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Abstract

Let G be a simple graph of order n and p, pa, . .., tn the roots
of its matching polynomial. Recently, Gutman and Wagner defined
the matching energy as the sum ) .., |pi|. In this paper, we first
show that Turdn graph T, is the r-partite graph of order n with
maximum matching energy. Then we characterize the connected
graphs (and bipartite graph) of order » having minimum matching
energy with m (n+2 <m <2n —4) (n <m < 2n - 5) edges.
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1 Introduction

We use Bondy and Murty [2] for terminology and notations not
defined in this paper and consider undirected and simple graphs
only. A graph with order n and size m is called a (n, m)-graph.
Let G be a (n,m)-graph. Denote by m(G, k) the number of
k-matchings of G. Clearly, m(G,1) = m and m(G,k) = 0
for k > [n/2]. It is both consistent and convenient to define
m(G,0) = 1.

The eigenvalues A1, Ay, ..., A, of the adjacency matrix A(G)

of G are said to be the eigenvalues of the graph G. The energy
of G is defined as

n

E=E(G)=)_|xl. (1.1)

i=1

The theory of graph energy is well developed nowadays, for de-
tails see [10,12,18]. The Coulson integral formula [15] plays an
important role in the study on graph energy, its version for an
acyclic graph T is as follows:

E(T) = % /0 " % In [ Y m(T, k)x%] de.  (1.2)
k>0

Motivated by formula (1.2), Gutman and Wagner [16] defined
the matching energy of a graph G as

In [Z m(G, k)mzk] dzx.

k>0

2 [t 1
ME = ME(G) = — / =
™ Jo T

(1.3)
Energy and matching energy of graphs are closely related, and
they are two quantities of relevance for chemical applications,

for details see [1,13,14].

Recall that the matching polynomial of the graph G is defined
as
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o(G) = a(G,)) =D _(-1)*m(G, \)A*.

k>0
The following result gives an equivalent definition of matching
energy.

Theorem 1.1 [16] Let G be a graph of order n, and let p, po,
-+, Un be the roots of its matching polynomial. Then

ME(G) =) |uil- (1.4)

i=1

The formula (1.3) induces a quasi-order relation over the set
of all graphs on n vertices: if G; and G5 are two graphs of order

n, then
G1 > Gy & m(G1, k) > m(Ga, k) for all k=0, 1,...,[%}.
(1.5)

If G, = G, and there exists some 7 such that m(Gy,7) >
m(Gs, 1), then we write G, > Ga. Clearly,

Gy > Gy = ME(Gl) > ME(Gg)

The following result gives two fundamental identities for the
number of k-matchings of a graph [5,9).

Lemma 1.2 Let G be a graph, e = wv an edge of G, and
N(u) = {vi(= v),va,...,v:} the set of all neighbors of u in
G. Then we have

m(G, k) = m(G — uv, k) + m(G —u — v,k — 1), (1.6)

m(G, k) =m(G —u,k) + Y _m(G-u—v,k—1). (17)

i=1
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From Lemma 1.2, it is easy to get the following result.

Lemma 1.3 [16] Let G be a graph and e one of its edges. Let
G — e be the subgraph obtained from G by deleting the edge e.
Then G >~ G —e and ME(G) > ME(G — e).

Let K, 4,,...t. denote the complete 7(> 2)-partite graph whose
vertex set is partitioned into r parts: Vi, V,,...,V; with |Vj| =
ti,...,|Vs| = t,, and t; + - - + ¢, = n. A complete r-partite
graph on n vertices in which each part has either |2] or [2]
vertices is called a Turdn graph, and denoted by 7. ,. Suppose
that n < m < 2(n — 2). Let S7* and BJ* denote the two con-
nected (n,m)-graphs as shown in Fig.1, respectively. Let A,
be the (n,n + 2)-graph obtained from K, by attaching n — 4
pendent edges to one of the vertices of Kj.

By

Fig.1 (n,m)-graphs: S* and BT

Gutman and Wagner [16] proved that the bipartite graph
with n vertices having maximum matching energy is T5,. In
Section 2, we will show that the r-partite graph with n vertices
having maximum matching energy is T} .

In [16], the authors obtained that ME(T) = E(T) for any
tree T, and ME(S}) < ME(G) < ME(C,) for any connected
unicyclic graphs G with n vertices. The extremal graphs with
respect to matching energy in connected bicyclic graphs were
determined by [17], and S?*! is the connected bicyclic graph
with minimum matching energy. In [7,8,11], the authors char-
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acterized the unicyclic, bicyclic, and tricyclic graphs with max-
imal matchings respectively, i.e., graphs that are extremal with
regard to the quasi-ordering <. By these results, finding uni-
cyclic, bicyclic, and tricyclic graphs with maximum matching
energy is an elementary task. In [19], Li and Zhang considered
the minimal energy graph among connected bipartite (n,m)-
graphs. With regard to skew energy, Gong et al. [6] determined
the extremal graph in (n, m)-graphs. In Section 3, we will prove
that S7*2 and A, are the connected (n,n+ 2)-graphs with min-
imum matching energy, and S7* (n + 3 < m < 2(n — 2)) is the
connected (n,m)-graph with minimum matching energy, and
B™ (n < m < 2n — 5) is the connected bipartite (n, m)-graph
with minimum matching energy.

2 The r-partite graph with maximum
matching energy
In this section, we will show that Turén graph T, is the r-

partite graph with n vertices having maximum matching energy.
We begin with a key lemma.

Lemma 2.1 Let Ki 4,4, be a complete r-partite graph with
ordern andl1 <ty <--- <t,. Ift; 2t +2 for somel <i<
j <r, then we have

(2.1)

Ktl penticLtitLtig1,ntja 1,8 =1t 41. 00 - Kt1 yeenrbigeensbiyeentr®

Proof. We may assume, without loss of generality, that ¢; = t;
and t; = t,. By Lemma 1.2, we have
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m(Ktl,tz,...,tra k) = m(Kh,....t,.-x,t,.—l: k)
r—1

+ E MKy, i1 ti=Ltip1ytrs te—1, & — 1),
=1

(2.2)

m(Ktl-'-l,tz,...,tr-.l,tr—l, k) = m(Ktlytzv"'!t"—lit"_l’ k)
+ (tr - 1)m(Ktl,t2,...|tr—1,tr_2’ k - 1)

r—1

+ E :tlm(Ktly-~-stl-1-tl_1»tl+lw-;tr-l.tr—l? k— 1)'
=2

(2.3)
Since m(Ky, 45,40, 0) = m(Ky 4145, 401,81, 0) = 1, we distin-
guish the following two cases.
Case 1. 1 < k< t,.
Combining Egs. (2.2) and (2.3), we obtain that

MKt 419, te—r,tr—1 K) — MKy 1,10, k)
= (tr — )m(Key 12, trr te-2:k = 1)
— tm(Ky 10, troste—10 F = 1)
2t [m(Ktl,tz....,tr_1|tr—2, k- 1)
- (K —140, b1 tr—1, k= 1)]
> t1(t — D[m(Key 1,89, tom 1 tr—3, k — 2)
— (Kt =285, tr_1,tr—2, K — 2)]
2 ti(t — 1)+~ (1 — k + 2)[m(Ksy k25,0 temy to—kr 1)

- m(Kh—k+l,t2,...,tr_1,tr—k+1’ 1)]
=t1(t1 —1)"'(t1—k+2)(tr—t1—1)>0

Case 2. t; <k < [Z].
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Combining Lemma 1.3, Egs. (2.2) and (2.3), we get that

MKty 41,8, tr—1,tr—1, £) — MKy 15,2, K)

= (t, — 1)m(Kyy 0, t-r,tr—20 K — 1)
— 8Ky —1,00,trn te=10F — 1)

> t[m(Ki o, terite—2: K — 1) = m(Ky—1,09,. o to—1, & — 1)]

> ti(t1 — 1)[m(Key=1,t0,.tr1,tr—3, K — 2)
- m(K:,—2,12,...,t,_1,t,—2, k— 2)]

> ti(ts — 1) - - 2[m( Koy, tror te—tr, & — t1 + 1)
— (K1 g, tr_ste-ts+1: b — t1 + 1))]

>ttt —1)---2- 1m(Kig,..tr1,tr—ti—1, K — t1)
- m(th,...,t,-_l,tr—tli k- tl)]

> 0.

The proof is thus complete. [ |

Theorem 2.2 Let G be a r-partite graph with n vertices. Then
ME(G) < ME(T,,), with equality if and only if G = T ,,.

Proof. Let G # T, , be a r-partite graph with n vertices. If
G is not complete, then there is a complete r-partite graph G’
such that G’ = G by Lemma 1.3. Suppose G' = K, 1,1,
with 1 < ¢ < -.- < t.. If G ¥ T,,, then there exist some
i,j such that 1 < i < j < randt; > t; + 2. Denote G" =
Ktl,...,t,'_1,t.’+1,t«i+1,...,tj_1,tj—l,tj+1...,tr' It follows from Lemma 2.1
that G" = G'. If G” # T, ,, then by repeatedly using Lemma
2.1, we can finally get that T,., > G”. Hence we have T,., > G
and the proof is complete. |
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3 The (n,m)-graph with minimum
matching energy

In this section, we will prove that S**2 and A, are the connected
(n,n + 2)-graphs with minimum matching energy, and S7 (n +
3 <m < 2(n-2)) is the connected (n, m)-graph with minimum
matching energy, and BT (n < m < 2n — 5) is the connected
bipartite (n, m)-graph with minimum matching energy.

Let p=(p1,.-.,pn) and q = (q1, - - - , ¢») be two sequences of
positive integers with 1 <p;, s <n—-land ) p=3 1 ,q=
2m. Then we write p X qif } i, (%) < X, (%#),and p < g

if Y, () < S (9).

Lemma 3.1 Let G be a connected (n,m)-graph with n + 2 <
m < 2(n —2). If G has no pendent vertices, then

3 (dcz(v)) < ¥ (ds:g(v))_

veV(G) veV(ST)

Proof. let dg = (d;,ds,...,d,) be the degree sequence of the
connected graph G with dy > dy > --- > d,. Since G has
no pendent vertices, we have d; < n—1and d, > 2. It is
easy to obtain that the degree sequence of graph S} is dgm =
(n-1m-n+222,...,2,1,1,...,1). So it suffices to prove

m~;+1 2n—:n—3

that dg < dgp.

Claim 1. dg < (dla---,di—l,di + 1,di+1,...,dj_.1, dj -1,
djit1y...,0n) foranyl1<i<j<nwithd;<n—-1andd; > 1.

PTOOf. Denote d' = ( ’l) ,2) s ?d::) £ (dl: s ,di—ladi + 1) di-l-l,
cow @jo1,d; — 1,dj41,...,dn). Then we have 1 < dj < n — 1,
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Yo 4 =2m, and

(-5 -+ @)-()-(%")
=d;—d;—1<0.

Hence dg < d'. [ ]
By Claim 1, we get that

(d11d2)"'7dn)

< (d1+1,d2,...,dn_1,dn—1), ifd1<n-—1
(n—1,d2+1,...,dn_1,dn—1), ifdi=n-1

< .-

<( ,1,! ,2/)d3a""dm—n+3, 1,1,...,1))
2n—m—3

where df < n—1,dj = dy or df = n —1,d; > dp. Since dy >
dy >d3 > -+ 2 dm-nts = 2, by applying the above procedure
repeatedly, we can finally obtain that (d{,dj,ds,...,dm-n+3,
L,1,..,) X (n—-1m-n+2 2,2,...,2,1,1,...,1). Hence
~ s A - 7 o -~

2n-m-3 m—Tt-i—l 2n—"rrn—3

d¢ < dsm and the proof is thus complete. 1

Let H be a connected bipartite (n,m)-graph with n < m <
2n —5. Then the maximum degree of H is at most n —2. By an
argument similar to the proof of Lemma 3.1, we get immediately
the following result.

Lemma 3.2 Let H be a connected bipartite (n, m)-graph with
n<m<2n-—>5. If H has no pendent vertices, then

)y (dH2(U)) < ¥ (dB,';('U))'

veV(H) veV(BT)

351



Theorem 3.3 Let G be a connected (n, m)-graph with n + 2 <
m < 2(n —2). Then ME(G) > ME(S™), with equality if and
only if G = S and G = A, whenm =n+2, and G = ST
whenn+3 <m < 2(n—2).

Proof. Let G 2 S and G 2 A,, when m = n+2 be a connected
(n,m)-graph. Notice that m(An, k) = m(S™, k) = m(G, k) for
k = 0,1. It is easy to check that m(A,,k) = m(S™, k) = 0
for k > 3, and m(A,, 2) = m(S"*2,2). Therefore, it suffices to
prove that m(G,2) > m(ST,2). We apply induction on n to
prove it. By the tables of [4] and (3], it is not difficult to check
that the result is true for n = 6 and n = 7. Hence we suppose
n > 8 and the result is true for smaller n.

Case 1. G contains no pendent vertex.

Notice that m(G,2) = (7) = X,ev(e) (%) and m(S7,2) =
(D) —Zevisr) (*B™). It follows from Lemma 3.1 that m(G, 2)
> m(Sm, 2). :

Case 2. There is a pendent edge uv in G with pendent vertex
v. By Lemma 1.2, we have

m(G,2) =m(G —v,2) + m(G —u—v,1),
m(S:znz 2) = m( rrzn——llr 2) + m(Sm—n+2, 1)'

Suppose that n+2 <m <2n—5. Then (n—1)+2<m—-1<
2(n — 1) — 4. Notice that m(G —u —v,1) = (G —u —v) =
m—dg(u) 2m—n+1=m(Smnn42, 1). If dg(u) # n— 1, then
we have m(G — u —v,1) > m(Spm_nt2,1) and m(G — v,2) >
m(Sy7',2) by induction hypothesis. So m(G,2) > m(S™,2).
Otherwise, it is easy to see that G—v % S™ ' and G—v ¥ An_;
when m = n + 2. Hence we have m(G — v,2) > m(S™7},2) by
induction hypothesis, and so m(G, 2) > m(S™, 2).

Suppose that m = 2n — 4. Let dg = (dy,ds,...,d,) and
dg2n-4 be the non-increasing degree sequences of G and S2*—4,
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respectively. Denote by p the number of pendent vertices of

G. If p = 1, then by a proof similar to Lemma 3.1, we have

de < dgzn-4 and so m(G,2) > m(52"4,2). If p = 2, then by

a proof similar to Lemma 3.1, we get that de¢ <X (n — 1,n —

3,4,2,2,...,2,1,1) < dgm-« and so m(G,2) > m(S4,2).
N, e’ n

n—>5
Now we suppose p > 3 and we show that there exist an edge

e; = zy in G such that e; is not a cut edge and dg(z) +de(y) <
n. If not, we may assume, without loss of generality, that each
cut edge of G is a pendent edge. Hence we get 4n —8 —p =
di+-+dip<(n—p)n—p—1)+pand thusp <n-35
On the other hand, when p < n/2, we obtain that 4n — 8 =
i+ -+d, > (n—p)n+1)/2+p > 4n — 8, which is a
contradiction. When n/2+1 < p < n -5, we have 4n — 8 =
di+ - -+d, > (n—p)(n+1)/2+4p > (n—p)(n—p—1)+2p > 4n-8§,

which is again a contradiction.

Since p(G) > 3 and n > 8, we have G — zy % S?"5, A, and
so m(G — zy,2) > m(S2*~%,2) = (n — 4)(n — 3) by induction
hypothesis. Notice that m(G —z —y,1) = e(G —z —y) =
m+1—-dg(z) —de(y) = n—3. Hence m(G, 2) = m(G—zy,2)+
m(G -z —1y,1) > (n—3)* =m(S¥1,2).

Combining the above two cases, the proof is complete. |

By an argument similar to the proof of Theorem 3.3, we can
get the following result.

Theorem 3.4 Let n < m < 2n— 5. Then B is the unique
graph having minimum matching energy among all connected
bipartite (n, m)-graphs.
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