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Abstract

A graph of order n is said to be k-factor-critical for non-negative
integer k < n if the removal of any k vertices results in a graph with
a perfect matching. For a k-factor-critical graph of order n, it is
called #rivial if k = n and non-trivial otherwise. It is known that the
toroidal graphs are at most non-trivial 5-factor-critical. Motivated
by this, we are to characterize all non-trivial 5-factor-critical graphs
on the torus in this paper.
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1 Introduction

A maiching M of G is a set of independent edges in it such that no two
edges share a common endvertex. If it covers all the vertices of G, then it
is called perfect. For 0 < k < n, a graph G of order = is said to be k-factor-
critical (k-fc for short) if the removal of any k vertices results in a graph
with a perfect matching. 1-fc and 2-fc graphs are the usual factor-critical
and bicritical graphs, respectively, which play important roles in charac-
terizing the structure of graphs with respect to their matchings, especially
in the canonical partition of an elementary graph and the procedure for
constructing all elementary graphs from two family of basic building block-
s, namely elementary bipartite graphs and bicritical graphs [9]. For a k-fc
graph of order n, it is called trivial if k = n and non-trivial otherwise. Some
important properties of k-fc graphs are valid only for k < n; for example,
a non-trivial k-fc graph is k-connected, and non-trivial &-fc graphs are also
(k — 2)-fc graphs for £ > 2. A lot of research on non-trivial k-fc graphs
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is devoted to their vertex-connectivity, edge-connectivity, degree sum, rela-
tionship with matching extendability, construction, characterizations and
so on. For more details, see (2, 5, 6, 12, 13, 15, 16, 17, 18, 19]. In particular,
Refs. [12, 13] determined the factor-criticality of graphs on surfaces.

A surface ¥ is a connected compact Hausdorff topological space which
is locally homeomorphic to an open disc in the plane. According to the
Classification Theorem of Surfaces, every surface ¥ is homeomorphic to
precisely one of the orientable surfaces S, (g > 0) or the non-orientable
surfaces N (k > 0), where S, and N are obtained from the sphere by
adding g handles and k cross-caps, respectively. Particularly, Sp, S; and
N, are the well-known sphere, torus and Klein bottle, respectively.

By a graph on a surface, we mean a drawing of the graph on the surface
such that any pair of edges can only intersect at their endvertices. Such a
drawing is called an embedding.

Su and Zhang [13] posed the concept of the factor-criticality of surfaces.
For a given surface L, let p(X) denote the smallest integer h such that no
graph embedded on it is non-trivial h-fc. We call p(L) the factor-criticality

of surface . In [13], Su and Zhang obtained that p(X) = [5—"'@ ]
for any surface ¥ except the Klein bottle Ny, where x(X) is the Euler
characteristic of X, ie.,, x(X) = 2-29if ¥ = §; and x(X) = 2 — k if
¥ = Nj. Plummer and Zha [12] showed that p(N;) = 6 and completely
solved the remaining problem of determining p(X). By the result of Su and
Zhang, p(S51) = 6. Hence the graphs on ) are at most non-trivial 5-fc. So
it is natural to pose the problem to characterize all non-trivial 5-fc graphs
on S;. This is what we are going to do in this paper.

The structure of the paper can be sketched as follows. First we present
some properties of simple 6-regular triangulations (i.e., every vertex is of
degree 6 and every face is of length 3) on the torus. Next we show that a
non-trivial 5-fc graph on the torus is necessarily a simple 6-regular trian-
gulation. Then, based on the good properties of simple 6-regular triangu-
lations on the torus obtained in Section 2, we show that a toroidal graph
is non-trivial 5-fc if and only if it is a simple 6-regular triangulation on the
torus other than one exceptional graph.

2 Some properties of simple 6-regular trian-

gulations on the torus
In this section, we present some properties related to cyclic edge-connectivity
and connectivity of simple 6-regular triangulations on the torus. In what

follows, let A stand for a simple 6-regular triangulation on the torus.
Now we are to show that A is cyclically 12-edge-connected and further
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cyclically optimal. Let G be a graph with vertex-set V(G) and edge-set
E(G). For F C E(G) (resp. S C V(G)), by G—F (resp. G—S) we mean the
resulting graph by deleting the edges in F' (resp. the vertices in S together
with their incident edges) from G. For § # X C V(G), we denote by 8(X)
the set of edges of G with one end in X and the other end in V(G)\ X and
call it the edge-cut associated with X. Let d(X) = |8(X)|. For an edge-cut
F of a graph G, if there are at least two components of G — F containing
cycles, then F' is said to be a cyclic edge-cut. A connected graph G is called
cyclically k-edge-connected, if G has a cyclic edge-cut and every such edge-
cut is of size at least k. The maximum integer k such that G is cyclically
k-edge-connected is called the cyclic edge-connectivity of G, denoted by
eA(G). Let ¢(G) = min{d(X)|X C V(G) induces a shortest cycle in G}.
For simplicity, we also use 8(G’) and d(G") to substitute for (V' (G’)) and
d(V(G")), respectively, for a subgraph G’ of G. Wang and Zhang [14] show
that cA(G) < ¢(G) for any graph with a cyclic edge-cut. If eA(G) = {(G),
then G is called cyclically optimal.

The following lemma, presenting the well-known Euler’s Formula on

the plane graph, is needed.

Lemma 2.1. Let n,m and f denote the numbers of vertices, edges and
faces of a connected plane graph G respectively. Thenn—m+ f = 2.

The next theorem shows that A is cyclically optimal. Before proving
the theorem, we introduce some facts related to the simple closed curves

on the torus.

Figure 1. [Illustration for essential simple closed curves on the torus.

Let ! be a simple closed curve on the torus. If ! bounds a 2-cell (i.e.,
a region that is homeomorphic to a disk), then it is said to be trivial, and
essential otherwise. It is known that there are two types of essential simple
closed curves [8], one is called a longitude and the other is called a parallel
(see the left and middle ones in Figure 1). For an essential simple closed
curve on the torus, the deletion of it from the torus results in a cylinder (not
a 2-cell or a torus with a hole). Here are some facts that will be used in the
sequel. For a graph on the torus, if it does not contain any essential cycle,
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then it is a plane graph,; If it contains only one type of essential cycles, then
it is a cylindrical graph; If it contains two types of essential cycles, then
the deletion of the graph from the torus results in several 2-cells.

Theorem 2.2. A is cyclically 12-edge-connected, and hence cyclically op-
timal.

Proof. First we show that A has a cyclic edge-cut of size 12. Let S be
the vertices of a triangle in A. Then d(S) = d(A — S) = 12. Since A is
6-regular and simple, there are at least three vertices in A — S. Therefore,
[E(A-S)| = LA-N-12 _ 31y(A—5)|-6 > |V(A—S)|. Consequently,
A — S contains a cycle. Thus 8(S) is a cyclic edge-cut of size 12.

Now we are to show that cA(A) > 12. Let F be a cyclic edge-cut with

|F| = cA(A). Then A — F has exactly two components, denoted by G; and
Gs.
We claim that at least one of G; and G is a cylindrical graph or a
plane graph. If G, is cylindrical or plane, then we are done. Otherwise, G,
contains the two types of essential cycles on the torus. The deletion of G,
from the torus results in several 2-cells and G, must be bounded by some
2-cell. Hence G is a plane graph. Without loss of generality, suppose that
G is a cylindrical graph or a plane graph.

Let |[V(G1)| = n; and |E(G:)| = m;. Then by the Handshake Lemma,
which states that the degree sum of the vertices of a graph is equal to twice
the size of the edge set, 6ny — |F| = 2m;,.

If Gy is a cylindrical graph, then it has two boundaries, the lengths of
which are denoted by !, and I respectively. By adding two 2-cells with their
boundaries fit to the two boundaries of G, we obtain a plane graph with all
its faces triangles except at most two. By a simple computation, the number
of faces of G is 2_"11-?11;114_2_ By Lemma 2.1, ny —m; +2+ 2—"‘*%'&‘2 =2.
Combining the equation with 6n) — |F| = 2m,, we obtain that |F| =
2(1, + 1) = 12.

If G, is a plane graph, then it has one boundary, the length of which is
denoted by [;. By adding a 2-cell with its boundary fit to the boundary of
G, we obtain a plane graph with all its faces triangles except at most one.
Then the number of faces of G is 3—'%;'1 + 1. By a similar calculation as
the above case, we have that |F| = 6 + 2[; > 12.

By the above arguments, we have that cA(A) = ¢(A) = 12. O

By applying the above result on the cyclic edge-connectivity of A, we
are going to obtain that A is 6-connected and maximally connected. A
graph G is said to be k-connected if at least k vertices must be deleted
to disconnect the graph, k¥ < |V(G)|. The maximum integer k such that
G is k-connected is called the connectivity of G, denoted by x(G). It is
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obvious that £(G) < §(G), where §(G) is the minimum degree of G. If
k(G) = 6(G), then G is said to be mazimally connected.

Theorem 2.3. A is 6-connected, and hence mazimally connected.

Proof. Obviously A is connected. Let S C V(G) be a minimum cut and
let G; and G2 be two components of A — S. We are going to prove that
|S] > 6. Since S is minimum, any vertex v € S has a neighbor z in G;
and a neighbor y in G. Since A is a simple triangulation, A[N(v)], the
subgraph induced by the neighborhood N(v) in A, contains a hamiltonian
cycle. Hence there are two internally disjoint zy-paths in A[N(v)], which
both pass through vertices in S. Then |S N N(v)| > 2. This implies that
|S] > 3 and each vertex in S has at least two neighbors in S. Hence A[S]
contains a cycle.

Suppose that |S| < 4. Since A is 6-regular and |S| < 4, each G;
(i = 1,2) should have at least three vertices. If some G; contains a cycle,
then 8(G;) is a cyclic edge-cut. Hence by Theorem 2.2, we have d(G;) > 12.
If some G; contains no cycle, then it is a tree and d(G;) = 6|V(G;)| —
2(|V(G;)| - 1) = 4|V(G;)| + 2 > 14. Thus, in any case, G; and G2 should
totally receive at least 24 edges from S. But S sends at most 6|S| — 2|S| =
4)S| < 16 edges to them, a contradiction.

Suppose that | S| = 5. Similarly we have that each G; should have at
least two vertices, and d(S) < 4|S| = 20. On the other hand, similarly
we also have that if G; has a cycle, then d(G;) > 12, otherwise d(G;) =
4|V (G;)| + 2 = 10. Since 20 < d(G1) + d(G2) < d(S) < 20, all equalities
must hold. That implies that |[V(G1)| = [V(G2)| = 2, and each vertex in
both G; and G, must be adjacent to every vertex in S. Consequently, A
contains Ky 5 as a subgraph. But K45 cannot be embedded on the torus
by Theorem 4.5.3 in (7], a contradiction.

By the above arguments, |S| > 6. Since |S| < §(A) =6, |S| = 6. So
k(A) = 6. a

By the 6-connectivity of A, we obtain the following theorem, which
characterizes the embedding property of one component obtained from the
deletion of a minimum cyclic edge-cut.

Theorem 2.4. Let F be a cyclic edge-cut of A with |F| =12. Then A—F
has ezactly two components. If one contains the two types of essential cycles
on the torus, then the other is a plane triangle.

Proof. Let G, and G, be the two components of A — F. If Gy contains the
two types of essential cycles on the torus, then by the similar arguments
as those in Theorem 2.2, G, is a plane graph. Let I3 be the length of the
boundary walk W of G,. By the arguments in Theorem 2.2, 6 + 2l;, =
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|F| =12, so l; = 3. Since A is simple and 6-connected, W is a cycle and
there are no vertices inside W, we are done. ]

3 The characterization of non-trivial 5-factor-
critical graphs on the torus

In this section, we first show that a non-trivial 5-fc graph on the torus is
necessarily a simple 6-regular triangulation.

A graph with at least two vertices is said to be k-edge-connected if each
edge-cut has at least & edges.

Lemma 3.1. ({6]) For k > 1, every non-trivial k-fc graph is k-connected
and (k + 1)-edge-connected.

We define the mean degree of a graph G as the arithmetic mean value of
degrees taken over all vertices of G, and denote it by 5(G). The following
result presents the upper bound of the mean degree of a toroidal graph and
the embedding characteristic when the upper bound holds.

Lemma 3.2. ({11]) For any toroidal graph G, §(G) < 6 and equality holds
if and only if G is a 6-regular triangulation.

Lemma 3.3. If G is a non-trivial 5-fc toroidal graph, then it is necessarily
a simple 6-regular triangulation.

Proof. Since G is 6-edge connected by Lemma 3.1, §(G) = 6 and G is a
6-regular triangulation by Lemma 3.2. Since G is 5-connected, each vertex
has at least five neighbors. If a vertex has exactly five neighbors, then
their deletion fromn G results in a subgraph with an isolated vertex. This
contradicts that G is 5-fc. Therefore G is a simple graph. a

We now present a strengthened version of Tutte’s 1-factor Theorem. It
is less used than Tutte’s 1-factor Theorem but helpful in our proof as we
will see.

We call a vertex set S C V(G) matchable to G — S if the (bipartite)
graph H,, which arises from G by contracting each component ¢ € Cg_g to
a singleton and deleting all the edges inside S, contains a matching covering
the vertices of §, where Cg_g denotes the set of the components of G — S.

Theorem 3.4. ([4], pp 41) Every graph G contains a set S C V(G) with
the following two properties:

(i) S is matchable to G — S;

(i) Every component of G — S is factor-critical.
Given any such set S, G has a perfect matching if and only if |S| = [Ca-s|.
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The next lemma gives an estimation of the number of edges in a bipartite
graph embedded on the torus, which is obtained by Euler’s formula of
graphs on the torus (n —~ m + f = 0) and the property that the length of
each face in a bipartite graph is at least four.

Lemma 3.5. Let G be a bipartite graph embedded on the torus with n
vertices and m edges. Then m < 2n.

The following theorem characterizes all non-trivial 5-fc graphs in simple
6-regular triangulations.

Theorem 3.6. A is non-trivial 5-fc if and only if the order of A is odd
and A # Ag (Ag is shown in Figure 2).

Proof. For necessity, by the definition, a non-trivial 5-fc graph must have
an odd number of vertices. Meanwhile, Ag is not non-trivial 5-fc from the
illustration of Figure 2.

Figure 2. Aj and the five white vertices preventing it to be 5-fc.

For sufficiency, suppose by the contrary that A is not non-trivial 5-fc.
Then there exists a vertex set S’ C V(A) of size 5 such that A — S’ has
no perfect matching. Set G = A — S’. Then, by Theorem 3.4, G contains
a vertex set S” with S” matchable to G — S”, and every component of
G — 8" is 1-fc, while |S”| < |Cg-s~| since G has no perfect matching.
Denote such 1-fc components by G1,Ga,...,G; respectively. Then ¢t =
|[Cq-s»| = |S"|+ 1. Moreover, since the order of G is even, |S”| and ¢ have
the same parity and ¢t > [S”| 4+ 2.

Let S = §’ U S”. We contract each component G; (1 < i < t) into
a singleton, and delete the edges in A[S] and the multiple edges or loops
produced by the contraction. Denote the resulting bipartite graph by G’.
So G’ can also be embedded on the torus. Let m’ be the number of edges
of G'. By Theorem 2.3, each component G; has at least six neighbors in S.
On the other hand, since A is 6-regular, each vertex in S receives at most
6 edges from the components. Then 6(|S”| + 2) < 6t < m/ < 6(|S"| + 5).
Since t and |S”| have the same parity, t = |S”| +2 or t = |S”| + 4.
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Since G’ has 5§ + |S”| 4t vertices and m’ edges, by Lemma 3.5, m’ <
2(5+ |S”| +t). Together with m’ > 6t, we have 2t < |S”| + 5.

Ift = |S”|+4, then 2t < |S”|+5 implies that |S”| < -3, a contradiction.

Thus t = |$”|+2. By substituting this into the inequality 2t < |$"|+5,
we obtain that |S”| =0or 1.

If |S”] = 0, then S’ is a cut of A of size 5, since t = 2. But A is
6-connected by Theorem 2.3, a contradiction. Hence |S”| =1, and |S| =6
andt =3,

We now claim that if any G; is a singleton, then all the other compo-
nents are singletons, too. Without loss of generality, assume that G, is a
singleton, denoted by w. Since w is adjacent to every vertex in S, A[S]
contains the six edges in the triangular faces at w that are not incident
with w. It follows that S sends at most 36 — 12 — 6 = 18 edges to G,
and G3. If G; (i=2 or 3) is not a singleton, then it contains a cycle since
it is 2-edge-connected by Lemma 3.1, and 8(G;) is a cyclic edge-cut. By
Theorem 2.2, d(G;) > 12. Hence at least one of G and Gj is a singleton,
say G2 = u. Suppose to the contrary that Gj is not a singleton. Then
d(G3) = 12. So there are exactly 6 edges in A[S]. Recall that S = N(u)
and A[N(u)] contains a 6-cycle. Thus A[S] = A[N(u)] is a 6-cycle, that
is, every vertex in S is of degree 2 in A[S]. For any fixed s € S, it has two
neighbors in S, denoted by sq and s;, and two neighbors in G, denoted
by ¢; and ¢3, besides u and w. So N(s) = {so, s1,w,u,t1,t2}. Note that
A[N(s)] contains a 6-cycle. However, u and w can only be adjacent to so
and s; in N(s) and therefore the vertices in N(s) cannot form a 6-cycle, a
contradiction. So the claim holds.

We first consider that case that each G; is a singleton. To meet the
condition that every vertex is of degree 6, each G; is adjacent to every
vertex in S. Therefore, A contains K3¢ as a subgraph. It is known that
K36 has a unique embedding on S (see the bold edges in Figure 2). So A
is obtained from the unique embedding by triangulating all quadrangular
faces. It is Ag (see Figure 2).

Next we consider the case that each G; (i = 1,2,3) is not a singleton.
By the above arguments, d(G;) > 12 for each 1 < i < 3. Since d(S) < 36,
we have d(G;) = 12 for each 1 < i < 3 and S is an independent set.
Further 8(G;) is a minimum cyclic edge-cut. Therefore each component G;
is a plane graph or a cylindrical graph by Theorem 2.4. By the proof of
Theorem 2.2, if it is a cylindrical graph, then the two boundaries are two
triangles; If it is a plane graph, then its boundary is a triangle. For each
vertex v € S, in order to fulfill the 6-regular triangulation at it, we can
only use the edges on the boundaries of the three components. Recall that
the 6 edges lying in the triangular faces at a vertex which are not incident
with the vertex form a 6-cycle and S is independent. Hence every vertex s
in § must be connected to a 6-cycle on the boundary in some component
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G;. However, the boundaries of the components are triangulations. That
is a contradiction. 0O

Combining Lemma 3.3 with Theorem 3.6, we conclude the main result
as follows.

Theorem 3.7. All non-trivial 5-fc graphs on the torus are the simple 6-
reqular triangulations with odd number of vertices except Ag.

Remark 3.8. The simple 6-regular triangulations on the torus have been
classified in 1973 [1).

Acknowledgments

We are very grateful to the referee for careful reading and many valuable
comments and suggestions to improve this paper.

References

[1] A. Altschuler, Construction and enumeration of regular maps on the
torus, Discrete Math. 4 (1973) 201-217.

[2] N. Ananchuen, L. Caccetta and W. Ananchuen, A characterization of
maximal non-k-factor-critical graphs, Discrete Math. 301 (2007) 108-

114.

[3] J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, Additivity of
the genus of a graph, Bull. Amer. Math. Soc. 68 (1962) 565-568.

(4] R. Diestel, Graph Theroy, Springer, New York, 2006.

[5) O. Favaron, Extendability and factor-criticality, Discrete Math. 213
(2000) 115-122.

(6] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory
16 (1996) 41-51.

[7] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley, New
York, 1987.

[8] W.B.R. Lickorish, A finite set of generators for the homeotopy group
of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964) 769-778.

[9] L. Lovész and M.D. Plummer, Matching Theory, Ann. Discrete Math.,
Vol. 29, North-Holland, Amsterdam, 1986.

365



(10] B. Mohar and C. Thomassen, Graphs on surfaces, The Johns Hopkins
University Press, Baltimore, 2001.

[11] S. Negami, Uniqueness and faithfulness of embedding of toroidal
graphs, Discrete Math. 44 (1983) 161-180.

[12) M.D. Plummer and X. Zha, On the p-factor-criticality of the Klein
bottle, Discrete Math. 287 (2004) 171-175.

[13] H. Su and H. Zhang, The factor-criticality of surfaces, preprint, 2002.

[14] B. Wang and Z. Zhang, On cyclic edge-connectivity of transitive graph-
s, Discrete Math. 309 (2009) 4555-4563.

[15] Q. Yu, Characterizations of various matching extensions in graphs,
Australas. J. Combin. 7 (1993) 55-64.

[16] Q. Yu, A note on extendability and factor-criticality, Ann. Combin. 6
(2002) 479-481.

[17] Z. Zhang, D. Lou and X. Zhang, Notes on factor-criticality, extend-
ability and independence number, Ars Combin. 87 (2008) 139-146.

[18] Z. Zhang, T. Wang and D. Lou, Equivalence between extendability
and factor-criticality, Ars Combin. 85 (2007) 279-285.

[19] F. Zhang and H. Zhang, Construction for bicritical graphs and k-
extendable bipartite graphs, Discrete Math. 306 (2006) 1415-1423.

366



