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Abstract:
The smallest bigraph which is edge critical but not edge minimal with

respect to Hamilton laceability is the Franklin graph. Polygonal bigraphs*, P,
which generalize one of the many symmetries of the Franklin graph, share this
property of being edge critical but not edge minimal [1]. An enumeration of
Hamilton paths in P,, for small m reveals surprising regularities: there are 2™
Hamilton paths between every pair of adjacent vertices, 3x2™' between every vertex
and a unique companion vertex and 3x2™? between all other pairs. Hamilton
laceability only requires there be at least one Hamilton path between every pair of
vertices in different parts; this says there are exponentially many.

Introduction:
Figure 1 shows the most common graphical representation of the Franklin

graph and the same graphical representation for P;.

Franklin graph (P;) P,
Figure 1

This representation, which lends itself to proving P, to be edge critical with respect
to Hamilton laceability, does not lend itself to the investigation of Hamilton paths
in P_. However an easily described alternate representation which maps P,, onto an
annulus does. The 6m edges in P_, have a natural partition into the 2m edges not on

a quadrilateral, R, and the 4m that are, Q,;.

* Extend the sides of a regular polygon on 2m vertices, m 2 2, to definc the 2m(m - 1) finite points of
intersection. Circumscribe a centrally symmetric circle large enough all of the points of intersection are
in its interior. The 4m points of intersection of the extended edges of the polygon with the circle are the
vertices of the polygonal bigraph, P_. The edges are the 4m arcs of the circle between the vertices and
the 2m diagonals defined by the extended edges. P, is the edge skeleton of the 3-cube, Q;. P, is the
Franklin graph.
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The graphical representation in Figure 1 further partitions the 4m edges in
Q,, into 2m on the outer cycle, C,, and the 2m diagonals, D,,. This is an artificial
partition since there are mappings of P, that carry any edge in Q,, and it’s edge
incidences into any other edge in Q,, but is useful in describing the annular
mapping. Instead of a single cycle on 4m vertices, define two cycles on 2m vertices
each. Start with an arbitrary edge in R, and form a path using only edges from R,
and D,.. If m is odd, the path will close to form a cycle with 2m edges. Form another
cycle on the remaining 2m edges in R, and D,. Construct a new graphical
representation of P,, with one of the cycles symmetrically enclosing the other - it
is immaterial which is the outer cycle and which the inner. If the pairs of edges that
were in a quadrilateral in the Figure 1 representation of P, are rotated to be in the
same relative position in the two cycles, the edges in C, will cross connect to the
edges in D,, to form m twisted quadrilaterals lying on the annulus defined by the
two concentric cycles. The same annular representation is formally possible when
m is even — even though the path constructed using only edges from R , and D, lies
on all 4m edges instead of breaking up into two cycles on 2m. Figure 2 shows the
annular representation of P_.

Figure 2

The construction in Figure 2 suggests a general method for constructing
and/or counting Hamilton paths in P,,. While the number of quadrilaterals, m, can
be arbitrarily large, at most two can host endpoints for a Hamilton path, which
means that for all m > 3 there will be runs of quadrilaterals not containing an
endpoint. If the endpoints of the Hamilton path are in the same or adjacent
quadrilaterals in P, there will be only one such run, while if the endpoints are in
non-adjacent quadrilaterals there will be two. Simple parity says that either all four
edges from R, are used to connect a run to the rest of P, or else just one on each
end of the run. In either case the path(s) in the run must connect from one end of the
run to the other. Since all of the quadrilaterals are twisted, for a path to reverse
direction it would have to lie on three of the vertices in some quadrilateral, leaving
the fourth vertex isolated from being in a Hamilton path.
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There are a couple of simple observations. A path through a run of n
quadrilaterals can start on either cycle and end on either the same cycle or the other.
If there is only one path it must span all 4n vertices. If there are two paths they must
each lie on 2n vertices. The number of Hamilton consistent paths through a run
grows exponentially with n but a simple technique allows them to be succinctly

described and enumerated.
There are only six ways paths can lie on all four vertices in a quadrilateral,

i.e for them to be Hamilton consistent; see Figure 3. The quadrilateral path(s)
represented by symbols A, C and C’ switch from one cycle to the other. The path(s)
represented by symbols B, D and D’ do not.

A B
C c D D’
Figure 3
The edge(s) from R, leaving one quadrilateral must match those entering the next,

so there are always exactly two compatible choices for the paths in the next
quadrilateral. Table 1 gives the syntactical rules for constructing Hamilton

consistent symbol sequences.

Symbol Successor symbol
A AorB
B AorB
C Co D
c CorD
D CorD
D’ Cor D
Table 1

The important thing to notice in Table 1 is that all symbols have one successor that
switches cycles for the path(s) and one that doesn’t. Therefore the 2™ syntactically
correct sequences, starting from an arbitrary symbol, partition into 2™ that switch
cycles and 2™ that do not depending on whether an odd or even number of the
symbols A, C or C’ occur in the sequence. All that matters, so far as Hamilton paths
are concerned, is which of the edges from R, connect the run to the rest of P,, and
how. There are six ways this can be done. If the connection uses both edges on each
end of the run, the paths through the run can either switch cycles or not. If only a
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single edge is used at each end, it can enter on either cycle and exit on either that
same cycle or the other. The argument just given shows that there are 2°2 path(s)
in each of these six cases. The proofs that follow depend critically on this result.

As an illustration of the power of this result, it is little more than a remark
now to show that there are 3x2™' Hamilton cycles in P_. As noted earlier the path
cannot double back on itself so must encircle the annulus. This says an m symbol
sequence representing a Hamilton cycle must also close on itself to form a cycle. A
cyclical AB sequence must have an odd number of occurrences of A so there are
2™! such cycles. A CD sequence can start with any one of the four symbols from
which 2™ syntactically correct m symbol sequences originate. But only half of
these end in a symbol that can precede the starting symbol. Therefore there are
4x2™'xY4 = 2™ CD cycles and hence a total of 3x2™' Hamilton cycles in P,

Hamilton paths in P,;

The problem of counting Hamilton paths between specified endpoints in
P, reduces to characterizing the ways in which initial paths from the endpoints can
connect to runs of quadrilaterals — and then using the properties of runs just
developed to describe all possible Hamilton paths. There are three basic cases
which must be considered, each of which has further subdivisions depending on in
which cycles the endpoints are located.

Case 1. The endpoints are in the same quadrilateral
i. The endpoints are on the same cycle
ii. The endpoints are on different cycles
Case 2. The endpoints are in adjacent quadrilaterals,
i. The endpoints are on the same edge in R, connecting the host
quadrilaterals.
ii. The endpoints are on distinct edges in Rm each of which connects
the host quadrilaterals.
iii. The endpoints are on distinct edges in R, neither of which connects
the two host quadrilaterals.
Case 3. The endpoints are in non-adjacent quadrilaterals.

Case 1.

Figure 4 shows the eight possible quadrilateral paths; the upper four for sub-case
1i and the lower four for sub-case 1ii. The left hand pair of paths must be connected
by an AB sequence which must switch cycles in subcase 1i and not in sub-case 1ii.
The remaining quadrilateral paths must be connected by CD sequences.
Consequently each of the eight quadrilateral paths in Figure 4 contributes 2™2
Hamilton paths for a total of 2™ in each sub-case.
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Case 2.

The subcases must be treated separately since the paths connecting the endpoints
to runs differ so greatly. Figure 5 shows the eight possible quadrilateral paths for
subcase 2i. Four must be connected by AB sequences and four by CD sequences.
Two of the AB sequences require the cycles to be switched and two do not,
therefore each of the eight quadrilateral paths contributes 2™ Hamilton paths for

a total of 2™,

XX XK XX XX
XXX XX XX

Figure 5

Since the only way a pair of endpoints can be adjacent in P, is to either be in the
same quadrilateral or else to be endpoints of an edge in R, this completes the proof
that there are 2™ Hamilton paths between every pair of adjacent vertices in P,

Figure 6 shows the eight possible quadrilateral paths for subcase 2ii. Just
as in subcase 2i, four are connected by AB sequences and four by CD sequences.
However the four connected by AB sequences this time all have a path reversal so
all AB sequences will work. Therefore the total number of Hamilton paths between
the endpoints in subcase 2ii is 4x2™2 + 4x2™ = 3x2™', Figure 2 shows that the 2m
edges in R, are paired through connecting the same pair of quadrilaterals. Since all
4m vertices are in R, the companion vertex to any vertex is defined by the
conditions for subcase 2ii.

T XX ZE XX
T FK TK XX

Figure 6
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Figure 7 shows the six possible quadrilateral paths for subcase 2iii when the
endpoints are on the same cycle and Figure 8 for when they are not. The proof
argument is the same for both subcases. All twelve paths must be connected by CD
sequences, each of which contributes 2™ Hamilton paths. Therefore the total
number of Hamilton paths for either vertex pair is 3x2™2,

XX X4 XX
KX K XX

Figure 7

XX XX XX
X2 XX XX

Figure 8
Case 3. The endpoints are in non-adjacent quadrilaterals.
The endpoints can be in the same cycle or in different cycles. With no loss

of generality assume one is in the outer cycle. There are only three Hamilton
consistent paths through the host quadrilateral for that choice of an endpoint; see

KK

X Y Z
Figure 9

There will also be three equivalent Hamilton consistent paths through the other host
quadrilateral irrespective of the cycle on which the endpoint lies. It is easy to see
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from Figure 9 and the fact that the endpoints are by parity necessarily proximate in
the annulus that the run connecting the endpoint sides of the two host quadrilaterals
will be a CD sequence and the other run an AB sequence. This observation is
crucial to the proof argument.

Let X’, Y’ and Z’ denote the mapping of X, Y and Z into the other host
quadrilateral. There are nine pairings of these quadrilateral paths. The five pairings
that include either X or X' must be treated separately due to the path reversal in X
and X’. The pair X-X' cannot have a Hamilton path since the two path reversals
form a closed loop. The other four pairings do. Assume there are i 21
quadrilaterals in the AB run. The path reversal at X (or X*) forms a loop. Each
occurrence of A in the sequence switches cycles, but the endpoints remain
connected by the loop. Therefore for Hamilton path considerations it doesn’t matter
how many A cycle switches occur. As remarked earlier, in this case there are 2/
paths through the AB sequence. There are m - 2 - i quadrilaterals in the CD run, and
consequently 2™-2->! Hamilton consistent paths associated with each pair of the
quadrilateral paths. The paths in the two runs are independent, so the total number
is multiplicative; 2 2™-2-?! which when multiplied by four, the number of pairs,
yields the result that there are 2 ™' Hamilton paths in cases in which one of the
quadrilateral paths is either X or X’. The cases in which neither X nor X’ appear
require the AB sequence to either switch cycles or else to not switch them which
results in only 2*? paths through the AB run and 2™ paths in all. Summing these
two values shows there are 3x2™2 Hamilton paths between any pair of vertices in
different parts in non-adjacent quadrilaterals.

In summary, there are 2™ Hamilton paths between any of the 6m pairs of
adjacent vertices, 3x2™' between any of the 2m companion vertex pairs defined in
subcase 2ii and 3x2™2 between all of the other 4m?-8m vertex pairs in P,,.

Concluding remark:
P, is edge critical with respect to Hamilton laceability [1]. It is truly

surprising, given that there are exponentially many Hamilton paths between every
pair of vertices from different parts in P, that deleting an arbitrary edge results in
at least one pair having none.
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