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Abstract

In [8], Weimin Li and Jianfei Chen studied split graphs such that the monoid of
all endomorphisms is regular. In this paper, we extend the study of [11]. We find
conditions such that regular endomorphism monoids of split graphs are completely
regular. Moreover, we find completely regular subsemigroups contained in the
monoid End(G).

0 Introduction

In 1987 Knauer and Wilkeit posed the question, for which graph G is the endomor-
phism monoid of G regular [9]. After this question was posed, there are many results,
which investigate this situation for different types of graphs, were studied [1, 2, 3, 6,
8, 12]. Now some extentions of this question have been studied. In this paper we
consider completely regular endomorphisms. We focus the discussion to split graphs,
i.e., graphs which have a specially simple combinatorial structure. Split graphs were
first introduced and studied by Foldes and Hammer in 1977 [4]). Endo-regularity of
split graphs first appeared in [3). But Weimin Li and Jianfei Chen found that the
main result in [3] is wrong. They studied endo-regularity of split graphs again [8].
Endo-completely regularity of split graphs appeared in [7, 11]. Their main results are
equivalent. This paper continues the investigation from [11].

1 Preliminaries

All graphs will be finite undirected without loops and multiple edges. If G is a graph,
we denote by V(G) (or simply G) and E(G) its vertex set and edge set, respectively.
A graph H is called a subgraph of G if V(H) C V(G) and E(H) C E(G). Moreover,
if for any a,b € V(H), {a,b} € E(H) if and only if {a,b} € E(G), then we call H an
strong or induced subgraph of G. We denote by K, the complete graph with n vertices.
Let G be a graph and let H be a clique (i.e., a complete subgraph) of G. If H has the
maximal order of all the cliques of G, i.e., |V(A)] < |V(H)| for any clique A of G,
then H is called a maximal clique of G. An independent set of G is a set of pairwise
non-adjacent vertices and a complete set is a set which induces a clique. Let H be
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a subgraph of G and v € H. Denote Ny(v) := {x € H|{x,v} € E(H)}, called it the
neighborhood of v in H; use N(v) for Ny (v) if it is clear which graph H is referred to.

A graph G(V,E) is called a split graph if its vertex-set can be partitioned into
disjoint (non-empty) sets / and X, i.e., V = KU/, such that / is an independent set and
K is a complete set. In this paper a split graph G is always written as K, U I, where K,
is a maximal complete subgraph of G and I, = K.

Definition 1.1. Let G = K, U/, be a split graph where K, is a (may be not maximal)
complete subgraph of G. We call K, U1 be a unique decomposition of G with the
clique size n if for every complete subgraph Kj, and every independent set J such that
G=K,Ullonehas K, =K,and [l = I..

Example 1.2. Let G be the graph as follows.
5

3

Figure 1: Split graph which has no a unique decomposition with the clique size 3.

We see that there are 2 complete subgraphs size 3, K3 = {1,2,3} and K} = {2,3,4}.
And G can be partitioned to both of K3U {4,5} and K3 U {1,5}. So this is no unique
decompositions of G with the clique size 3. We have one complete subgraph K, =
{2,3} of G with K, U{1,4,5}, i.e., a unique decomposition of G with the clique size 2.

This can be formulated in general as follows.

Proposition 1.3. If K, is a maximal complete subgraph of a split graph G and K, U1,
is not a unique decomposition with the clique size n, then Ky_1 Ul 1\ is a unique
decomposition with the clique sizen— 1.

Let G and H be graphs. A homomorphism f : G — H is a vertex-mapping
V(G) — V(H) which preserves adjacency, i.e., for any a,b € V(G), {a,b} € E(G)
implies that {f(a), f(b)} € E(H). Moreover, if f is bijective and its inverse mapping
is also a homomorphism, then we call f an isomorphism from G to H. A homomor-
phism from G to itself is called an endomorphism of G. An isomorphism of a graph
G to itself is called an automorphism of G. End(G) and Aut(G) denote the sets of
endomorphisms and automorphisms of the graph G, respectively. It is well-known that
End(G) is a monoid (i.e., a semigroup with an identity element) and Aut(G) is a group
with respect to the composition of mappings. They are called the monoid of G and the
group of G, respectively.

Let f be an endomorphism of a graph G. If H is a subgraph of G, by f|y we de-
note the restriction of f on H; and f(H) := {f(x)|x € H}. Let G(V,E) be a graph.
Let p CV x V be an equivalence relation on V. Denote by [a], the equivalence class
of a € V under p. The graph, denoted by G/p, is called the factor graph of G under
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p,if V(G/p) =V /p and {[a]p,[b],} € E(G/p) if and only if there exist ¢ € [a], and
d € [b]p such that {c,d} € E(G). Let f be an endomorphism of G. By py we denote
the equivalence relation on V(G) induced by £, i.e., for a,b € V(G), (a,b) € py if
f(a) = f(b). The graph G/ py is called the factor graph by f.

An element a of a semigroup S is called regular if there exists x € S such that
axa = a. If every element of S is regular, S is called regular. A graph G with reg-
ular End(G) is called endomorphism-regular, or simply endo-regular. An element a
of a semigroup S is called completely regular if there exists x € S such that axa =a
and ax = xa. A semigroup S is called completely regular if all its elements are com-
pletely regular. A graph G with completely regular End(G) is called endomorphism-
completely-regular, or simply endo-c.r.

Theorem 1.4. ([10]) The following conditions on a semigroup S are equivalent:
(i) S is completely regular.
(ii) S is a union of (disjoint) groups.

An element z of a semigroup S is called a right (left) zero if 52 = z (z5 = 2) for
all s € S; z is called a zero of S if it is both a right and a left zero of S. A semigroup
all of whose elements are right (left) zeros is called a right (left) zero semigroup. We
denote by Ry, (Ln) the n element right (left) zero semigroup. For more concepts about
semigroups we refer to [10].

Right groups are of the form G x Ry, i.e., they are the unions of n copies of an
arbitrary (finite) group G, analogously G X L, for left groups, with the multiplication
as given by GX R, orGXxX L.

Definition 1.5. For any split graph G = K, Uy, let J be a subset of /.. We call J a split

component of I, if for any a,b € J, N(a) = N(b) (including the case whose N(a) and

N(b) are empty) and there are no ¢ € I, \ J such that N(c) = N(a). And we say that
3

I has s split components if I, contains s distinct split components, i.e., Ir = |J Ji, J; a
i=1
split component of J, forall i = 1,2,...,s.

We observe that a split component is a v-class in the terminology of [5]. This
means that the canonical strong factor graph of K, U/, is the form K, U, if J; has s
split components.

u v w
q ]
3 X
ce 4 .y
be Zz
ae
1 2

Figure 2: Split graph K4U Is.

369



Example 1.6. Let G be the graph as in Figure 2. So we consider G = K4 U ly where
K4 = {1,2,3,4} and Iy = {a,b,c,u,v,w,x,y,2}, the independent set & has 3 split com-
ponents, J1 = {a,b,c}, J2 = {u,v,w} and J3 = {x,y,z}. If we consider G = K3 U0
where K3 = {2,3,4} and I1o = lhU{1}, we have that the independent set J;o has 4 split
components, Ji, 2, J3 and J; = {1}.

Theorem 1.7. ([8]) Let G(V,E) be a connected split graph with V = K,UI,. Then G
is endo-regular if and only if for all a € I, one has |N(a)| =d, d € {1,...,n—1}.

Theorem 1.8. ([8]) A non-connected split graph K, U I, is endo-regular if and only if
N(a)=0forallacl.

Lemma 1.9. ([11]) For any split graph G = K, U I, let f be an endomorphism of G. If
IN(a)| <n—1foralla €I, then f(V(Ky)) =V (Kn).

Lemma 1.10. ([11]) Let G = K,, U, be an endo-regular split graph. If End(G) is
completely regular, thenr < 2.

Lemma 1.11. ([5]) Let X be a graph, x1,x; € X. There exists a strong endomorphism
f € SEnd(X) with f(x1) = f(x2) if and only if N(x;) = N(x2).

Remark 1.12. 1) If an endo-regular split graphs G = K, UJ, with , has exactly one
split component and [N(a)| = n—1 for all a € I,, they are of the form K,U/, =
K»(Kr41,Kn-1] (generalized lexicographic product see [5]). In this case we have by
Proposition 1.3 that K,y Ul is a unique decomposition of G with the clique size
n—1, and the canonical strong factor graph of K,_; Ul is K,. Then by Theorem
3.4 in [5), we have that SEnd(Kn—1 Ulr41) = Aut(K,) wr X where ¢ = {{u} |u ¢
Kn_1} U {lr11} is a small category (for definitions and notation see [5]). This means
that every strong endomorphism can be described by an automorphism ¢ of K, fol-
lowed by a family of mappings. For every element x of K, we take a mapping from the
class [x] of x to the class [p(x)] of @(x). For all x € K, we get the family of mappings.
Here most classes are one element, except for the class corresponding to I, .

2) For any endo-regular split graph G = K, U, with K, is a maximal complete
subgraph of G, if I, has 5 > 1 split components, it is clear that K, U1, is a unique
decomposition of G with the clique size n.

2 Completely Regular Endomorphisms in Endo-regular
Split Graphs

In this section we find conditions such that a regular endomorphism of any graph G is

completely regular and specify this condition for split graphs G.

We begin this section by describing a property of a mapping f of a finite set G. We
denote T'(G) the set of all mapping from G to itself.

Lemma 2.1. Let G be a (finite) set, if f € T(G) and there exist a,b € G with f(a) #
F(b) and f*(a) = f2(b), then f is not completely regular.
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Proof. Take f is a mapping of the set G. Let a,b € G with f(a) # f(b) and f?(a) =
S2(b). Assume that f is completely regular, then there exists g € T(G) with fgf = f
and fg = gf. Consider at vertices a and b, we have

8f*(a) = fgf(a) = f(a) # f(b) = fg(b) = g/*(b) = 8f*(a).
This is a contradiction. Then we get f is not completely regular. a

We call this property square injective since it is equivalent to saying f2(a) = f2(b)
implies f(a) = f(b).

For the next theorem, we were inspired from Proposition 2.4 in [7]. It gives a
condition such that any regular endomorphism f of any graph G is completely regular.
Now we give another way to show which endomorphisms are completely regular.

Theorem 2.2. Let G be a finite graph and f be an endomorphism of G. Then f is
completely regular ifand only if for all a,b € V (G), f(a) # f(b) implies f’(a ) # f3(b)
i.e., f is square injective. In this case, if f is not idempotent, we have f fiolf=f and
Ffi=Y = fi=1 f where f is the idempotent power of f.

Proof. Necessity. This follows from Lemma 2.1.
Sufficiency. Let f be a square injective endomorphism of G. Since G is finite, there
exists some i € N such that f/ is an idempotent, i.e., (f/)? = f!.

If f is idempotent, it is clear that f is completely regular. Now we suppose that f
is not idempotent. So there exists 2 < i € N such that £ is idempotent.

First we show that f(a) = f"*1(a) for all a € V(G). Let a € V(G). Since f' is an
idempotent, we have f2(f2(a)) = fz' (a) = (f")z(a) f(@) = f3(f"*(a)). Since
f is square injective, we get that f%~!(a = fi=1(qa). By repeating this proccss fori—1
times, we get that fi+!(a) = f(a), i.e., ff""f f- Itis clear that ffi~! = fi~1f. Now
we have f is completely regular. O

Next, we will specify the condition in Theorem 2.2 for an endo-regular split graph
G. We begin with a lemma which shows an additional property of a completely regular
f of an endo-regular split graph G.

Lemma 2.3. Let G = K, U, be an endo-regular split graph and let f be a completely
regular endomorphism on G. If [IN(a)] <n—1 for all a € I, then for any d € I, if
f(d) € Kn, then d ¢ Im(f).

Proof. Let f be a completely regular endomorphism of G. Let d € I, with f(d) € K,,.
Assume that d € Im(f). By Lemma 1.9, f(K.) = K,,, there exists ¢ € I, such that
f(c) = d. Now we have that f2(c) = f(d) =: x € K,,. Since f(K,) = K, there exists
u € K, with f(u) € K, and f2(u) = x. Since f2(u) = f2(c) and f is completely regular,
by Theorem 2.2, we have that f(#) = f(c) =d € I;. This a contradiction. Then we get
that d & Im(f). O

We reprove one direction of the main theorem from [11] with the next lemma. For
any f € End(G), define

Ends(G) := {g € End(G)|ps = pg}
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the set of all endomorphisms of G with congruence relation p;. Note that Endy(G) is
Green’s . —class of f.

Lemma 2.4, For any endo-regular split graph G = K, U1, let f be an endomorphism
of G. If f is a bijective or f(G) 2 Ky, then End¢(G) is a group.

Proof. If f is bijective, we see that End;(G) = Aut(G). Otherwise:

(a) If IN(a)]=m <n—1forall a € I, by Lemma 1.9, it is clear that Ends(G) =
End(Ky) & S,.

(b) If IN(a)| = n— 1 for all a € I, we have to consider the ways Im(f) = K, can be
embedded into G. There are r 4- 1 ways each followed by all permutation of the image.
So we get r + 1 times S,. Moreover, it is clear that End(G) altogether is isomorphic
to the left group S, X L,4 1. o

Theorem 2.5. ([11]) For any endo-regular split graph G = K, U, End(G) is com-
pletely regular if and only ifr = 1.

Proof. Let G = K, Ul be an endo-regular split graph. If r =1, then by Lemma 2.4
and Theorem 1.4 we get End(G) is completely regular. If r > 1, we get that End(G) is
not completely regular monoid by Lemma 1.10. O

Continuing the consideration from Remark 1.12 we get the following remark.

Remark 2.6. For any endo-regular split graph G = K, U1,

1) ifIN(a)| < n—1 for all a € I\, then f € End(G) is a strong endomorphism if
andonlyif f(c)e L Ve e I;

2) if Ka U I, is not a unique decomposition of G with the clique size n, then all
S € End(G) are strong endomorphisms.

Proof. 1) Necessity. Let f € End(G) be a strong endomorphism. Assume that there
exists ¢ € I with f(c) = u € K,,. By Lemma 1.9, we have that f(K,) = K,. Then there
exist x € K, such that f(x) = u, so f(x) = f(c). Since [N(c)| < n—1and |N(x)| > n-1,
by Lemma 1.11 we get that f is not a strong endomorphism. This is a contradiction.
Then f(c) € I, forall c € I,.

Sufficiency. Let f € End(G) with f(c) € I, for all ¢ € I;. Let {f(u), f(v)} € E(G).
If f(u),f(v) € Kn, it is clear that u,v € K, so {u,v} € E(G). It remains to consider
f(u) € K, and f(v) € I. By Lemma 1.9 and hypothesis we have that u € K, and
v € I;. Since v, f(v) € I, by hypothesis we have |N(v)| = [N(f(v))|. Since f is an
endomorphism, then f(N(v)) = N(f(v)). Since f(u) € N(f(v)) and f(K,) = K, then
u € N(v) so {u,v} € E(G). Then we get that f is a strong endomorphism.

2) This case is obvious, look for example to the graph in Example 1.2 without point
5. o

3 Completely Regular Subsemigroups
- Exactly one split component

In this section, we characterize completely regular subsemigroups contained in End(G).
We will begin with the endo-regular split graph G whose independent set has exactly
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one split component. And then, in the next section, we consider the endo-regular split
graph G whose independent set has s > 1 split components. First, we give some lemma
which describes the image of any endomorphism and the composition of any two en-
domorphisms of an endo-regular split graph G = K, U/, restricted to K, \ N(a) and to
N(a).

Lemma 3.1. Let G= K,UI, be an endo-regular split graph such that I, has exactly one
split component, i.e., N(a) =N(b) foralla,b e I,. If f,g € End(G) with f(G) % K, and
8(G) % K, we have f(N(a)) =N(a), and (f og)(N(a)) = N(a). If [N(a)| <n—1 for
all a € I, we have in addition f(K,\N(a)) =K, \N(a), (fog)(K,\N(a)) =K,\N(a)
and the statement is also true for f(G) = Kn.

Proof. Let f be an endomorphism of G which f(G) 2 K. Let u € N(a). Assume that
f(u) ¢ N(a). Then f(u) € (K»\ N(a)) UI;. We consider two cases.

Case 1. N(a) < n—1forall a € I,. By Lemma 1.9, it is impossible that f(u) € I,
so f(u) € K»\ N(a). Since f(G) 2 Ky and f(K,) = K, there exists a vertex v € I, such
that f(v) € I,. Since f(u) ¢ N(a) forall a € I, then f(u) ¢ N(f(v)).i.e., {f(u),f(V)} ¢
E(G). But {u,v} € V(G) and f is an endomorphism, then this is a contradiction.

Case 2. N(a) =n—1 for all a € I;. Since I, has exactly one split component
and K, is a maximal complete subgraph, there exists one vertex x € K, such that x ¢
N(a) and N(x) = N(a). For example, we consider the graph as in Figure 3 where
K, = K3 = {1,2,x} and I, = Is = {a,b,c,d,e}. It is clear that only vertex x € K3 is
such that x ¢ N(a) and N(x) = N(a). It is obvious that I, U {x} is an independent set

Figure 3: Endo-regular split graph G = K3 UI5 which K3 U/s is not a unique decompo-
sition of G with the clique size 3.

of G. Now we assume that f(u) € I, U {x}. Since f(G) 2 K, and f preserves K,,
there exists v € I, U {x} such that f(v) € I, U {x}. Since I, U{x} is an independent
set, {f(u),f(v)} ¢ E(G). But {u,v} € E(G) and f is an endomorphism, we have a
contradiction.

Moreover, if |[N(a)| < n—1forall a € I;, by Lemma 1.9, we have f(K;) = Kn. So
we get that f(K,\N(a)) = K, \ N(a). O

Remark 3.2, Lemma 3.1 is not true in the case when [N(a)| =n— 1 for all a € J, and
f € End(G) with f(G) = K,. For example, take G a graph as in Figure 3. We see that
K3 = {1,2,x} is a maximal complete subgraph of G, Is = {a,b,c,d, e} is an indepen-
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dentsetandN(a):{l,Z}.ltisobviousthatf:(‘11 f ; ; ; ; ; is

an endomorphism of G with f(G) = K3. But f(N(a)) = f({1,2}) = {1,a} # N(a).

Note that if A is any set, then we denote by S, the group of permutations of the
elements in A. For examples, S() 23}, S{{4,6},(c,d}) are the symmetric group S3 and S5,
respectively.

In Theorem 3.3 and Corollary 3.5, K, is not necessary to be a maximal complete
subgraph of the split graph G = K, UI;. Since for some f € End(G) with f(G) iso-
morphic to a maximal complete subgraph of G, we may have the following situation.
For example, we consider f as in Remark 3.2. We see that f({a,b,¢c,d})={2} € I, =
{a,b,c,d,}, so there is no congruence class whose a subset of I;. Then we can not con-
struct the set of representatives A as is defined in Theorem 3.3. This implies that we can
not construct the set CRE#(G). Then in the next theorem and its corollary, we leave
the case when f(G) isomorphic to a maximal complete subgraph of G. Although, we
have Lemma 2.4 whose shows End(G) is a group, so End¢(G) is completely regular
monoid.

b
2

Theorem 3.3. Let G = K,U I, be an endo-regular split graph such that I, has ex-
actly one split component and K, U1, is a unique decomposition of G with the clique
size n. Suppose f € End(G) with f(G) is not isomorphic to the maximal complete
subgraph of G. Suppose that f has q congruence classes which are subsets of I, for
some q € IN, namely, [i\]o,, lizlp,s-s [igloys i1y--0ig € I For every j=1,2,...,q,
choose a representative aj € [ij]p, forall j=1,2,....qand set A:= {a),az,...,a,}. Set

Hi={iek|fl)el}and
CRE}G) := {h € End(G)|h c.r., h(lf) = A}

the set of all completely regular endomorphisms in End¢(G) such that their restrictions
onlf give the set A. Then we have that CRE}‘( G) is the group Sp—m X Sm X S

Proof. Case 1. K, is a maximal complete subgraph of G. To illustrate the situation in
this case, i.e., [N(a)| = m < n—1 for all a € I, we consider the graph as in Figure 4.
In this graph we use K, = Ks, m = 2 and g = 3. Take f such that the dotted ovals in
the picture are the congruence classes induced by f which are subsets of I,. Now take
A={a,d,e}. We get CRE}‘(G) is isomorphic to §3 X S X S3 = S{; 23) X S(4,5) X Sa.

By the graph as in Figure 4 and Lemma 3.1, it is obvious that CRE}(G)|(x,\v(a))
and CRE}(G)|n(q)» the sets of restrictions of all endomorphisms in CRE}(G) to Ky \
N(a) and to N(a), are isomorphic to S,_, and S, respectively. For any endomorphism
hin CRE‘;(G), we get h(u) = h(a;) forall u € [ij]p,, j=1,2,...,g. So we have that
CRE}(G)| s is isomorphic to CRE}(G)|4. By inspection it is clear that CRE}(G)|a is
isomorphic to S;. Then we have that CRE#(G) is isomorphic to Sp_m X Sm X S,

Case 2. K, is not a maximal complete subgraph of G. Consider the graph as in
Figure 3. Here K, = K> = N(a) and q = 3. The three dotted ovals in the graph are the
congruence classes induced by f which are subsets of /;. Take now A = {x,c,d}. We
get CRE4(G) is isomorphic to Sz X S3 =S¢y 2) X Sa.
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Figure 4: Endo-regular split graph G = K5UIg which K5UIs is a unique decomposition
of G with the clique size 5.

Formally the result is the same as before since now K, \N(a) =0, thenm=n—1
and CRE}(G) = Spem X Sm X Sq = Sp_1 X Sg- |

Before we determine the maximal completely regular subsemigroup contained in
Endg(G) for an endo-regular split graph G = K, U, where /; has exactly one split
component, we give two examples which show the composition between the elements
of two groups CRE#(G) and CRE}(G) which are contained in End/(G), where f is an
endomorphism of an endo-regular split graph G.

Example 3.4. First, we consider X, U I, with a unique decomposition of G with the
clique size n and next we consider K, U, with a non-unique decomposition of G with
the clique size n, where K, is a maximal complete subgraph of G.

(1) Take G a graph as in Figure 5.

1 a 1 ab
b
: 3 . 3 od
4 2
G H

Figure 5: Endo-regular split graph G = K3 U4 and H a factor graph induce by f in
Example 3.4 (1).

Consider the mapping f = ( : ; g fz Z z g from G to G. Note that gb,

cd in graph H (in Figure 5) mean f({a,b}) = {a} and f({c,d}) = {c}. Itis clear
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that f is an endomorphism. The graph H in Figure 5 is the factor graph of G in-
duced by f. It is clear that f is idempotent, so it is completely regular. We have
two congruence classes {a,b} and {c,d} which are subsets of the independent set
I4={a,b,c,d}. For every completely regular endomorphism # € Endy(G), it is im-
possible that h({a,b}) Nh({c,d}) # 0, since h({a,b}) Nh({c,d}) # 0, would imply
that h(a) # h(c) and h?(a) = h*(c). This contradicts to Theorem 2.2. Now we get that
for any completely regular endomorphism & € Endy(G),

(a) h sends {a,b} to {a,b} if and only if h sends {c,d} to {c,d}

(b) h sends {a,b} to {c,d} if and only if h sends {c,d} to {a,b}.
By Theorem 3.3, we know that CRE| ) (G) is isomorphic to Sy x $; x 5 = §, x 5.

The 4 endomorphisms in CRE}“‘C} (G) are
_ (1 2 3 ab cd {123 abcd
fl_f’fz_(l 23 ¢ccoa a)’fs—(Z 1 3 a ac c)and

{123 abcd
f4_213ccaa'

Similarly, we know that CRE}“’d} (G) is isomorphic to S; x S,. The 4 endomorphisms

in CRE{*?}(G) are
1 23 a b c d 1 23 a b cd
3'=(123aadd)'32=(123ddaa)'
1 2 3 a b c d 1 2 3 a b c d
33:(213aadd)a“d3“=<213ddaa)'

We will consider the composition between the elements of CRE}"’C) (G) and the ele-
ments of CRE{"“}(G). For any h € CRE}**}(G) and k € CRE}**}(G), it is clear by

inspection that (hok) € CRE}“’C}(G). The table in Table 1 shows the composition be-
tween the elements of these two groups.
From the Table 1, it is clear that we get the left group (S2 x S3) X L,. Moreover, we

olfi L B falg g 8 g4
hlA L B falhHh £ F» fa
Ll A fo BILE Hh fo B
Bl fa A LB foa A £
falfs A Alfa s o A
81 (81 8 8 848 8 83 84
8218 8 84 83|82 & 84 83
83|18 84 81 828 8 81 &2
84 | 84 83 82 81 |84 83 8 81

Table 1: Composition of two completely regular subsemigroups CRE}“’C)(G) and
CRE**}(G) in Example 3.4 (1).

have two more groups CRE {b.c} G) and CRE {b’d}(G) contained in End(G). Then we
/ ! f
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get U U CRE}"”')(G) is isomorphic to the left group (S x S2) % L4 and this is
ie{a,b} je{c.d}
a maximal completely regular subsemigroup of End¢(G).

(2) Take G = K2 U s the split graph as in Figure 6, with K> = {1,2} and I =
{a,b,c,d,e}.

b c cd
1 1
a d ab
2 2
e e
G H

Figure 6: Endo-regular split graph G = K, U5 and H a factor graph induce by f in
Example 3.4 (2).

. . 1 23 abcde
Consider the mapping f = ( 1 2 aaace
clear that f is an endomorphism. The image graph H = f(G) (in Figure 6) is a subgraph
of G. Now we know that all endomorphisms in End(G) are the embeddings of H into
G. By Theorem 1.7, we have that f is regular. And we have three congruence classes
{a,b}, {c,d} and {e} induced by f which are subsets of /5. For every completely
regular endomorphism h € End(G), it is impossible that h({a,b}) Nh({c,d}) # 0.
Since h({a,b}) Nh({c,d}) # O, then h(a) # h(c) and h*(a) = h*(c). This contra-
dicts to Theorem 2.2. By the same ways, it is impossible that 2({a,b}) N h({e}) # 0
and h({c,d})Nh({e}) # 0. This implies that for every completely regular endomor-
phism & € Ends(G), h(Is) is isomorphic to some element in the symmetric group
S(tap)icatie): ’

We have 4 different sets of representatives, {a,c,e}, {a,d,e}, {b,c,e} and {b,d,e}.
By Theorem 3.3, we know that CRES"/*}(G) is isomorphic to 57 x S3(= S(1.2) X
Stijey) forall i € {a,b} and j € {c,d}.

By inspection, it is clear that |J U CRE}i’j "}(G) is isomorphic to the left
le{a,b} je{cd)

fromGto G. Itis

group (S2 x S3) % Ly.
Using Theorem 3.3 and Example 3.4, we get the next corollary.

Corollary 3.5. Let G = K, I, be an endo-regular split graph such that I, has exactly
one split component and K, U1, is a unique decomposition of G. Suppose f € End(G)
with f(G) is not isomorphic to maximal complete subgraph of G. Suppose that f has
q congruence classes which are subsets of I for some q € N, namely, [i1]p,. [i2]pjse-es
ligloys i1se-vrig € Ir. Set o := {{a1,az,...,ag} | a; € [ij]5, } the set of sets of representa-
tives. The maximal completely regular subsemigroup of End(G) denote by CRE¢(G)
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is the union of || groups CRE4 7 (G) where A € o/ And we have that CRE¢(G) is the
left group (Sp—m X Sm X Sq) % L, o)

4 Completely Regular Subsemigroups
- s > 1 split components and |[N(a)| =1

Now we turn to characterize completely regular subsemigroups of endo-regular split
graphs G = K, U, where I, has s > 1 split components J},J,,...,J; and |[N(a)| = 1 for
all a € I;. Let f be a completely regular endomorphism of G. This notation will be
used everywhere in this section. To get the theorem which describes the structure of
this completely regular subsemigroups, we need 3 lemmas.

The following lemma is the analogue of Lemma 3.1 for s > 1 and |[N(a)| = 1.

Lemma 4.1. With the above notation, suppose that J1,J»,...,Jp are the split compo-
nents of I, with f(J;) C K,,for i=12,.,p. SetJ:= 11 U”HU...UJp. Then we have
F(Ka\ U N(a)) K\ U N(a) andf( U N(a)) = U N(a)

acl,\, ael\J a€el;\,
Proof. Letu e K,\ |J N(a). Assume that f(u) € U N(a) Since f(K,) = K, by
ael\J €\
Lemma 1.9, there exists ve |J N(a) such that f(v) € K,.\ U N(a) ie, f(v) ¢
ael\J

N(I:\J). Suppose that v € N(J;) for some J; & {J1,J2, .. Jp} Slnce IN(a)] = 1 for
all a € Iy, by Lemma 2.3, we know that for all d € [, \ J if f(d) € I, then f(d) €
I \J. Since J; ¢ {J1,J2,...,Jp}, there exists e € J; such that f(e) € I, \J. Now we
have f(v) & N(f(e)). Since {v,e} € E(G) and f is an endomorphism, we get that
{r(v),f(e)} € E(G), ie f(v) € N(f(e)). This is a contradiction. Thus we have
F(K\ U N(a)) K.\ U N(a). Consequently, since f(K,) = K,, we get that

aé, a€, r\
b eU N(a)) = U N(a) O
a r
Lemma 4.2. With the above notation, set Jp = {[dp, | i €Jj and [i}p, C J;} and
={ieJj| flyel}forall j=1,2,..,s. Then we have for any a8 € {1,2,...,s}
that f(J5) C Jp implies [J§| = IJ;;’ [.

Proof. Let f be a completely regular endomorphism of G and f(Ié ) € Jg for some
a,B €{1,2,...,5}, a # B. Assume that &, := /5’| # IJPII =: {g.

First, we consider the case £g > £g. Let [ai]p, [az]p/. wwens [ags]p, be £y con-
gruence classes in J5/. Since f(Jf) C Jp, then for any I € {1,2,...,4s}, fa;) = b;
for some b; in Jg. By Lemma 2.3, we know that b, € J{, Since Za > {g, there ex-

ist j# k € {1,2,...,€a} such that f(a;) = b; # by = f(ax) and [bjlp, = [bip,. ie.,
f*(aj) = f*(ax). That means f is not square injective, contradicting to Theorem 2.2.
Next, we consider the case £, < Kp Since [, is finite, there exists some split com-

ponents J,, and J, of I, with f(J1) C J, and [J&/| > |J5/). As in the first case we get a
contradiction. Then we have that |J5/| = |Jg/ |- O
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Now we give an example which illustrates the next lemma.

Example 4.3. Take G = K4U Iy an endo-regular split graph as in Figure 7.

b3 by b
C1 3 as
C a
2 4 2 2
3 1 al

Figure 7: Split graph G = K4 U5 with Aut(G) = S3 X S3 X S3 X S3.

Here J; = {a),a2,a3}, 2 = {b|,b2,b3} and J3 = {c1,¢3,c3} are the three split com-
ponents of lo. By Lemma 4.1, we have f(1) =1 and f({2,3,4}) = {2,3,4} for all
f € Aut(G). And by Lemma 4.2, we get that all automorphisms of G permute three
split components Ji, J> and Js. And in any split component, we can permute all vertices
to get an automorphism. Then it is clear that Aut(G) = 51 X S3 x (S3 X S3 X S3).

Lemma 4.4. With the above notation, if || = |h2| = ... = |Js| =t ¢, we have that
Aut(G) is isomorphic to Sp—s X Ss X Sg X Sg X ... X Sg.
e, pma——

S times

$
Theorem 4.5. Take an endo-regular split graph G = K,UI, where I, = | Jy withs > 1
k=1
split components J1,Jz,...,Js. Suppose that for all a € I, |N(a)| = 1 and | | N(a)| =
acl,

r

m. Take a regular endomorphism f of G with q congruence classes [i]p o li2lp g eees ligle,
each contained in I,. Set If := {i € L|f(i) € I}, J{ := {i € J;|£(i) € I} and take the
set of sets of representatives o := {{a1,a2,...,a3} | aj € [i,-],,,, ji=12,..,q}. Take
A€ o and let CRE’,‘(G) be the same as in Theorem 3.3. For anyk=1,2,...,s, ifJ{ #0,
take u € N(JI) and set Mi(u) := {v e NU{) | [J[nA| = na), 1€{1,..,5}}.
Suppose that there are t disjoint sets M'{ (w1), M{ (42)senes M£ (#;). Then we have that
CRE}(G) = Sp—m+p X Jlill SM{(M;) X kli[l S Hoa Here p is the number of split compo-

nents whose vertices are all sent to K, by f,
Sp—m+p i the group of permutations of all vertices in (K, \N(I;))U U N (Jf )
|ij 1=0

Sms (u 5 is a the group of permutations of all vertices in M/ (u;) and

S 11 a IS the group of permutations of all vertices in J,{ NA.
k

The next example shows the idea how to prove the above theorem.
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Example 4.6. Consider the split graph G = Kg U ) as in Figure 8 and f € End(G)
such that H = Im(f) = G/py, where notations by b, 2¢ and d\d; are as in Example
34.

& d didz
€1 S b el S
7, 4 7
e v by ez 3 b1b>
gl A 2 :2 jl 3 3 :2
2 - 1 2 T 2 1
G H

Figure 8: Endo-regular split graph G = Kg U/} and H a factor graph induce by f in
Example 4.6.

We have the 6 split components, J; = {a1,a2}, J2 = {b1,62}, J3 = {c}, Ja =
{d1,d2}, Js = {e1,e2} and Js = {g1,82}. By Theorem 1.7, we know that all endo-
morphisms in End(G) are regular. Take

(1 23 45 67 8 a1 aag b br ¢ di dy e e g g
F=\12345678a a by b 2 b &1 €2 g gz)'
the image graph is H (in Figure 8) as a subgraph of G. We see that f(G) % Kg and we
have 8 congruence classes induced by f which are subsets of /;1, namely, {a;}, {a2},
{b1,b2}, {d1,d2}, {e1}, {e2}, {g1} and {g2} only {c,2} & I11, now we have for p from
Theorem 4.5 that p = 1.

Choose the set of representatives A = {ay,a2,b1,d1,e1,€2,81,82} then I{l ={ie
Iy | f()) € m} = {a1,a2,b1,b2,d1,d3,e1,€2,81,82}. We will show that CRE}(G) is
isomorphic to S3 x (S3 X §2 x §2 X S2) X S». We have exactly one split component, J,
such that f(J3) C Kg. And the congruence relation for all endomorphisms in End/(G)
is py. By definition, it is clear that CRE#(G)|({12,5}), the set of restrictions of all
endomorphisms in CRE}(G) to {1,2,5}, is isomorphic to S{1.2,5)» the group S3 of
permutations of the set {Ji,Z, 5}

Since J/ = {i € J; | f(i) € I} for all j=1,...,6, we see that 2 = |J{ N A| =
WLnA| = I NA| # I NA| = |J{NA| = 1, then we get =2, ¢ from Theorem 4.5 , and
we have M (3) = M{(7) = M{(8) = {3,7,8}, M{(4) = M (6) = {4,6}. By definition
of.lf/ in Lemma 4.2, we have JI” = {{a}.{a2}}. B = {{b1,62}}. Y = {{d1,d2}},
J5' = {{er},{e2}} and Jg’ = {{g1},{g2}}. Since 2= [J{| = |J§/| = &’ | # S5’ | =
1747| = 1, by Lemma 4.2, we know that all endomorphisms in CRE}(G) do not send
an element in Jlf U.Isf U.Ig to an element in J{ UJ‘{ . Similarly, all endomorphisms in
CRE}(G) do not send an element in J§ UJ{ to an element in J/ UJ{ UJ{. This implies

that all endomorphisms in CRE’;(G) do not send any vertex in M,{ (4) to a vertex in
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M [4(3). Similarly, all endomorphisms in CRE’,‘(G) do not send any vertex in M,{ (3)to

a vertex in M/ 4(4).
Now we consnder CRE# G e Gy wiu) and CRE% +(G)| o @urury the set of

restrictions of all endomorphisms in CREA(G) to M/ F(3) U.If UJ’ UJf and to M/ ACQL

HuJd, respectively.
It is clear that CRE}(G)| 4yt 3, UJl,ws,%,)~=~Aut(M{(3)uj {U }(J{ NA)). Since

(anA) {a),a2}, (anA) {e1,e2} and (anA) = {g1,82} are split components
of the factor graph H and |(F nA)| = |(J{ n4)| = I na) =2, then by Lcmma
hicto S XSy,
4.4, we have that CRE, (G)| ] @yl sl is 1somofrp c 1(3) . Hoa ™ Sifru
Jem & 53 X S2 X S2 X S3. Similarly, we get that J; NA = {5}, J{ NA= {d} and

f =3/ = A iqi ;
|/ NA| = [J; NA| = 1, so CRE} (G)l(M{(4)w{w{) is isomorphic to SM/(4) X S
S_,,m 2§ x8) X8 =38,

Hence we get that CRE#(G) is isomorphic to S3 X (S3 X 52 X §2 X 52) X 3.
Moreover, it is clear by inspection that for any B,C € &/, CRE}’(G) CREC (G).

In this example we have that
{al ,a2,by,dy,e1,€2,81 ,32}’ {al ,a2,b1,da,e1,€2,81 !gZ}v
{a1,a2,b2,d),e1,€2,81,82} and {a1,a2,b2,d2,€1,€2,81,82}
are 4 distinct sets in & so I.z’ | =4. Thenitis clear that the maximal completely regular
subsemigroup containing in Ends(G) is

BUdCRE}’(G) 2 (83 % (S3 X §2 X §3 X §3) x §2) x Lg.
€.

Corollary 4.7. Take G, f and o as in Theorem 4.5. For A € &, the maximal com-
pletely regular subsemtgroup of End¢(G) denoted by CRE;(G) is the left group (Sp—m4p X

};[1 el ) x ]'[ SI J’Ml) X Lyo|. Here SI o and S| Vi Rk the symmetric groups

on |M£ (#j)| and IJ,{ N A| elements, respectively.

5 Completely Regular Subsemigroups
- s > 1 split components and |[N(a)| > 2

We can use the same idea from Sections 3 and 4 to find a completely regular subsemi-
group of End(G), where G = K, U, is an endo-regular split graph for which I, has
more than one split component and |[N(a)| 2 2 for all a € /. But we can not generalize
which group is isomorphic to CRE}‘(G) for any the set of representatives A. We give
the reason as follows.

For any complete graph K, and independent set /, = K, we can construct many
non-isomorphic endo-regular split graphs whose /. has s > 1 split components and
IN(@)] =m > 2 for all a € I,. Let G; and G2 be two non-isomorphic endo-regular
split graphs with the maximal complete subgraph K, and the independent set /; of both
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G and G;. If f is an endomorphism of both Gy and G, then CRE"(Gl) may be not
isomorphic to CRE",‘(G:) for some possible set of representatives A. The next example
shows this fact.

Example 5.1. Consider two graphs G and G; as in Figure 9.

b b b
by
Ay S 3
(4] % 3 az C1 3 aj
c2 * ay c2 a)
o 8 3 . 8 3
1 2 1 2
G G

Figure 9: Split graph G| = KgU J7 and G2 = KgU I with G| 2 G».

The essential difference between the graph G and the graph G; lie in the neigh-
borhoods of b3 and of c;. The neighborhood of the split component {b),52} and the
neighborhood of the split component {c,c2,c3} are disjoint in the graph G, but are
not disjoint in the graph G,. Consider the mapping as follows

F= 1 2 3 45 6 7 8 a a2 by b, 1 ¢ ¢
“\1 2 3 456 78 a a b b ¢ ¢ 3/

It is clear that f is an endomorphism of G; and G;. By Lemma 1.7, we have that
f is regular. And we have the congruence relation p; = {{i}|i ¢ {b1,b2,c1,c2}} U
{{b1,b2},{c1,c2}} and we have 5 congruence classes contained in an independent set,
thatis {a\}, {a2}, {b1,b2}, {c1,c2} and {c3}. The following pictures are the image
graphs of G; and G, under f, notation as in Example 3.4.

byby bibz
6 5 6 5
C1C2 % J a Ci1c2 7 3 az
- 8 i sanc 8 3 o
c3 C3
1 2 1 2
H H,

Figure 10: H) and H; factor graphs induce by f (in Example 5.1) of graphs G, and G,
(in Figure 8), respectively.
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We see that all endomorphisms in Ends(G)) and Ends(G2) are the embeddings
from H, (in Figure 10) to G; and from H; (in Figure 10) to G,, respectively.
Choose A = {ay,a2,b1,¢1,c3}. By inspection it is clear that CRE;(G;) and CRE}‘(Gz)
are isomorphic to S1.2) X (S(3),(78)) X S3.4) X S(7.8) X Sta}ax}} X Stfer} fes)}) X
5(5,5} and Sq;25) X (5(3,4) X s{{m).(az})) X s({cl},{q}}o respectively. These are the
groups Sz x éSz X S2 X Sz X $3 X $2) X 2 and 53 X (S X S2) x Sz, respectively.

Finally, we give an example to show that for any endo-regular split graph G, if
/8 € End(G) with ps # p,, it is not necessary that the composition between two en-
domorphisms in CRE¢(G) and CRE,(G) is completely regular. This means CRE;(G)U
CREg(G) is not necessarily closed.

Example 5.2. Let G be the graph as in Example 3.4. It is clear that

fo(l23abcd) . 123 abcd .
“\1 23 aadec €=\1 23 b b b d

morphisms of G. Now we have the congruence relations
Pr= {{1}, {2}, {3}:{a,8}, {ch {d}}

and

pg={{1},{2},{3}.{a,b,c},{d}}-
Itis clear that pr C pg. And we get that

CRE{(G) = CRES***}(G) UCRE}"**}(G)
and

CRE,(G) = CRE{*®(G) UCRE}*" (G) UCRE}**}(G)
are isomorphic to (Sz x S3) x L, and (S2 X S2) X L3, respectively. Since f and g are
idempotents, it is clear that f and g are completely regular. Then f € CREf(G) and
g € CRE(G). Consider the following composition

1 2 3 a b c d
fog= ( 1 2 3 a a a c )
We see thata = (fog)(c) # (fog)(d) = c and (fog)2(c) = a= (fog)*(d),ie., fog

is not square injective. By Theorem 2.2, we get that fog is not completely regular.
This means f o g is not in CRE{G) UCRE(G).
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