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Abstract

A graph G is called an L; - graph if, for each triple of vertices
u, v, and w with d(u,v) = 2 and w € N(u) N N(v), d(u) + d(v) 2
|N(u) U N(v) U N(w)| — 1. Two results on the hamiltonicity of L,
graphs are presented in this paper.
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1. Introduction

We consider only finite undirected graphs without loops and multiple edges.
Notation and terminology not defined here follow that in [2). A graph G is
locally connected if G[N ()] is connected for every vertex » in G. Let G and
H be two graphs. A graph G is H - free if G contains no induced subgraph
isomorphic to H. If H is K} 3, then G is called claw — free. A graphGis1-
tough if w(G—8) < | S| for every subset S of V(G) with w(G—S) > 1, where
w(G—S) denotes the number of components in the graph G—S. For an inte-
ger i, a graph G is called an L; — graph if d(u)+d(v) 2 |N(u)UN(v)UN(w)|
—1 or equivalently |[N(u) N N(v)] 2 |N(w) — (N(u) U N(v))| — ¢ for each
triple of vertices u, v, and w with d(»,v) =2 and w € N(u) N N(v). It can
easily be verified that every claw — free graph is an L; - graph (see [1}).

The graph Y = (V(Y), E(Y)), where V(Y) = {u1, ua, us, us, us, us }
and E(Y) = {uiug, ujua, ugus, ugu4, Uaus, usls, uaus} and the graph
Zy = (V(22), E(Z2)), where V(Z3) = { u1,ug,u3,us,us } and E(Z;) =

{ wauz, uous,
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ugly, U3us, ugus } will be used in this paper. Obviously, every claw — free
graph is Y - free. The family K of graphs is defined as {H : Kp p41 C
HC K, + (p+ 1)Ky, p > 2} and when a graph H = (V(H),E(H)) € K
we will always let V(H) and E(H) be {ai,az,...,8p,b1,b2,...,bp41 } and
{aibj:1<i<pand1<j<(p+1)}US, where SC {aia;:1<i<j<
p}, respectively. The families X’ and K”of graphs are defined respectively
as {H € K : Hlay,a,...,ap] is connected and Y - free } and {H € K :
H[al,ag, ,a,p] is Zz - free }

The following Theorem 1 was proved by Oberly and Sumner in [6] and
Theorem 2 follows from Theorem 1 proved by Gould and Jacobson in [3].

Theorem 1. Every connected locally connected claw — free graph on at
least three vertices is hamiltonian.

Theorem 2. If a 2 — connected graph G is claw - free and Z; - free, then
G is hamiltonian.

Obviously, every connected locally connected graph is 2 — connected.
Notice that if G is a noncomplete claw - free graph then G is 1 - tough if
and only if G is 2 - connected (see [5]). Thus Theorem 1 and Theorem 2
are equivalent to the following Theorem A and Theorem B, respectively.

Theorem A. Every 1 - tough locally connected claw - free graph on at
least three vertices is hamiltonian.

Theorem B. If a 1 - tough graph G is claw — free and Z; - free, then G
is hamiltonian.

The objective of this paper is to prove the following Theorem 3 and
Theorem 4 which generalize Theorem 1 and Theorem 2, respectively.

Theorem 3. Every connected locally connected Y - free L; — graph on at
least three vertices is hamiltonian or in X'.

Theorem 4. If a 2 — connected graph L, — graph G is Z; — free, then G
is hamiltonian or in K”.

Since every graph in K’ or K" is not 1 — tough and every 1 - tough graph
is 2 - connected, Theorem 3 and Theorem 4 have the following Corollary 1
and Corollary 2, respectively.

Corollary 1. Every 1 — tough locally connected Y - free L; — graph on at
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least three vertices is hamiltonian.

Corollary 2. If a 1 - tough L; - graph G is Z; - free, then G is hamilto-
nian.

Obviously, Corollary 1 and Corollary 2 are generalizations of Theorem
A and Theorem B, respectively.

We need the following additional notations in the remainder of this pa-
per. If C is a cycle of G, let T denote the cycle C with a given orientation.
For u, v € C, let 5[u, v] denote the consecutive vertices on C from u to
v in the direction specified by C. The same vertices, in reverse order, are
given by C[v,u). Both Clu,v] and C[v,u] are considered as paths and
vertex sets. If u is on C, then the predecessor, successor, next predecessor
and next successor of u along the orientation of C are denoted by ™, u¥,
u~~ and ut" respectively. If A C V(C), then A~ and A* are defined as
{v™ :v € A} and {v* : v € A} respectively. If H is a connected component
of a graph G and u and v are two vertices in H, let uHv denote a path
between v and v in H.

2. Lemmas

Lemma 1. Let G be a 2 - connected nonhamiltonian L; — graph and
G ¢ K. Suppose C is a longest cycle with a given orientation in G, H is any
connected component of G[V (G)-V(C)}, N(V(H))NV(C) = {a1,az,...,a1}
such that h;a; € E, where h; € V(H) for each 4,1 < i <!, and a3, ag, ...,
a; are labeled in the order of the orientation of C. Then

(1). ajaf € Eforeachi, 1 <i<l.

(2). N(a;)Nn{aj ,a;5,0;}=0if1<i#j<],
N(ef)n{af*,a},a;} =0if1<i#j<1
N(a;)N{a;",a7,af*,af }=0if 1<i#£j<L
(3). If z; € N(a;) — {a;,hi}, then z;a] € E or z;h; € E for each i,
1<i<l; If z; € N(a;) — {af,hi }, then ;0] € E or z;h; € E for
eachi,1<i <L

Proof of Lemma 1. The proof of (1) can be found in the early part of

proof of Theorem 3 in [4]. In order to save the space, we will not repeat it
here.
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Now we prove the first claim in (2). If a;~ € N(a;), then G has a cycle
h,-a[ai,aj"’]‘a[a;',a;-*]a;ajthhf
which is longer than C, a contradiction. If a; € N(a;’), then G has a cycle
hiClai,a;|Cla7 , aj]h;Hh;
which is longer than C, a contradiction. If a; € N(a; ), then G has a cycle
hiClai,a7)C o}, a; |ash; Hh

which is longer than C, a contradiction. Hence N(a; )N {a; ", a;,a;} =0
fl1<i#j<l|,

Symmetrically, we can prove that the second claim in (2) is true.

Now we prove the third claim in (2). The proofs for N(a;) N{a; "‘ }=
@ have been implicitly given in the proofs of the first and second clalms in
(2). If ;= € N(a;), then G has a cycle

hia:Cla;~,af1C a7, afla; ash;Hh,
which is longer than C, a contradiction. If aj* € N(a;), then G has a cycle
hiaia[a;—-*" a;]a[a?, aj_]a;-ajthhi

which is longer than C, a contradiction. Thus N(a;)N{a; ~,a;,a}*,a}} =
Pifl1<i#j<l

Now we prove (3). Suppose, to the contrary, that for some i, 1 <i< h
there exists a vertex z; € N(a;) — { a], h; } such that z;a] & E and z;h; ¢
E. Since G is an L, — graph, we have

IN(ai )N N(hi)l 2 [N(ei) = (N(@7 )N N(h))| =1 2 [{ 2,07, hi } -1 =2.

Thus there exists a vertex, say y, which is different from z;, such that
y € N(a7) N N(h;). If y € V(G) = V(C), we can easily find a cycle in G
which is longer than C. If y € V(C), then we arrive at a contradiction with
the first statement in (2). Hence we prove that the first statement in (3) is
true. Similarly, we can prove that the second statement in (3) is also true.
QED
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Lemma 2. Let G be a connected graph. Then G € K is locally connected
and Y - free if and only if G € K'.

Proof of Lemma 2. If G € K is locally connected and Y - free, then G =
(V(G), E(G)), where V(G) = {ai,a2,...,ap,b1,b2,...,bp41 } and E(G) =
{aibj:1<i<pand1<j<(p+1)}US, where SC{aia;:1<i<j<
p}. Since G[N(b1)] is connected, G[a1, a, ..., ap) is connected. Obviously,
Gla1,az,...,ap] is Y — free. Thus G € K.

If G € K', then G € K and moreover G = (V(G), E(G)), where
V(G) = {al,ag,...,ap,bl,bg,..., bp+1 }, E(G) = {a.,-bj 01 < i < P and
1<j<(p+1)}uS, where SC {aia;:1<i< j<p},and Gla,aq, ..., ap)
is connected and Y - free. Since G[ay, a2, ..., ap} is connected, G[N(b;)], for
each 1 < i < (p + 1), is connected. Again since Glay,az,...,ap) is con-
nected, for each vertex a;, where 1 < i < p, there exists a vertex a;, where
1< j<pandj #i,such that a;a; € E. Thus G[N(a;)], foreach1 <i < p,
is connected. Hence G is locally connected.

Assume that G is not Y — free. Then Y = (V(Y), E(Y)), where V(Y)
= {1, u2, u3, ug, us, ue } and E(Y) = {ujuy, urus, ugus, ugug, usuy, uqus,
u4ug}, is an induced subgraph of G such that { by, b2, ..., bp41 }N{ u1, u2, us,
u4,u5,us} # 0'

When u; € {by,b2,...,bp41 }, since uyuy ¢ E(G) and wjus € E(G),
then both u4 and us are not in {a1,0as2,...,6, }, i.e., both us4 and us are in
{b1,b2, ...,bp4+1 }, contradicting to uqus € E(G).

When uz € {b1,bs,...,bp41}, since ugu; € E(G) and ugus ¢ E(G),
then u; € {a,l,a.g,...,a,,} and ug € {bl,bz,...,bp.H }, contradicting to
uius € E(G). Similarly, we can arrive at a contradiction when uz €

{ bly b2s veey bp+1 }'

When ug € {b1,ba,...,bp41}, since uguy ¢ E(G) and wgus € E(G),
then u; € {b1,b2,...,bp41} and us € {ay,a2,...,a,}, contradicting to
uius &€ E(G).

When us € { b1, b2, ..., bp+1 }, since usuy € E(G) and usuz € E(G), then
both u; and up arein { by, bz, ..., bp41 }, contradicting to uyuz € E(G). Sim-
ilarly, we can arrive at a contradiction when ug € { b1, b2, ..., bp41 }.

Thus the assumption that G is not Y — free is false. Hence G € K is
locally connected and Y - free. QED
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Lemma 3. Let G be a graph. Then G € Kis Z, - free ifand only if G € X”'.

Proof of Lemma 3. Obviously, if G € K is Z, — free, then G € K". If
G € K", then G € K and moreover G = (V(G), E(G)), where V(G) =
{a1,02,...,ap,b1,b,..., bpy1 }, E(G) = {aibj : 1 <i<pandl1<j<
(p+1)}US, where S C {aiaj :1<€i<ji< p}, and G’[al,a.z,...,a,,] is Zy
- free.

Assume that G is not Zz - free. Then Z; = (V(Z;), E(Z2)), where
V(Z2) = { u1,u2,u3,u4,us } and E(Y) = {vyu2, ugus, usus, usus, uqus},
is an induced subgraph of G such that { by, b2, ..., bp41 }N{ w1, ua, us, ug, us }
#0.

When u; € {b1,b2,...,bp41 }, since uyus ¢ E(G) and uwyus ¢ E(G),
then both u4 and us are not in {a1,4as,...,a, }, i.e., both u4 and us are in
{ b1,ba, ..., bp41 }, contradicting to ugus € E(G).

When Uz € {bl,bz,...,bp.H }, since U2Uyg ¢ E(G) and uauUs §{ E(G),
then both u4 and us are not in { a1,az,...,ap }, i.e., both u4 and us are in
{b1,b2, ..., bp4+1 }, contradicting to uqus € E(G).

When u3 € {bl,bz,...,bp+1 }, since ugu; & E(G) and ugug € E(G),
then u; € {b1,ba,...,bp,bp41} and ug € {ay,a2,...,a, }, contradicting to
ULU4 ¢ E(G)

When ug € {by,bs,...,bp41 }, since usu; ¢ E(G) and uquz € E(G),
then u; € {b1,b2,....0p,bp41} and uz € {a1,a2,...,ap}, contradicting
to wyuz € E(G). Similarly, we can arrive at a contradiction when u; €

{bla b2a seey bp+1 }

Thus the assumption that G is not Z; — free is false. Hence G € K is
Zy - free. QED

3. Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Let G be a graph satisfying the conditions in The-
orem 3. Then G is 2 — connected otherwise G[N(v)] is disconnected, where
v is a cut — vertex in G. Suppose that G is nonhamiltonian and G ¢ X'.
Then from Lemma 2 and the facts that G is locally connected and Y -
free we have that G ¢ K. Choose a longest cycle C in G and specify an
orientation of C. Assume that H is any connected component of the graph
GV(G)-V(C)], NV(H))nV(C) = {a1,a, ...,ar} With h;a; € E, where
h; € V(H) for each 4, 1 < ¢ < h, and ay, ag, ..., ar are labeled in the
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order of the orlentatlon of C. Since G is 2 - connected, £ > 2. From (1) i 1n
Lemma 1, we have a] a] € E for each i z, 1< i< h. Let P, := hipipa...pray
be the shortest path between hi and af and let P := h1g192...gsa7 be the
shortest paths between k; and a] in the connected graph G[N(a1)). With-
out loss of generality, we assume that r < s. This assumption implies that

ay is not on the path P;.
Claim 1. 7 = 2.

Proof of Claim 1. Suppose, to the contrary, that r # 2. then7 =1 or
r > 3. If r = 1, clearly, p; € V(C) otherwise we can easily find a cycle in G
which is longer than C. Notlce that p; € N(a1). By the second statement
in (2) of Lemma 1, we have af p1 ¢ E, contradicting to a1 p € E. Ifr > 3,
then p; € N(a;) —{af ,h1 }, a¥p2 € E, and hyp; € E since P, is a.shortest
path between h; and af in G[N(e;)]. Thus we arrive at a contradiction
with the second statement in (3) of Lemma 1.

Claim 2. p; € V(C) and p; € V(C).

Proof of Claim 2. If p, € V(C), since P, is in G[N(a,)], we can easily
find a cycle in G which is longer than C. If p, € V(C) and p; € V(C),
we arrive at a contradiction with the second statement in (2) of Lemma 1.
Therefore p; € V(C) and p; € V(C). By (1) in Lemma 1, we have that

pipi € E.
Now we consider the case p; € a[ai", p2)-
Claim 3. G|p2,p5,P3,p1,h1,01] is isomorphic to Y if p; € a[at,pgl.

Proof of Claim 3. First notice that pija; € E and psa; € E since P, is
in G[N(ay)]. If p7 p§ € E, then G has a cycle

hip1p2Claf,p7|C e, 2 1C [P, arlhy
which is longer than C, a contradiction. If p; py € E, then G has a cycle
h1Cle1,pal Caf, p71C 0T, 2 Ip1ha
which is longer than C, a contradiction. If p; by € E, then G has a cycle
m1Clar, p2l Clat, p7 1hs
which is longer than C, a contradiction. If p; a; € E, then G has a cycle

hip1C 2, a7 ]C ot , p7] Clot, p3 Jarh
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which is longer than C, a contradiction. If pJp; € E, then G has a cycle
hip1Clpf, a7 ]Clet, pr]C 1P}, palarhn
which is longer than C, a contradiction. If pfh; € E, then G has a cycle
mClpf,p7)C o}, pelpri
which is longer than C, a contradiction. If pJa; € E, then G has a cycle
heiClpf,a71Clat, p7|C T, palpiha

which is longer than C, a contradiction. If poh; € E, then P, is not a
shortest path between h; and a} in G[N(a;)], a contradiction.

Therefore G[p2, p5,p3, 1, h1,a1) is isomorphic to Y if p, € 'a[a,'l",pgl.
Next we consider the case p; € C|a}, p1)-
Claim 4. Glp2,p;,pT,p1,h1,a1] is isomorphic to Y if py € 6[(1‘{',1);].
Proof of Claim 4. First notice that a] # p; otherwise G has a cycle
h1p1Clp2, p71C [0} a7 Jaf a1y
which is longer than C. If p; p§ € E, then G has a cycle
mpip2Clat,pz1C 3, 71 C oY, a1l
which is longer than C, a contradiction. If p;p; € E, then G has a cycle
hCla, p{1ClpT, pol Clat, p7 Ipha
which is longer than C, a contradiction. If p; h; € E, then G has a cycle
h1Clax, p2] Claf ,p7 1k
which is longer than C, a contradiction. If p; a; € E, then G has a cycle
tpr Clpa, p71ClpY , a7 1Claf , p3 Jar
which is longer than C, a contradiction. If pJp; € E, then G has a cycle

hp1 Clpg,p71C 0T, 67]1C [af , polas iy
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which is longer than C, a contradiction. If pJ hy € E, then G has a cycle
rClp},ar]Claf, p2larhy
which is longer than C, a contradiction. If p;‘ ay € E, then G has a cycle
h1a1Clp},p71ClpT, 071 C o], p2lprhs

which is longer than C, a contradiction. If poh; € E, then P is not a
shortest path between k) and af in G[N(a;)], a contradiction.

Therefore G[p2, p3 , P3 , P1,h1, 01 is isomorphic to Y if p; € 6[(1'{', p1)-

The combination of Claim 3 and Claim 4 gives contradictions. There-
fore we complete the proof of Theorem 3. QED

Proof of Theorem 4. Let G be a graph satisfying the conditions in Theo-
rem 4. Suppose that G is nonhamiltonian and G € K”. Then from Lemma
3 and the fact that G is Z5 — free we have that G € K. Choose a longest cy-
cle C in G and specify an orientation of C. Assume that H is any connected
component of the graph G[V(G)-V(C)], N(V(H))NV(C) = {a1,as, ..., ar}
with h;a; € E, where h; € V(H) for each¢,1 < i < h, and a4, ay, ..., a are
labeled in the order of the orientation of C. Since G is 2 - connected, A > 2.
From (1) in Lemma 1, we have a] a] € E for each i, 1 < i < h. Obviously,
arhiHhgas is a path between a; and ag such that all the internal vertices
of it are in H. Let P := a;p)p;...pra2, where r > 1, be the shortest path
between a; and ag such that all the internal vertices of P are in H. Then
we have the following possible cases.

Casel. r>2

By the choices of C and P, we have Glay,a7,a],p1,p2] is isomorphic to
Za, a contradiction.

Case 2, r=1

By the choices of C and P, (2) in Lemma 1, and G[a1, a7, a7, p1,a2) is not
isomorphic to Z3, we have that ajas € E. From (3) in Lemma 1, we have
that agaf € E, a contradiction.

Therefore we complete the proof of Theorem 4. QED
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