3,3,3) and S12(5; 3, 3,3, 3,4) have the minimal Kirch-
hoff index.

Case 3. n > 12. Then l; < 4. For !l > 4, g(!) > 0, namely,
Kf(Sn(k;|C1],--,[Ck])) > Kf(Sn(k;|C1] = 1,...,|Ck])). It means when
the length of cycle is 3, the Kirchhoff index is minimal. Hence S, (k;3,...,3)
has the minimal Kirchhoff index .

Summing up, Theorem 2.6 is proved. O

3 The lower bounds of Kirchhoff index of
graphs in G*

In this section, we compute the Kirchhoff indices of extremal graphs with
minimal Kirchhoff index and the lower bounds of Kirchhoff index of graphs

in GF are derived, too.
For S,(k;3,3,...,3), assume that a is common vertex of k 3-cycles, let

G be the subgraph spanned by the k& 3-cycles and G3 be the star induced
by V(Sn(k;3,3,...,3)\V(G1)
U{a}. Then we have

Kf(G1) =2k +C}Ex g X 4= gkz = §k;
Kf(Ga) = (n—2k—1)%
KfalG) =5
Kf.(Gy)=n—2k—1.
By Theorem 2.3,

K f(Sn(k;3,3,...,3))
= Kf(G1) + Kf(G2) + (IG1] - VK fa(G2) + (IG2| - 1)K fa(G1)

=n2+(——§k—2)n+1.
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Put n and k into the equation, we obtain

K f(57(3;3,3,3)) = 22; K f(512(3;3,3,3)) = Kf(512(3;3,3,4)) =
Kf(512(3; 314’4)) = Kf(512(3$ 41 41 4)) = 97; Kf(s9(4! 3’ 3) 3? 3)) = 40;
Kf(Sl2(4; 3a 31 3) 3)) = Kf(Sl2(4; 3, 3) 3! 4)) = Kf(Sl2(4’ 3’ 3? 4) 4))

= Kf(S12(4:3,4,4,4)) = 89, Kf(51(5:3,3,3,3,3)) = -3

K f(512(5:3,3,3,3,3)) = Kf(512(5;3,3,3,3,4)) = 81.

By simple computation, we have

Kf(S8(3; 31 3v 4) = '934'; Kf(Sg(3, 3) 4’ 4)) = 45; Kf(510(3; 4,4, 4)) = 60;

K f(511(3;4,4,4)) = 77.5; K f(S10(4; 3, 3, 3,4)) = 54;

211
K f(511(4;3,3,4,4)) = 5

Combining Theorem 2.6, we can obtain the lower bounds of Kirchhoff
index of graphs in G¥.
Theorem 3.1. For any graph G € G,
() n=7. k=3, Kf(G) =22,
(i) n=8. k=3, Kf(G) > %;
(ili) n=9. k=3, Kf(G) > 45, k =4, Kf(G) = 40;
(iv) n=10. k=3, Kf(G) 2 60; k =4, Kf(G) > 54;
(\;)gon =11. k=3, Kf(G) 2775, k=4, Kf(G) 2 3, k=5, Kf(G) =
3

(vi) n212. Kf(G) 2 n?+ (-%k-2)n+1.

References

(1] D.J. Klein and M. Randié, Resistance distance, J. Math. Chem. 12
(1993) 81-95.

[2] H. Wiener, Structural determination of paraffin boiling points, J. Amer.
Chem. Soc. 69 (1947) 17-20.

(3] D.J. Klein, Resistance-distance sum rules, Croat. Chem. Acta 75 (2002)
633-649.

302



[4] W. Xiao and I. Gutman, Relations between resistance and Laplacian
matrices and their applications, MATCH Commun. Math. Comput.
Chem. 51 (2004) 119-127.

[5] R. B. Bapat, I. Gutman and W. Xiao, A simple method for computing
resistance distance, Z. Naturforsch. 58a (2003) 494-498.

(6] W. Xiao and I. Gutman, Resistance distance and Laplacian spectrum,
Theoret. Chem. Acc. 110 (2003) 284-289.

[7] W. Xiao and I. Gutman, On resistance matrices, MATCH Commun.
Math. Comput. Chem. 49 (2003) 67-81.

[8] D.J. Klein, Graph geometric, graph matrics and Wiener, MATCH Com-
mun. Math. Comput. Chem. 35 (1997) 7-27.

[9] L.W. Shapiro, An electrical lemma, Math. Mag. 60 (1987) 36-38.

{10] P.G. Doyle and J.L. Snell, Random Walks and Electrical Networks,
The Mathematical Association of America, Washington, DC, 1984.

[11]) HY. Chen and F.J. Zhang, Resistant distance and the normalized
Laplacian spectrum, Discrete Appl. Math. 155 (2007) 654-661.

(12] I. Lukovits, S. Nikoli¢ and N. Trinajstié, Resistance distance in regular
graphs, Int. J. Quantum Chem. 71 (1999) 217-225.

(13] D.J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-
wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci.

35 (1995) 50-52.

[14] L Lukovits, S. Nikoli¢ and N. Trinajsti¢, Note on the resistance dis-
tances in the dodecahedron, Croat. Chem. Acta 73 (2000) 957-967.

[15] A.T. Balaban, X. Liu, D.J. Klein, D. Babic, T.G. Schmalz, W.A. Seitz
and M. Randié, Graph invariants for fullerenes, J. Chem. Inf. Comput.
Sci. 35 (1995) 396-404.

[16] P.W. Fowler, Resistance distances in fullerene graphs, Croat. Chem.
Acta 75 (2002) 401-408.

[17) D. Babié, D.J. Klein, I. Lukovits, S. Nikoli¢ and N. Trinajstié,
Resistance-distance matrix: A computational algorithm and its appli-
cation, Int. J. Quantum Chem. 90 (2002) 166-176.

[18] J.L. Palacios, Closed-form formulas for Kirchhoff index, Int. J. Quan-
tum Chem. 81 (2001) 135-140.

303



(19] H.P. Zhang and Y.J. Yang, Resistance distance and Kirchhoff index
in circulant graphs, Int. J. Quantum Chem. 107 (2007) 330-339.

[20] Y.J. Yang and H.P. Zhang, Kirchhoff index of linear hexagonal chains,
Int. J. Quantum Chem. 108 (2008) 503-512.

[21] J.L. Palacios, Resistance distance in graphs and random walks, Int. J.
Quantum Chem. 81 (2001) 29-33.

[22] Y.J. Yang and X.Y. Jiang, Unicyclic graphs with extremal Kirchhoff
index, MATCH Commun. Math Comput. Chem. 60 (2008) 107-120.

(23] H.P. Zhang, X.Y.Jiang and Y.J. Yang, Bicyclic graphs with extremal
Kirchhoff index, MATCH Commun. Math Comput. Chem. 61 (2009)

697-712.

[24] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs,
Czechoslovak Math. J. 26 (1976) 283-296.

304



