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Abstract

In this paper, we develop an O(k®V®) time algorithm to determine
the cyclic edge connectivity of k-regular graphs of order V for k > 3
which is an improvement of a known algorithm by Lou and Wang.

1. Introduction and terminology

Let G be a finite, undirected, connected and simple graph, except the
graphs otherwise stated.

Let G = (V, E), where V is the vertex set of G and E is the edge set of
G. We denote |V| by v(G). Sometimes, we use V to represent v(G). Let H
be a subgraph of G. Then we denote by V(H) the vertex set of H and by
E(H) the edge set of H. Let F be another subgraph of G. The H N F is the
subgraph with vertex set V(H) N V(F) and edge set E(H) N E(F). Let S C
V(G). The induced subgraph of G on S is denoted by G[S]. Let v € V(G),
and N(v) = {u | u € V(G) and uv € E(G)}. Let u, v € V(G). Then d(u,
v) is the distance between u and v which is the length of a shortest path
from u to v in G. Let C be a cycle in G. A chord of C is an edge xy in G
such that x, y € V(C) but xy ¢ E(C). A minimal cycle C of G is a cycle
without chords. An odd (even) cycle is a cycle of odd (even) length. Let
C be a cycle without chord, then the co-cycle of C is the set of all edges
with exactly one end on C. We denote the length of a shortest cycle in G
by g(G), which is called the girth of G. Let T be a tree with a root u €
V(T). Then Q.(u) = {v | v € V(T) and d(u, v) = r—1} is called the r-th
layer of T. The maximum r such that Q,(u) # 0 is the number of layers
of T. For a positive real number y, we denote by |y] the maximum integer
not larger than y.
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A cyclic edge cutset S of G is an edge cutset whose deletion disconnects
G such that at least two of the components of G—S contain a cycle. The
cyclic edge connectivity, denoted by cA(G), is the cardinality of a minimum
cyclic edge cutset of G. If no cyclic edge cutset exists in G, we say that
cA(G) = oo.

For the terminology and notation not defined in this paper, the reader
is referred to [1].

The concept of cyclic edge connectivity was introduced by Tait [14] in
the proof of the Four Colour Theorem. Plummer [13] shows the cyclic
edge connectivity of 5-connected planar graphs is at most 13, but that of
4-connected planar graphs can be any natural number at least 4. In (3]
and (5], Holton, Lou and Plummer show the relation between cyclic edge
connectivity and n-extendable graphs. In a paper of Peroche [12], several
sorts of connectivity, including cyclic edge connectivity, and their relation
are studied. Nedela and Skoviera [10] introduce the concept of atom. If
B is a cyclic edge cutset of size cA(G), then a subgraph P of G such that
each edge in B has exactly one incident vertex in P is called a cyclic part.
An atom is a cyclic part that is minimal under inclusion. They also show
that, for a connected cubic graph G, if cA(G) = k and P is not a cycle,
then either (1) P has at least 2k—3 vertices, or (2) k = 6 and P consists of
two vertices joined by three openly disjoint paths of length 3. Moreover, if
P is an atom, then either (1) P has at least 2k vertices, or (2) k = 3 and
P consists of two vertices joined by three openly disjoint paths of length
2. For a summary of research in connectivity and edge connectivity, the
reader is referred to [11]. In [6] and [7], Lou and Wang obtained the first
efficient algorithm to determine the cyclic edge connectivity of k-regular
graphs for k > 3 and an efficient algorithm to determine whether a general
graph has infinite cyclic edge connectivity. However, the time complexity
of the first algorithm is O(k!!V®), which is a little too large for practical
use. In this paper, we improve the algorithm to obtain an O(k®V®) time
algorithm to determine the cyclic edge connectivity of k-regular graphs for
k > 3.

2. An improved algorithm for cyclic edge connectivity

In this section, we give an improved algorithm for the cyclic edge connec-
tivity of k-regular graphs which has time complexity O(k°V¢).

Algorithm 1:
1. Use a breadth first search strategy to find a shortest cycle containing v
for each vertex v in G, then we can find the girth g of G; //O(k|V|?)
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2. If ¥(G) < 2g, then cA(G) = oo and is returned; // O(1)

3. For each edge e € E(G), use a breadth first search strategy to find all
minimal odd cycles C containing e such that |V(C)| < 2|logi-1¥(G)|+5 and
all minimal even cycles C containing e such that |V(C)| < 2|logi—1v(G)]+6.
Let C. be the set of all such cycles containing e and let F = | J,¢ E(G)Ce;

/] O(k*|V[?)
4. s:= (k-2)g; // O(1)
5. For any two different cycles C; and Cs in F do // O(k8|V[%)

BEGIN
6. If V(C;) N V(Cy) = 0, then we construct a new graph G’ such that V(G’)

= V(G) U {x, y}, where x, y ¢ V(G), and E(G’) contains all the edges in
E(QG), for each vertex u on Cy, we put (k—2) multiple edges between x and
u, and for each vertex v on Co, we put (k—2) multiple edges between y and
vi /1 O(V])

7. Use the algorithm of [9] to find a minimum edge cutset S;, which
separates x and y; // O(k|V|?)

8. s := min{s, [Szy|}; // O(1)

END;

9. Then cA(G) = s and is returned; // O(1).

3. Correctness and time complexity of the algorithm

In this section, we prove the correctness of Algorithm 1, and analyse time
complexity of the algorithm. In the proof of correctness, we need the fol-
lowing two lemmas.

Lemma 1([7]): Let G be a connected k-regular graph. Then cA # oo if
and only if v(G) > 2g, where g is the girth of G.

Proof. For convenience of the reader to read Lemma 2 and its proof,
we include the proof of this lemma again.

Suppose v(G) > 2g. We shall prove that the co-cycle of a minimum
cycle C of G is a cyclic edge cutset, then cA(G) < (k—2)g, hence cA(G) #
00.

Now we prove that G—V(C) has a cycle. Suppose not. Then G—V(C)
is a forest. Then k(v—g)—2(r—g—1) < (k—2)g. We have v < 2g—2/(k—2).
But v is an integer. So v < 2g-1, which contradicts the assumption that
v(G) > 2g.
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Suppose ¥(G) < 2g and cA # co. Then G has a cyclic edge cutset S
such that G—S has two components C; and C; that both C; and C; have
a cycle. So |[V(Cy)| > g and |[V(C2)| > g, which contradicts the assumption
that »(G) < 2g. O

Lemma 2: Let G be a connected k-regular graph. If cA(G) < (k-2)g,
then, deleting a minimum cyclic edge cutset S, G—S has two components
each of which contains a cycle C such that [V(C)| £ 2 [logk—1v(G)]|+5 if
C is an odd cycle or |V(C)| < 2|logk-1¢(G)]+86 if C is an even cycle.

Proof. For a connected k-regular graph G, let C; be a shortest cycle of
G, by the proof of Lemma 1, the co-cycle of C; is a cyclic edge cutset of
size (k—2)g. So cA(G) < (k-2)g.

Suppose cA(G) < (k—2)g. Then cA(G) < (k—2)g—1. Let S be a min-
imum cyclic edge cutset of G of size cA(G), D be a component of G—S
containing a cycle and let C be a shortest cycle in D, where |V(C)| > g.
Let C = agay - --ac_1a9, where ¢ = [V(C)|. Since C is a shortest cycle in D,
C does not have any chord. Let No(a;) = {a;} and let a;;, aip, - - +, 85 k-2
be the vertices in N(a;)\V(C). Let N1(2;;)\C = {ai;}, Ny(a;;)\C = {u | u
€ V(G)\V(C), d(aj, u) = r—1, and 3x € N,_;(a;;)\C, xu € E(G)} (r >

2). Let M, (8:;) = No(a:) U Ni(2i5)\C.

k=1

Suppose (N;(a;;)\C) N (N1(apg)\C) N D # @ for some i # p or j # q.
Then either we have a cycle C’ in D of length less than ¢, contradicting the
assumption that C is a shortest cycle in D, or ¢ < 3 < 2{logk—1¢(G)]+5 if
C is an odd cycle or ¢ < 4 < 2|logk—1#(G)]+6 if C is an even cycle, as we
required in Lemma 2.

Now suppose (N1(2i;)\C) N (N1(apg)\C) N D =0 for alli # p or j #
q. If ¢ < 4, it also satisfies the requirement of Lemma 2. So we suppose
that ¢ > 4.

The main idea of our proof is that first a lower bound for »(D) will be
found which will then enable us to find the upper bound of c.

With respect to the congruence of the length of the shortest cycle C
modulo 4, the proof is divided into four cases.

Case 1: ¢ = 4m and m is a positive integer.

Let Gi; = G[M¢/4(ai5)] (i=10,1,--+,¢~1;j=1,2, -, k—2). Since
every cycle in D has length at least ¢, G;; N D is a tree, and E(G;; N D)
NE(Gpg N D) =0 (i # porj#q). Since |S| < (k-2)g—1 and ¢ > g, the
edges of S lie in at most (k—2)g—1 < (k—2)c-10f G;; (i=0,1, 2, ..,
c—-1;j=1,2, .-+, k—=2). So at least one G;; does not contain any edge of
S. Without loss of generality, assume Gg,; does not contain any edge in S.
Since every cycle in D has length at least ¢, Go,y N D and G.j2; N D may
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share at most one vertex in N¢/4(20,1)\C N N¢/4(ac/2,;)\C for one j such
that 1 < j < k—2. Otherwise, if we have more than one vertex in (Go,; N

k-2
D)n( U (Geya,; N D)), then we can find a cycle shorter than C in (Go,1

NnD) U ( U (G¢y2,; N D)) U C, which is a contradiction.

Let To 1 = G[M¢/2_1(20,1 )]. Then To; N D is a tree as every cycle in
D has length at least c.

Now we use G;j and To; (i=1,2, -+, ¢c-1;j=1,2, .-, k-2; and,
i =0andj # 1) to represent the trees in the case that G;; and Ty, are
contained in D, and we use G;; N D and To,; N D to represent the trees in
the real case. Notice that To,) may share vertices with G¢/441,5, Gejat2,5
-+, Gacyq-1,; for some 1 < j < k—2, whereas does not intersect with Gy,
Ga,js * + *» Geyajr Gacya,ir Gacastir * - Ge—1,5 for any 1< j < k—2 and
Go,; for j # 1 because every cycle in D has length at least c. Otherwise, if
To,1 intersects with a G;; (1 <i<c/4or3c/4<i<c-1;1<j<k-2
and, i = 0 and j # 1), then G;; U To,; U C contains a cycle shorter than
C, a contradiction.

Let b € Nojgs1(a00\C, Ni(b)\Go= {b}, N,(b)\Gos = {u | u €
V(G)\V(Go,1), d(u, b) = r—1, and 3x € N,_;(b)\Go,1, xu € E(G)} (r
> 2). Let a € Ng/4(a0,1)\C such that ab € E(To,1). Let Mc/4,-(b) = {a}

U Ni(b)\Go,1 and T,(a,b) = G[M,/4,~(b)]. Then T,(a,b) N D is a subtree

of To 1NDforl<r<c/d—1. We also use T,(a, b) to represent the
subtree of To,; in the case that To,; is contained in D, and T,(a, b) N D
to represent the subtree of Tp,; N D in the real case. Notice that T./4-1(a,
b) is a branch of Tg,; above Go,; and Go,; is contained in To ;.

The main idea of the following proof is that, in the first step, we find
an edge cutset S’ such that |S/| = |S| and after cutting some vertices from

U Gij U To,1 U C by §’, the remaining subgraph of U Gi;j UTp1 UCs
i, i
contained in D with no more vertices than D; in the second step, we do a

modification of S’ to calculate the lower bound of the order of the above
subgraph of |J G;,; U To,1 U C, which is also a lower bound of v(D). Here

i,J
and in the following, U G;; is the union of all G;;'s (i=1,2,+--,¢c-1;j=

2Y)
1,2,.--,k—2;and,i = 0 and j # 1).
From S, we construct S’ as follows. First, let S’ = 0. For each edge e of
S which does not lie in all G;;’s and To,1, then e does not cut any vertex
from |J G;; U To,1 U C, and we do following Operation 1.

i
Operation 1: We find a G;; (1 <i<c/dor3c/4<i<c-1;1<j<k-2
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or, i =0 and j # 1) which does not contain any edge of S U &', and put
a;a;; in §'; if no such G;; exists, then we find a T;/4—1(a, b) for some a €
N¢/4(20,1)\C and b € N/44.1(20,1)\C with ab € E(T,1) such that T./4_;(a,
b) does not contain any edge of S U §’, and put ab in §'.

For each Gij (1 <1< c¢—-1,1<j<k-2;o0r,i=0and j# 1) containing
an edge of S, if a;a;; € S, then put a;a;; in §'; if a;a;; ¢ S, we find an edge
e1 € S N E(Gyj), and put a;a;; in §', then for each edge e € S N E(G;;)
other than e;, we do Operation 1.

For each T¢/4_1(a, b) containing an edge of S for a € N/4(ap,1)\C and
b € N¢/at1(a0,1)\C with ab € E(To 1), if ab € S, then put ab in §'; if ab
¢ S, we find an edge e; € S N E(T/4-1(a, b)), and put ab in S, then for
each edge e € S N E(T,/4-1(a,b)) other than e;, we do Operation 1.

Notice that for each G;; (and T./4—1(a, b)) containing an edge of S, all
vertices of G;; except a; (all vertices of Tc/4—1(a, b) except a) are deleted
by S from |J Gi; U To,; U C. There may be other G;;’s (1< i < ¢/4 or

i
3c/4£i<ec-1,1<j<k-2o0ri=0andj#1)(and (Tc/s-1(a, b)’s
for some a € N./4(20,1)\C and b € N./441(a0,1)\C with ab € E(To,)) not
containing any edge of S which are also deleted except a; (except a) by
S’. Hence the remaining subgraph of |J G;; U To,; U C is contained in D.

i,
Since, for each edge in S, S’ has a corresponding edge, so [S'| = |S|.
Now, for each G;; containing an edge e of S, e = a;a;;; for each T;/4_, (a,
b) containing an edge e of §', e = ab. To cut an edge a;a;; € S’ in G;;, we
can delete at most all vertices of G;; except a; from |J Gi; U Toy U C,

oY
that is, to delete (k—1)0+ (k—=1)*+ -+ (k—1)¢/4"1= [(k—1)/4- 1]/(k-2)
vertices from U Gi; U To,1 UC. Tocut an edge ab € S in T;/4_;(a, b) for

i,j
one a € N¢/4(20,1)\C and one b € N¢/441(80,1)\C such that ab € E(To 1),
we can delete at most all vertices of T4 (2, b) except a from U Gi; UTo,

llJ
U C, that is, to delete (k—1)0+ (k—1)+ --- + (k—1)¢/4"2= [(k—1)¢/4-1—
1)/(k—2) vertices from |J Gi; U To,, U C.

i
Suppose there are m G;;’s (1 <i<c¢fdor3c/4<i<c-1,1<j<
k—2; or, i = 0 and j # 1) which do not contain any edge of S’; and there
are n Gy;'s (c¢/4+1 < i < 3¢/4-1, 1 < j < k—2) which do not contain any
edge of S’. Then the number of the subtrees T./4_1(a, b) containing an
edge ab of S’ is not larger than n + m since |$'| = |S| < (k—2)c—1, where
(k—2)c—1 is the number of all G;;'s except Go,;.
Now we have V(To,1) N V(Gy;) = 8, to delete an edge a;a;; in Gy;
instead of an edge ab in T.;4-1(a, b) will delete more vertices from |J Gi;
tJ
UToUC(1<i<c/4or3c/a<i<c-1;1<j<k-2;0r,i=0andj
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# 1).To calculate a lower bound of the order of the remaining subgraph of
U Gi; U To,1 U C after deleting S, we do the modification of S’ to assume

"J

that all G;;’s have an cut edge a;a;; in 8’ (1 <i<c/4dand 3c/4 <i <
c-1,1 <j<k-2; and, i =0andj# 1) and there are n Gi;’s (c/4+1 <
i < 3c/4-1, 1 £ j < k—2) not containing any cut edge in S’ which may
share vertices with Ty,; and there are at most n T./4_1(a, b) containing
cut edge ab in S’ for some a € N/4(20,1)\C and b € N./441(a0,1)\C with

ab € E(To,1). Then the order of remaining subgraph of | J Gi; U To,; U C
i.J

after cutted by S’ is a lower bound of v(D).

Let ag be the root of Tg ;. Notice that To; originally has c/2 layers, G;;
(c/4+1 <i < 3¢/4-1,1 < j < k—2) can provide at most n < (k—2)(c/2-1)
cut edges to T./4—1(a, b)’s, and N¢/4(a0,1)\C has (k—1)/4=1 vertices. By
k-regularity of G, if (k—2)(c/2—-1) < (k—2)(k—1)¢/4~1, then we cut at most
(k—2)(k—1)¢/4=* subtrees T/4—1(a, b)—a from To,;, the resulting tree of
To,1 equivalently has at least the number of vertices of ¢/2—1 layers plus a
layer of (k—1)¢/4=! vertices, which is a lower bound of »(D). So

v(D) > (k=1)%4 (k=1) 4 -+ + (k=1)¢/2-3+ ¢ + (k—1)¢/4-!

= [(k=1)¢/2"2- 1]/(k—2) + c + (k—1)¢/4"1

> [(k=1)/2-2- 1)/(k~2).

However, (k—2)(c/2—1) < (k—2)(k—1)¢/4-1 is equivalent to c¢/4—1 =
(/4 —1/2) — 1/2 > logk—1(c/2 — 1) = logk—_12 + logk—1(c/4—1/2). Since
x—logk—1x > logr—12 + 1/2 is satisfied when x > 7/2 and k > 3, when c¢/4
—-1/2 > 7/2, i.e. ¢ 2 16, the above inequality holds.

Now we discuss the special cases of ¢ = 4, 8 and 12.

Case (1.1): c = 4.

Then c satisfies the requirement of Lemma 2.
Case (1.2): ¢ = 8.

Notice that [(k—1)%/2-2—1]/(k—2) = [(k—1)2-1]/(k—2) = (k—2)k/(k—2)
=k. v(D) > v(Go,) > k+1 2 k.

Case (1.3): c = 12.

Let ag be the root of Gg,;. Now Go,; has 4 layers No(ag), N1(a0,1)\C,
N2(a0,1)\C and Na(ag1)\C. Let Ty; = G[Mc/at1(a0,1)] = G[No(ao) U
Nj(ap,1)\C U Na(a0,1)\C U Na(ap,1)\C U N4(ap,1)\C]. We shall prove that
D has at least as many vertices as T<’1,1~

Let T¢/4-2(a, b) = G[Mc/4,c/a—2(b)] for some a € N/4(a0,1)\C and b
€ N¢/4+1(20,1)\C such that ab € E(To,1) and let a be the root of Tc/4-2(a,
b). Since ¢ = 12, Tc/4—2(a, b) has 2 layers and ¢/4—2 = 1. Let G;; =
G[Mc/a-1(ai)] (i = c/4+1, c/442, - -+, 3c/4~1;1 < j < k=2).

Similar to the previous proof, T:,'l does not intersect with G;; (i = 1,
2, -+, ¢/4, 3c/4, 3c/4+1, - -, c—-1;j=1,2,-.., k—2; and, i = 0 and j #
1), and Tfm may share at most one vertex with G;,j for one j such that 1
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< j £ k-2, but does not intersect with the other G;j s(4=c/4+l1 <i <
3c/4—1 = 8; 1 < j < k—2) as every cycle in D has length at least c. Then
Gy (i=1,23,910,11;1 < j<k-2;and, i =0 and j # 1) contains
an edge a;a;; € S’ as previous proof, and there are n G;j’s 4<i<8g 1l
< j € k—~2) not containing cut edges of S’ whereas there are at most n
T./4—2(a, b)’s containing cut edges ab in §'. Notice that each cut edge ab
can delete at most one vertex from T./4_2(a, b) and hence from T('),l and
the n G;J- 's not containing any edge in $’ have n [(k—1)°+ (k—1)?] vertices.
Also considering the common vertex of T;),l and G;,j, we have

v(D) > V(T;,’l) -n+ nu(G;j) -1l+c

= [(k-1)° + (k-1)' + (k—1)2 + (k1) — n] + n[(k—1)° + (k-1)}]
-1+c

> [(k-1)"= 1)/(k~2) + n((k-1)>~1)/(k~2) — 1]

> [(k-1)4= 1)/(k-2)

= [(k-1)°/2-2— 1]/ (k—2).

So, in all subcases of Case 1, v(D) > [(k—1)*/2-2-1]/(k-2).

Case 2: ¢ = 4m+1 and m is a positive integer.

The main idea of proof is similar to that of Case 1.

Let Gij = G[M(c_l)/4(a,,-j)] (l = 1, 2, vy C-—l;j = 1, 2, Ty k—2) Then
Gi; N D is a tree, and E(G;; N D) N E(Gpy N D) = @, in fact, V(Gy; N
D) N V(Gpg N D) =0 (i # p or j # q) as every cycle in D has length at
least c. Since |S| < (k—-2)g—1 and ¢ > g, without loss of generality, we can
assume that Go,; does not contain any edge in S.

Let To,1 = G[M(c—1);2(a0,1)]. Then Tg; N D is a tree as every cycle in
D has length at least c. Weuse G;;and Tgy (i=1,2,--,¢c-1;j=1,2, -,
k-2; and, i = 0 and j # 1) to represent the trees in the case that G;; and
To,1 are contained in D. Weuse G;; NDand To; ND (i=1,2, -+, ¢c—1;
j=1,2,--,k-2;and, i =0 and j # 1) to represent the trees in the real
case. Notice that To,y may share vertices with Gc_1)/4+1,5, G(e-1)/4+2,5>
*++y Gg(c-1)/4,j for some 1< j < k-2, whereas does not intersect with G, ;,
Go,jy -+ s G(e-1)/4,5r Ga(c=1)/a+1,5) G3(c—1)/a42,js * * *» Ge—1,j for any 1< j
< k=2 and Go,; for j #1.

Let b € N(c_1)/a+1(20,1)\C, N1(b)\Go,1= {b}, N-(b)\Go,s = {u |u €
V(G)\V(Go,1), d(u, b) =r—1, and 3x € N,_1(b)\Go,1, xu € E(G)} (r > 2).

r
Let a € Nc—1)/4(20,1)\C such that ab € E(To,1). Let M(c_1y/4,-(b)={a} U
k=1

Ni(b)\Go,1and T-(a,b)=G[M(c_1)/4,-(b)]. Then T.(a,b) N D is a subtree
of Toy ND for 1 <r < (c—1)/4. We also use Ty(a, b) to represent the
subtree of To,; in the case that To,; is contained in D, and Tr(a, b) N D to
represent the subtree of To,; N D in the real case. Notice that T,_y) /a(a,
b) is a branch of Ty ; above Go,; and Go,; is contained in To,;.

By similar argument to Case 1, we can obtain an edge cutset S’ with
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|S’| = |S| and the remaining subgraph of |} Gi; U To,1 U C after cutted by
i'j

S’ is contained in D. For each G;j, if we cut the edge a;a;;, we shall delete

at most all vertices of G;; except a;, that is, to delete (k—1)° + (k—1)'+

oot (k=1)(e~D/4-1< [(k—1)(e=D/4-1]/(k—2) vertices from |J Gij U To,

7
U C. To cut an edge ab in T(._1)/4(2, b) for some a € N(c-1)/4(20,1)\C
and b € N(c—1)/a+1(20,1)\C such that ab € E(To,1), we can delete at most
all vertices of T(c_1)/4(a, b) except a from Ty 1, that is, to delete (k—1)°
+ (k=14 - 4 (k—1)c"1/4=1 = [(k—1)(e=1)/4-1]/(k—2) vertices from
U Gij U TO,I U C. Since V(To’l) N V(GU) =0 i=12- - (C-—l)/4,

6

3(c—1)/4+1, 3(c—1)/4+2, -+, c—1; 1 < j < k—2; and,i = 0 and j # 1), to

cut an edge a;a;; will delete at least as many vertices from U Gi;j U To,
3

U C as to cut an edge ab in T(._1)/4(a, b).

By similar argument to Case 1, to find a lower bound of (D), we only
need to consider the case that each Gi; (i=1, 2, -+, (c—1)/4, 3(c~1)/4+1,
3(c-1)/442, - -, c-1;j=1,2,--+, k=2; and, i = 0 and j # 1) contains
a cut edge a;a;; of &', and there are n G;;'s ((c—1)/4+1 < i < 3(c—1)/4,
1 € j € k—=2) not containing any cut edge of S’, and there are at most n
T(c-1)/4(a, b)’s containing cut edges ab of §'.

Let ap be the root of Typ,;. Notice that To; originally has (c—1)/2+1
layers, G;; ((c—1)/4+1 < i < 3(c—1)/4, 1 £ j £ k-2) can provide at
most n < (k—2)(c—1)/2 cut edges to T(._1)/4(a, b)’s, and Nc_1)/4(20,1)\C
has (k—1){(c=1)/4-1 vertices. By k-regularity of G, if (k—=2)(c—1)/2 <
(k=2)(k—1)(c=1)/4-1  then we cut at most (k—2)(k—1)(c~1)/4=1 subtrees
T(c-1)/4(a, b)—a from To,1, the resulting tree of To,1 equivalently has at
least the number of vertices of (c—1)/2 layers plus a layer of (k—1)(¢—1)/4-1
vertices, which is a lower bound of ¥( D). So

v(D) > (k—1)%4 (k—=1)14 -+ + (k=1){c=1)/2=2 4 ¢ 4 (k—1)(c-1)/4-1

= [(k=1)c=1/2-1_1]/(k=2) + ¢ + (k—1)(c~1)/4-1

> [(k-1)(e-1/2-1_1]/(k—2).

However, (k—2)(c—1)/2 < (k—2)(k—1){¢~1)/4-1 j5 equivalent to (c—1)/4
— 1> logk—1((c—1)/2) = logx—-12 + logk_1((c~1)/4). Since x~logk_;x >
1 + logk—12 is satisfied when x > 4 and k > 3, when (c—1)/4 > 4,ie. ¢ >
17, the above inequality holds.

Now we discuss the special cases of ¢ = 5, 9, 13.

Case (2.1): ¢ = 5.

v(D) 2 v(C) = 5 > [(k=1)(c~1/2-1-1)/(k-2) = 1.
Case (2.2): ¢ = 9.

Similar to Case (1.3). Let ag be the root of Gg;. Now Gg,; has 3
layers No(ao), Nl(ao,l)\C and Ng(ao'l)\c. Let T;),l = G[M(c—l)/4+1(30,l)]
= G[No(ag) U Ni(a0,1)\C U N2(ap,1)\C U N3(ag,1)\C]. We shall prove that
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D has at least as many vertices as Té,’l.

The cut edges of S’ in T('J , are of the form ab such that a € Na(ag,1)\C
and b € N3(ay, 1)\C in whichab € E(T0 1) Each cut edge in To 1 deletes one
vertex from To 1- The cut edges of §’ in Gy; (i = (c—1)/4+1, (c—1)/4+2,

5 3(c=1)/4; 1 £ j < k-2) are of the form a;a;; (i = 3,4, 5,6; 1 <
j < k~2). Notice that T;),I may share at most one vertex with G4, and
Gs,q respectively for one p and q such that 1 < p, q < k—2 but does not
intersect with the other G;;’s (1 =3, 4,5,6;1<j<k-2) as each cycle in
D has length at least ¢ and TO 1 does not intersect with Gi;'s (i = 1, 2, 7,
8,1<j<k-2;and,i=0 a.ndJ # 1). To obtain a lower bound of u(D), we
only need to consider the case that each G;; (i=1,2,7,8;1<j < k-2;
and, i = 0 and j # 1) contains a cut edge a;a;; and there are n G;;’s which
do not contain any cut edge of 8’ (i = 3, 4, 5, 6; 1 < j < k—2), whereas
To , contains at most n cut edges of S’. Then

v(D) > V(Tm) -—n+m(Gy)—-2+¢c

> [(k— —1)0+ (k—1)'+ (k— 1)2—n] + n[(k—1)° + (k=1)}] -2+ ¢

> (k—=1)°+ (k-1)'+ (k—1)2+ n[((k-1)2-1)/(k-2)-1]

> [(k-1)°~1)/(k~2)

= [(k=1)(c=1/2=1-1]/(k-2).

Case (2.3): ¢ =13.

Similar to Case (1.3). Let ag be the root of Go,;. Now Go,; has 4 layers
No(20); N1(a0,1)\C, N2(a0,1)\C and Na(ao,1)\C. Let Ty ; = G[M(c_1)/442(
20,1)] = G[No(a0) U Ni(a0,1)\C U Na(ap,1)\C U Ns(ao,1)\C U Ny(aq, 1\C
U Ns(a0,1)\C]. We shall prove that D has at least as many vertices as To 1-

Let Te_1)7a-1(8, b) = G[M(c—1)/4,(c-1)/4-1(b)] for some a € N(c_1y/4(
20,1)\C and b € N(._1)/4+1(20,1)\C such that ab € E(To,;) and let a be
the root of T(.—1)/4-1(8, b). Since ¢ = 13, T(._1)/4—1(a, b) has 3 layers
and (c—1)/4—1 = 2 and T(c_1)/4-1(a, b) is a branch of T(',_l above Gg,;.

The cut edges of 8’ in T;, 1 are of the form ab such that a € N3(ag ;)\C
and b € Ny(ap,1)\C, where ab € E(Ty,;). Each cut edge in To 1 deletes at
most all vertices of one T(c_1y/4— 1(a. b) except a. The cut edges of §' in
Gij (i = (c—1)/4+1, (c-1)/4+2, - -, 3(c—1)/4; 1 < j < k—2) are of the
form a;a;; (i=4,5,--,91<j< k—2). Notice that T;m may share at
most two vertices with Gg , and Gr 4 respectively for one p and q such that
1 < p, q < k-2 but for the other G;;’s (i=4,5,---,9; 1 < j < k-2), T01
may share at most one vertex with G;;, and TO 1 does not intersect with
G” (i=1,2310,11,12;1 <j < k-2 andl—Oand_Hél)asea.chcycle
in D has length at least c. To obtain a lower bound of v(D), we only need
to consider the case that G;; (i=1,2,3,10,11,12;1 <j<k-2;andi=
0 and j # 1) contains a cut edge a;a;; of S’ and there are n G;;’s (i = 4, 5,
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-, 9; 1 € j € k—2) which do not contain any cut edge of S, whereas T;m
contains at most n cut edges of S’. Then

v(D) 2 V(To )+ n[V(GzJ) 1] = n ¥(T(c-1)7a-1(2, b)) =2+ ¢

= (k=1)°+ (k—=1)+ - -+ (k=1)* + n[(k—1)%+ (k—1)14 (k—1)2-1] —
n[(k—1)°+ (k-1)}] -2 + ¢

> [(k=1)-1)/(k=2) + n[((k=1)*~1)/(k=2) — 1 — (k=1)2=1)/(k—2)

> [(k-1)°— 1} J(k— 2)

= [(k—1)(c1/271-1]/(k-2).

So in all subcases of Case 2, ¥(D) > [(k—1){c-V/2-1-1]/(k~2).

Case 3: ¢ = 4m+2 and m is a positive integer.

The main idea. of proof is similar to that of Case 1.

Let G,:, = G[M(c-2)/4(2i5)] i=0,1,--+,c=1;j=1,2, -+, k—2). Then
G;; N D is a tree, and E(G;; N D) N E(qu ND)=40,in fact V(G;; N D)
N V(Gpg ND) =0 (i # por j # q) as every cycle in D has length at least
c. Since |S| < (k—2)g—1 and ¢ > g, without loss of generality, assume Gg ;
does not contain any edge in S.

Let Ty, = G[M(c_z)/g(%,l)] = G[Mc/g_l(ao,l)]. Then To; N D is a
tree as every cycle in D has length at least c. We use G;; and Ty (i =
1,2, --,¢-1;j=1,2,---,k=2; and, i = 0 and j # 1) to represent the
trees in the case that G;; and To,; are contained in D. Then we use G;;
NDand Topy ND (i=1,2,--,¢c-1;j=1,2,---, k=2;and, i =0
and j # 1) to represent the trees in the real case. Notice that Tp; may
share vertices with G(c_g)/4+2‘j, G(c-—2)/4+3,j7 tey G3(c—2)/4,j for some 1
< j £ k-2, whereas does not intersect with Gy j, Gz, - -, G(c—2)/441,5»
Ga(c-2)/4+1,5) G3(c-2)/442,5) * * s Ge-1,j for any 1 < j < k—2 and Gy,; for
j # 1. Let b € N(c—2)/4+1(20,1)\C, N1(b)\Go,1 = {b}, N-(b)\Go,1 = {u |
u e V(G)\V(Go,1), d(u, b) = r—1, and 3x € N,_;(b)\Go,1, xu € E(G)} (r

> 2). Let a € N(c-2)/4(a0,1)\C such that ab € E(To,;). Let M(c_2)/4,+(b)

= {a'} U Nk(b)\GO 1 and T, (av b) = G(M(c—2)/4 ~(b) ] Then T, (3'7 b) n

Disa subtree of To,; N D for all r such that 1< r < (¢—2)/4, and we use
T,(a, b) to represent the subtree of Tp,; in the case that Ty, is contained
in D. Notice that T(._3)/4(a, b) is a branch of To,; above Go,; and Gy, is
contained in Tq ;.

By similar argument to Case 1, we can obtain an edge cutset S’ with
|S’| = |S| and the remaining subgraph of | J G;; U To,; U C after cutted by

2%

S’ is contained in D.

For each G;j, if we cut the edge a;a;; of ', we shall delete at most
all vertices of G;; except a;, that is, to delete (k—1)%+ (k—1)!+ ...+
(k—1)(c=2/4-1= [(k—1){c~2/4_1]/(k—-2) vertices from |J G; U Tg; U C

;IJ
For each T(._2)/4(a, b) for some a € N(c_3)/4(20,1)\C and b € Nc_g)/4+1(
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ap,1)\C such that ab € E(Ty,), if we delete an edge ab of §’, we can delete
at most all vertices of T(c_g)/4(a, b) except a from Ty ;, that is, to delete
(k=1)4 (k—1) 1+ --- + (k—1)c=2/4=1 = [(k—1)(c=2)/4_1]/(k—2) vertices
from U Gij U Top,1 U C. Since V(To'l) n V(G,J) =0, (=12 ---

ij

(c—2)/4+1, 3(c—2)/4+1, 3(c—-2)/4+2, -- -, c-1;1 <j<k-2;and,i=0

and j # 1), to cut a;a;; will delete at least as many vertices from |J Gi; U
ij

To,1 U C as to cut an edge ab in T(._3)/4(a, b).

By similar argument to Case 1, to find a lower bound of v(D), we
only need to consider the case that each Gy; (i =1, 2, - - -, (c—2)/4+1,
3(c—2)/4+1, 3(c—2)/4+2, - -+, c=1; 1 < j < k-2 and, i = 0 and j #
1) contains a cut edge a;a;;, and there are n Gyj’s ( (c—2)/4+2 < i <
3(c-2)/4, 1 £ j € k—2) which do not contain any cut edge of ', whereas
there are at most n T(._2)/4(2, b)’s containing cut edges ab for some a €
N(C_g)/4(ao,1)\C and b € N(,_._g)/4+1(a0,1)\C such that ab € E(To’l).

Let ag be the root of To,;. Notice that Ty, originally has (c—2)/2+1
= ¢/2 layers, Gy;’s ( (c—2)/4+2 <i < 3(c—2)/4, 1 < j € k=2) can pro-
vide at most n < (k—2)[(c—2)/2-1] cut edges to T(c_3)/4(a, b)’s, and
N(c-2)/4(20,1)\C has (k—1)(¢=2)/4-1 vertices. By k-regularity of G, if
(k- 2)} c—2)/2-1] < (k—2)(k—1)¢¢=2/4-1 then we cut at most (k—2)(k—1
)(e=2/4-1 subtrees T(,—2)/4(a, b)—a from To,1, the resulting tree of Ty,
equivalently has at least the number of vertices of (c~2)/2 = ¢/2—1 layers
plus a layer of (k—1)(¢~2)/4-1 vertices, which is a lower bound of »(D). So

v(D) > (k-1)°+ (k—=1)'+ - -+ + (k—=1)/2734 ¢ 4 (k—1)(c=2)/4-1

= [(k=1)¢/2-2-1)/(k=2) + ¢ + (k—1)(c-2)/4-1

> [(k—1)/2"2-1]/(k-2).

However, (k—2)[(c—-2)/2-1] < (k—2)(k-1){c=2/4=1 j5 equivalent to
(c—2)/4-1 = [(c—2)/4 — 1/2] — 1/2 > logk—1{(c—2)/2 — 1] = logs_;2
+ logk-1((c—2)/4 — 1/2]. Since x — logk—1x > logk-12 + 1/2 is satisfied
when x > 7/2 and k > 3, when (c—2)/4—-1/2 > 7/2, i.e. ¢ > 18, the above
inequality holds.

Now we discuss the special cases of ¢ = 6, 10 and 14.

Case (3.1): ¢ = 6.

v(D) 2 v(C) =6 2 [(k—1)%/2-2-1]/(k-2) = 1 = [(k—1)*/2-2-1)/(k-2).
Case (3.2): ¢ = 10.

Similar to Case (1.3). Let ag be the root of Go,;. Then Go,; has 3
layers No(ao), N1(a0,1)\C and Na(ao,1)\C. Let Tp; = G[M(c_3)/4+1(20,1)]
= G[No(ag) U Ny (ag,1)\C U Na(ao, 1)\C U Na(ao, 1)\C] We shall prove that
D has at least as many vertices as To,l

The cut edges of S’ in Tz,,l are of the form ab such that a € Na(ag,1)\C

and b € N3(ag,1)\C in which ab € E(Ty,;). Each cut edge in Té),l deletes one
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vertex from Tf,,l. The cut edges of §' in G;; (i = (c—2)/4+2, (c—2)/4+3,
<+ 3(c—2)/4; 1 < j £ k—-2) are of the form a;a;; (i =4,5,6;1<j<
k—2). Notice that Ta'l may share at most one vertex with Gs ; for one j
such that 1< j < k—2 but does not intersect with other G;;’s (i = 4, 5, 6;
1<j<k-2;andi=1,2,3,7,891<j<k-2;and,i=0andjs#1)as
each cycle in D has length at least c. By similar argument to Case (1.3),
to find a lower bound of v(D), we only need to consider the case that each
Gij (i=1,2,87,891<j<k-2 and, i =0 andj# 1) contains a
cut edge a;a;; and there are n Gj;'s (1 =4, 5, 6; 1 < j < k—2) which do
not contain any cut edge of S’, and To 1 contains at most n cut edges of S'.
Then

v(D) > V(To ) —n+w(Gi) —1+c¢

> [(k=1)%+ (k—1)'+ (k—1)2= n] + n[(k—=1)°+ (k—-1)}] = 1 + ¢

2 [(k-1) : —1]/(k=2) + n[((k-1)*~1)/(k— 2) 1)

> [(k—1)3-1]/ (k—2)

= [(k=1)"2"2-1)/(k~2).

Case (3.3): c = 14.

Similar to Case (1.3). Let ag be the root of Gg,;. Now Go,; has 4 layers
No(a0), N1(20,1)\C, Na(a0,1)\C and N3(ao,1)\C. Let Tg ; = G[Mc—2)/4+2(
ao'l)] = G[No(a.o) U Nl(ao’l)\C 6] Nz(ao,l)\c U---u Ns(ao,l)\C]. We shall
prove that D has at least as many vertices as T; 1

Let T(.-2)/4-1(2, b) = G[M(c—2)/4,(c—2)/4- 1(b )] for some a € N(c_2)/4(
a0,1)\C and b € N(c_2)/4+1(20,1)\C such that ab € E(To,1) and let a be
the root of T(._2)/4-1(a, b). Since ¢ = 14, T(._9) /4-1(a, b) has 3 layers
and (c-2)/4—1 = 2. Let G;j = G[M-2)/a-1(a;5)] (i=1,2,---,¢=1;1<
j £ k—-2;and, i =0 and j # 1). Let a; be the root of G;j. Then G;-j also
has 3 layers.

The cut edges of 8" in T(c_2)/4-1(2, b)’s are of the form ab such that a
€ N3(a,1)\C and b € N4(a0,1)\C in which ab € E(Ty,1). Each cut edge of
S’ in T:, , can delete at most all vertices of T(._2)/4-1(a, b) except a, that

is, to delete (k—1)° + (k—1) = [(k—1)2—1]/(k—2) vertices from U G u
YJ

To,1 U C. The cut edges of S’ in G,-j are of the form a;a;; (i =1, 2,

13; 1 € j <k-2; and,i = 0 and j # 1). Each cut edge in G can delete

at most all vertices of G;; except a;, that is, to delete (k— 1)°+ (k=1)! =

[(k—-1)2-1]/(k—2) vertices from |J G;]- U T;),1 U C. Notice that Tg, may
i

share at most one vertex with G;'j for one j such that 1 < j < k-2, but
does not intersect with the other G;j’s (5<i1<9,1<j<k-2;and,i=
1,2,3,4,10,11,12,13; 1 € j< k—-2;and i = 0 and j # 1) as each cycle
in D has length at least c.
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Similar to Case 1, to ﬁnd a lower bound of (D), we only need to
consider the case that each G 4 (1=1,2,3,4,10,11,12,13; 1 < j < k-2;

and,i=0and j # 1) conta.ms a cut edge a;a;; and, there are n G s (5
<i<9,1<j<k-2) not containing any cut edge of S’ and there are at
most n T(c_2)/4-1(2, b)’s containing cut edges ab of S’. Then

(D) > ¥(Tp,;) — nv(T(c—2y74-1(a, b)) + nv(Gy;) =1 + ¢

> [(k=1)° + (k=1)" + -+ (k=1)*) = n((k—1)° + (k—1)!)] + n[(k—1)°
+ k-1 -1+c

= [(k—1)%- 1]/(k~2) +c - 1

2 [(k-1)° = 1}/(k-2)

= [(k=1)¢/2-2 = 1]/ (k—2).

So, in all subcases of Case 3, ¥(D) > [(k—1)*/2-2—-1]/(k-2).

Case 4: ¢ = 4m—1 and m is a positive integer.

The main idea of proof is similar to that of Case 1.

Let Gi; = G[M(c41)/4(ai;)] i=0,1,---,c=1;j=1,2, -+, k—=2). Then
Gi; N D is a tree, and E(G;; N D) N E(Gpg N D) =0 (i # p or j # q).
Since [S| £ (k—2)g—1 and ¢ > g, without loss of generality, assume that Gg ;
does not contain any edge in S. Since every cycle in D has length at least
¢, Go,1 N D and Gc_1y/2,; N D (or G(c41)/2,p N D) may share at most one
vertex in N(c1+1)74(20,1)\C N Nic11)7a(2(c-1)/2,5)\C (or Nc41y/4(20,1)\C N
N(c+1)74(a(c+1)/2,)\C) for one j (and p) such that 1 < j, p < k—2.

Let To,1 = G[M(c_1)/2(a0,1)]. Then To,; N D is a tree as every cycle in
D has length at least c. Weuse G;;and Toy (i=1,2,---,¢=1;j=1,2, -,
k—2; and, i = 0 and j # 1) to represent the trees in the case that G;; and
To,1 are contained in D, and we use G;; N D and Ty, N D to represent the
trees in the real case. Notice that To,1 may share vertices with Gc.1)/4,5,
Get1)/a41,r - G3(C+1)/4 1, for some 1 < j < k-2, whereas does not
intersect with G1 g G2,y s Gew1)/a-1,5 G3(c+1)/4,5r Ga(ct1)/a+1,50 = *
Ge-y,j forany 1 <j < k- 2ede0J for j # 1.

Let b € Ncy1)/4+1(20,1)\C, N1(b)\Go,1 = {b}, N-(b)\Go,1 = {u|u €
V(G)\V(Go,1), d(u, b) = r—1, and 3x € N,_;(b)\Go,1, xu € E(G)} (r >
2). Leta € N(c+1)/4(ao 1)\C such that ab € E(Ty,;). Let M(c+1)/4,r(b) =

{a} U Nk(b)\Go,1 and T+ (a, b) = G[M(c41)4,-(b)]. Then T,(a, b) N D is

a subtree of To,; N D for all r such that 1 < r < (c—3)/4. We use T,(a,
b) to represent the subtrees of Tq; in the case that Tg,; is contained in D,
and we use Ty (a, b) N D to represent the subtrees of To; N D in the real
case for each r such that 1 <r < (c-3)/4.

By similar argument to Case 1, we can obtain an edge cutset S’ with

|S’] = |S| and the remaining subgraph of U Gij U To,1 U C after cutted by
IJ
S’ is contained in D.
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For each G;j, if we cut the edge a;a;; of S/, we shall delete at most all

vertices of G;; except a; from |J Gi; U To1 U C, that is, to delete (k—1)°+
i'j

(k=1)14 - 4 (k=1)(c+D/4-1 = [(k—1)(c+D/4_1]/(k—2) vertices from |

47

G,'j U To1 U C. For each T(c_3)/4(a,, b), where a € N(c+1)/4(ao,1)\c and

b € N(ct1)/4+1(20,1)\C such that ab € E(To,1), if we delete a cut edge

ab of §', we shall delete at most all vertices of T(c._3)/4(2, b) except a

from To, that is, to delete (k—1)°+ (k—1)'+ .. -+ (k—1)(c=3)/4-1 =

[(k—1)(e=3)/4-1]/(k—2) vertices from U Gi;j U To,1 U C. Since V(To1) N
i,j

V(Gi;) = 0, to cut an edge a;a;; will ;ielete more vertices from |J G;; U

i,
To,1 U C than to cut an edge ab in T(c_3)/4(2, b) (i=1,2, -+, (c+1)/4-1,
3(c+1)/4, 3(c+1)/4+1, .-, c-1;1 < j<k-2;and,i =0 and j # 1).

By similar argument to Case 1, to find a lower bound of ¥(D), we only
need to consider the case that each G;; (i=1, 2, -+, (c+1)/4-1, 3(c+1)/4,
3(c+1)/4+1, -+, c—1; 1 < j < k-2; and, i = 0 and j # 1) contains one
cut edge a;a;;, and there are n Gyj;’s ((c+1)/4 <i < 3(c+1)/4-1,1 < j
< k—2) not containing any cut edge of S’ but sharing vertices with Ty ;,
whereas there are at most n T(c-3)/4(2, b)’s containing cut edge ab of S’
for some a € N(c41)/4(20,1)\C and b € N(c41)/441(20,1)\C such that ab €
E(To,1)-

Let ag be the root of Tp ;. Notice that Ty, originally has (c—1)/2+1
= (c+1)/2 layers, G;; ((c+1)/4 < i < 3(c+1)/4-1,1 < j < k-2) can
provide at most n < (k—2)(c+1)/2 cut edges to T(._s)/a(a, b)’s, and
N(c4+1)74(20,1)\C has (k—1)(c+1)/4-1 yertices. By k-regularity of G, if
(k—2)(c+1)/2 < (k—2)(k—1){c+1)/4=1 then we cut at most (k—2)(k—1
)(e+1)/4-1 subtrees T(c_3)/4(a, b) except a from To,;, the resulting tree of
To,1 equivalently has at least the number of vertices of (c—1)/2 layers plus
a layer of (k—1){¢+1)/4=1 vertices, which is a lower bound of v(D). So

v(D) > (k—=1)%4 (k—=1) 4+ -+ 4 (k—1)(c=1/2=2 4 (k_1)(c+D)/4=1 4 ¢

= [(k_l)(c—l)/2—1_1]/(k_2) + (k_l)(c+l)/4—1+ c

> [(k=1)t-D/2=1-1]/(k-2).

However, (k—2)(c+1)/2 < (k—2)(k—1){c+1)/4-1j5 equivalent to logx—;2
+ logk—1(c+1)/4 < (c+1)/4 — 1. Since x—logj-1x > 1 + logk—12 is satisfied
when x > 4 and k > 3, when (c+1)/4 > 4, i.e. ¢ > 15, the above inequality
holds.

Now we discuss the special cases of ¢ = 3, 7 and 11.

Case (4.1): ¢ = 3.

Then c satisfies the requirement of Lemma 2.
Case (42): c= 7.

v(D) > v(Go,1) + c—1 = 7 + k > [(k—=1)(c-D/2-1_1]/(k-2) = |
(k—1)T-1/2=1_ 1]/(k—2) = k(k—2)/(k—2) = k.
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Case (4.3): ¢ = 11.

Similar to Case (1.3). Let ap be the root of Go,;. Then Go,; has 4 layers
No(a0), N1(20,1)\C, N2(0,1)\C and Na(ag,1)\C- Let Ty ; = G[M(cs1y /a1
a0,1)] = G[No(ao) U N1 (a0,1)\C U Na(a,1)\C U Na(a9,1)\C U Ny(a0,1)\C].
We shall prove that D has at least as many vertices as T;),l.

We can find a cutset S’ similarly as in Case (1.3). The cut edges of S’
in Ty , are of the form ab such that a € N3(a,1)\C and b € N,(a1)\C in
which ab € E(Ty,;). Each cut edge ab in T;,’l deletes one vertex from T;,',.
Let Gy; = G[M(e41)/a-1(245)] (i = (c+1)/4, (c+1)/4+1, - -+, 3(c+1)/4—1;
1 £j € k—2). The cut edges of S’ in G;j are of the form a;a;; (i = 3, 4,
-+, 8,1 <j < k-2). Notice that T:,'I may share at most one vertex with
G;,j (or G,6,p) for one j (and one p) such that 1 < j, p < k-2, but does
not intersect with other G;j (i=3,4,---,8;1<j< k—2), and does not
intersect with G;; (i=1,2,9,10;1<j< k-2;and,i=0andj# 1) as
each cycle in D has length at least c. Similar to Case (1.3), we only need
to consider the case that G;; (i=1,2,9,10; 1 < j < k—2; and, i = 0 and
j # 1) contains a cut edge a;a;j, and there are n G;j’s (i=3,4,---,8;1
< j £ k—2) which do not contain any cut edge of S’ whereas T:m contains
at most n cut edges ab of S’. Then

v(D) = ¥(Tp;) — n+ nv(G;) -2 + ¢

2 [(k-1)°+ (k-1)'+ (k—1)>+ (k—1)3- n] + n[(k—1)+ (k—1)}] — 2
+c

> ((k-1)4-1]/(k~2) + n[((k—1)*~1)/(k-2)~-1]

> [(k-1)*-1)/(k—2)

= [(k-1)(e-D72-1_1)/(k=2).

So, in all subcases of Case 4, (D) > [(k—1)(¢—1/2-1.1]/(k-2).

In summary of Cases 1, 2, 3 and 4, if ¢ = 2r, then ¥(G) > v(D) >
(k—1)¢/2=2-1]/(k—2); if c = 2r+1, then ¥(G) > (D) > [(k—1)(c-1)/2-1_1
1/(k=2).

Suppose ¢ = 2r. Then ¢ < 2[logk_1[(k—2)v(G)+1] + 2]. Since v(G)
2 1, (k=2)v(G)+v(G) = (k=2)v(G)+1. So (k—1)»(G) > (k—2)v(G)+1.
Then ¢ < 2[logx—1[(k—1)v(G)] + 2] = 2(logk-1(G) + 3). Let logk_1v(G) =
|logk—12(G)] +s. Since 0 <'s < 1, then 2(logx—1¥(G) + 3) < (2|logk—1(G)]
+ 6) + 2. But ¢ = 2r is a positive even integer, so ¢ < 2[logx—1v(G)] + 6.

Suppose ¢ = 2r+1. Then ¢ < 2[logi—1[(k-2)v(G) + 1] + 1] + 1 <
2[logr—1{(k—-1)»(G)] + 1] + 1 = 2[logr_1#(G) + 2] + 1. By the same
reason as above, ¢ < 2|logr—1/(G)] + 5.

Then the proof of Lemma 2 is complete. O

In the following, we shall prove the correctness of Algorithm 1.
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Theorem 3: Algorithm 1 can find a minimum cyclic edge cutset and hence
can determine cA(G).

Proof. By Lemma 1, if g > v/2, then Algorithm 1 will give answer that
¢\ = oo in Step 2.

Now suppose g < v/2. Let C be a shortest cycle in G such that |V(C)|
= g < v/2. By the proof of Lemma 1, the co-cycle S of C is a cyclic edge
cutset of G. So cA(G) < |S] = (k—2)g. If cA(G) = (k—2)g, by Steps 4, 8
and 9, Algorithm 1 will determine that cA(G) = (k-2)g.

Now suppose that cA\(G) < (k—2)g—1. Let S be a minimum cyclic
edge cutset of G, D; and D2 be components of G—S such that D, and
D, both contain a cycle. Let C; be a shortest cycle in D; (i = 1, 2). By
Lemma 2, |V(C;)| < 2|logk—1¢(G)] + 6 if C; is an even cycle; and |V(C;)|
< 2|logk—1v(G)] + 5 if C; is an odd cycle (i = 1, 2).

In Step 3 of Algorithm 1, we find all minimal cycles of length at most
2|logk—1v(G)] + 6 if the cycle is even and 2|logk—1v(G)] + 5 if the cycle
is odd. In Steps 5, 6 and 7, we find a minimum edge cutset which separates
C, in D; and C; in D,. Hence we can find a cyclic edge cutset of size |S|.
By Step 8, we can determine the cyclic edge connectivity of G. O

Now we analyse the time complexity of Algorithm 1.
Theorem 4: The time complexity of Algorithm 1 is bounded by O(k°V®).

Proof. In Step 1, we use breadth first search strategy to find a shortest
cycle containing a vertex v. For a given vertex v, it takes O(|E|) time. For
all vertices v in V(G), Step 1 takes O(|V||E|) time. Since G is a k-regular
graph, |E| = k|V|/2. Hence O(|V||E|) = O(k|V{?).

Step 2 takes O(1) time.

Now we analyse Step 3. Let e = xy be an edge in E(G). We define Ng(x)
= {X}, No(y) = {y}a Nl(x) = {u l ve No(x), uv € E(G)’ u ¢ NO(Y)) u
# x}. Ni(y) = {u | Iv € No(y), uv € E(G), ul¢ No(x) U Ni(x), u # y}.

Nr X) = {u | Ive Nr—l(x)a uv € E(G yu ¢ rL_J Ni(}’), u 7& X}, NT(Y) = {u

| 3v € Nri(y), uv € E(G), u ¢ UN (x), u# y} (r 2 2). Then |No(x)| =

(k=1)°, [No(¥)| = (k—1)°, [N ( X)I = (k-1)}, IN1 ()] < (k-1)%, N+ (x)| <
(k-1)", IN,(y)| < (k—1)".

Since, in Step 3, we find all minimal cycles C containing e for a given
edge e such that |[V(C)| < 2|logk—1#(G)] + 6 if C is an even cycle or
[V(C)] < 2|logk-1¥(G)} + 5 if C is an odd cycle. Notice that C does not
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contain any chord and every edge from N,(x) to N.(y) corresponds to a
different even cycle containing e for 1< r < ¢/2—1 and every edge from
N;_1(y) to N,(x) corresponds to a different odd cycle containing e for 1
<r £ (c—1)/2. Notice also that, if there is an edge from N, (x) to N, (y)
(or an edge from N,_;(y) to N,(x), then [N,41(x)| (or |[N,(y)|) will be less
than (k—1)"*! by one ( or less than (k—1)" by one). Since G is k-regular,
the number of such even cycles is at most (k—1)(k—1)%/2-! = (k—1)¢/2 <
(k—1)(@Ulogi—, ¥(C)+6)/2 < (k—1)l0Bk-1 ¥(C)+3 (k—1)3(k—1)l8x-1 ¥(C) =
(k—1)3(G), and the number of such odd cycles is at most (k—1)(k—1
)(c—l)/2—l = (k__l)(c—l)/2 < (k_1)(2[logk_1u(G)J+5-l)/2 < (k—1)1°gk—l v(G)+2
< (k—1)%v(G). For all edges in E(G), there are at most O((k—1)3|V||E|) =
O(k*|V|?) such even cycles and O((k—1)?|V||E|) = O(k3|V|?) such odd cy-
cles. In general, we can say there are at most O(k*|V|?) cycles of length at
most 2|logk—1/(G)| + 6 in F.

In Step 5, the FOR loop is for each combination of two different cycles
in F. So the loop repeats O(k8[V|*) times. Step 6 takes O(|V]) time to test
V(Cy) N V(Cz) = 0 and to construct G'.

By (9], Step 7 takes O(|V||E|) = O(k|V|?) time to find & minimum edge
cutset S;, using the traditional maximum flow method. So the loop of
Steps 5, 6, 7 and 8 takes totally O(k°|V|®) time. The time complexity of
Algorithm 1 is bounded by O(k®V¢). O
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