# Completely Regular Endomorphisms of Split Graphs

## U. Knauer and A. Wanichsombat September 20, 2009

#### Abstract

In [8], Weimin Li and Jianfei Chen studied split graphs such that the monoid of all endomorphisms is regular. In this paper, we extend the study of [11]. We find conditions such that regular endomorphism monoids of split graphs are completely regular. Moreover, we find completely regular subsemigroups contained in the monoid End(G).

### 0 Introduction

In 1987 Knauer and Wilkeit posed the question, for which graph G is the endomorphism monoid of G regular [9]. After this question was posed, there are many results, which investigate this situation for different types of graphs, were studied [1, 2, 3, 6, 8, 12]. Now some extentions of this question have been studied. In this paper we consider completely regular endomorphisms. We focus the discussion to split graphs, i.e., graphs which have a specially simple combinatorial structure. Split graphs were first introduced and studied by Földes and Hammer in 1977 [4]. Endo-regularity of split graphs first appeared in [3]. But Weimin Li and Jianfei Chen found that the main result in [3] is wrong. They studied endo-regularity of split graphs again [8]. Endo-completely regularity of split graphs appeared in [7, 11]. Their main results are equivalent. This paper continues the investigation from [11].

### 1 Preliminaries

All graphs will be finite undirected without loops and multiple edges. If G is a graph, we denote by V(G) (or simply G) and E(G) its vertex set and edge set, respectively. A graph H is called a *subgraph* of G if  $V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$ . Moreover, if for any  $a,b \in V(H)$ ,  $\{a,b\} \in E(H)$  if and only if  $\{a,b\} \in E(G)$ , then we call H an *strong or induced subgraph* of G. We denote by  $K_n$  the complete graph with n vertices. Let G be a graph and let H be a clique (i.e., a complete subgraph) of G. If H has the maximal order of all the cliques of G, i.e.,  $|V(A)| \leq |V(H)|$  for any clique A of G, then H is called a maximal clique of G. An *independent* set of G is a set of pairwise non-adjacent vertices and a *complete* set is a set which induces a clique. Let H be

a subgraph of G and  $v \in H$ . Denote  $N_H(v) := \{x \in H | \{x, v\} \in E(H)\}$ , called it the neighborhood of v in H; use N(v) for  $N_H(v)$  if it is clear which graph H is referred to.

A graph G(V, E) is called a *split graph* if its vertex-set can be partitioned into disjoint (non-empty) sets I and K, i.e.,  $V = K \cup I$ , such that I is an independent set and K is a complete set. In this paper a split graph G is always written as  $K_n \cup I_r$  where  $K_n$  is a maximal complete subgraph of G and  $I_r = \overline{K_r}$ .

**Definition 1.1.** Let  $G = K_n \cup I_r$  be a split graph where  $K_n$  is a (may be not maximal) complete subgraph of G. We call  $K_n \cup I_r$  be a *unique decomposition* of G with the clique size n if for every complete subgraph  $K'_n$  and every independent set  $I'_r$  such that  $G = K'_n \cup I'_r$  one has  $K'_n = K_n$  and  $I'_r = I_r$ .

#### **Example 1.2.** Let G be the graph as follows.



Figure 1: Split graph which has no a unique decomposition with the clique size 3.

We see that there are 2 complete subgraphs size 3,  $K_3 = \{1,2,3\}$  and  $K_3' = \{2,3,4\}$ . And G can be partitioned to both of  $K_3 \cup \{4,5\}$  and  $K_3' \cup \{1,5\}$ . So this is no unique decompositions of G with the clique size 3. We have one complete subgraph  $K_2 = \{2,3\}$  of G with  $K_2 \cup \{1,4,5\}$ , i.e., a unique decomposition of G with the clique size 2.

This can be formulated in general as follows.

**Proposition 1.3.** If  $K_n$  is a maximal complete subgraph of a split graph G and  $K_n \cup I_r$  is not a unique decomposition with the clique size n, then  $K_{n-1} \cup I_{r+1}$  is a unique decomposition with the clique size n-1.

Let G and H be graphs. A homomorphism  $f:G\longrightarrow H$  is a vertex-mapping  $V(G)\longrightarrow V(H)$  which preserves adjacency, i.e., for any  $a,b\in V(G)$ ,  $\{a,b\}\in E(G)$  implies that  $\{f(a),f(b)\}\in E(H)$ . Moreover, if f is bijective and its inverse mapping is also a homomorphism, then we call f an isomorphism from G to G to itself is called an endomorphism of G. An isomorphism of a graph G to itself is called an automorphism of G. EndG and AutG denote the sets of endomorphisms and automorphisms of the graph G, respectively. It is well-known that End(G) is a monoid (i.e., a semigroup with an identity element) and Aut(G) is a group with respect to the composition of mappings. They are called the monoid of G and the group of G, respectively.

Let f be an endomorphism of a graph G. If H is a subgraph of G, by  $f|_H$  we denote the restriction of f on H; and  $f(H) := \{f(x)|x \in H\}$ . Let G(V,E) be a graph. Let  $\rho \subseteq V \times V$  be an equivalence relation on V. Denote by  $[a]_\rho$  the equivalence class of  $a \in V$  under  $\rho$ . The graph, denoted by  $G/\rho$ , is called the *factor graph* of G under

 $\rho$ , if  $V(G/\rho) = V/\rho$  and  $\{[a]_{\rho}, [b]_{\rho}\} \in E(G/\rho)$  if and only if there exist  $c \in [a]_{\rho}$  and  $d \in [b]_{\rho}$  such that  $\{c,d\} \in E(G)$ . Let f be an endomorphism of G. By  $\rho_f$  we denote the equivalence relation on V(G) induced by f, i.e., for  $a,b \in V(G)$ ,  $(a,b) \in \rho_f$  if f(a) = f(b). The graph  $G/\rho_f$  is called the factor graph by f.

An element a of a semigroup S is called regular if there exists  $x \in S$  such that axa = a. If every element of S is regular, S is called regular. A graph G with regular End(G) is called endomorphism-regular, or simply endo-regular. An element a of a semigroup S is called completely regular if there exists  $x \in S$  such that axa = a and ax = xa. A semigroup S is called completely regular if all its elements are completely regular. A graph G with completely regular End(G) is called endomorphism-completely-regular, or simply endo-c.r.

**Theorem 1.4.** ([10]) The following conditions on a semigroup S are equivalent:

- (i) S is completely regular.
- (ii) S is a union of (disjoint) groups.

An element z of a semigroup S is called a right (left) zero if sz = z (zs = z) for all  $s \in S$ ; z is called a zero of S if it is both a right and a left zero of S. A semigroup all of whose elements are right (left) zeros is called a right (left) zero semigroup. We denote by  $R_n$  ( $L_n$ ) the n element right (left) zero semigroup. For more concepts about semigroups we refer to [10].

Right groups are of the form  $G \times R_n$ , i.e., they are the unions of n copies of an arbitrary (finite) group G, analogously  $G \times L_n$  for left groups, with the multiplication as given by  $G \times R_n$  or  $G \times L_n$ .

**Definition 1.5.** For any split graph  $G = K_n \cup I_r$ , let J be a subset of  $I_r$ . We call J a split component of  $I_r$ , if for any  $a, b \in J$ , N(a) = N(b) (including the case whose N(a) and N(b) are empty) and there are no  $c \in I_r \setminus J$  such that N(c) = N(a). And we say that I has s split components if  $I_r$  contains s distinct split components, i.e.,  $I_r = \bigcup_{i=1}^s J_i$ ,  $J_i$  a split component of  $I_r$  for all i = 1, 2, ..., s.

We observe that a split component is a  $\nu$ -class in the terminology of [5]. This means that the canonical strong factor graph of  $K_n \cup I_r$  is the form  $K_n \cup I_s$ , if  $I_r$  has s split components.

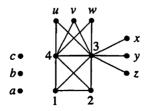


Figure 2: Split graph  $K_4 \cup I_9$ .

**Example 1.6.** Let G be the graph as in Figure 2. So we consider  $G = K_4 \cup I_9$  where  $K_4 = \{1, 2, 3, 4\}$  and  $I_9 = \{a, b, c, u, v, w, x, y, z\}$ , the independent set  $I_9$  has 3 split components,  $J_1 = \{a, b, c\}$ ,  $J_2 = \{u, v, w\}$  and  $J_3 = \{x, y, z\}$ . If we consider  $G = K_3 \cup I_{10}$  where  $K_3 = \{2, 3, 4\}$  and  $I_{10} = I_9 \cup \{1\}$ , we have that the independent set  $I_{10}$  has 4 split components,  $J_1, J_2, J_3$  and  $J_4 = \{1\}$ .

**Theorem 1.7.** ([8]) Let G(V, E) be a connected split graph with  $V = K_n \cup I_r$ . Then G is endo-regular if and only if for all  $a \in I_r$  one has |N(a)| = d,  $d \in \{1, ..., n-1\}$ .

**Theorem 1.8.** ([8]) A non-connected split graph  $K_n \cup I_r$  is endo-regular if and only if N(a) = 0 for all  $a \in I_r$ .

**Lemma 1.9.** ([11]) For any split graph  $G = K_n \cup I_r$ , let f be an endomorphism of G. If |N(a)| < n - 1 for all  $a \in I_r$ , then  $f(V(K_n)) = V(K_n)$ .

**Lemma 1.10.** ([11]) Let  $G = K_n \cup I_r$  be an endo-regular split graph. If End(G) is completely regular, then r < 2.

**Lemma 1.11.** ([5]) Let X be a graph,  $x_1, x_2 \in X$ . There exists a strong endomorphism  $f \in SEnd(X)$  with  $f(x_1) = f(x_2)$  if and only if  $N(x_1) = N(x_2)$ .

Remark 1.12. 1) If an endo-regular split graphs  $G = K_n \cup I_r$  with  $I_r$  has exactly one split component and |N(a)| = n - 1 for all  $a \in I_r$ , they are of the form  $K_n \cup I_r = K_2[\overline{K}_{r+1}, K_{n-1}]$  (generalized lexicographic product see [5]). In this case we have by Proposition 1.3 that  $K_{n-1} \cup I_{r+1}$  is a unique decomposition of G with the clique size n-1, and the canonical strong factor graph of  $K_{n-1} \cup I_{r+1}$  is  $K_n$ . Then by Theorem 3.4 in [5], we have that  $SEnd(K_{n-1} \cup I_{r+1}) \cong Aut(K_n)$  wr  $\mathcal{K}$  where  $\mathcal{K} = \{\{u\} \mid u \in K_{n-1}\} \cup \{I_{r+1}\}$  is a small category (for definitions and notation see [5]). This means that every strong endomorphism can be described by an automorphism  $\varphi$  of  $K_n$  followed by a family of mappings. For every element x of  $K_n$  we take a mapping from the class [x] of x to the class  $[\varphi(x)]$  of  $\varphi(x)$ . For all  $x \in K_n$  we get the family of mappings. Here most classes are one element, except for the class corresponding to  $I_{r+1}$ .

2) For any endo-regular split graph  $G = K_n \cup I_r$  with  $K_n$  is a maximal complete subgraph of G, if  $I_r$  has s > 1 split components, it is clear that  $K_n \cup I_r$  is a unique decomposition of G with the clique size n.

# 2 Completely Regular Endomorphisms in Endo-regular Split Graphs

In this section we find conditions such that a regular endomorphism of any graph G is completely regular and specify this condition for split graphs G.

We begin this section by describing a property of a mapping f of a finite set G. We denote T(G) the set of all mapping from G to itself.

**Lemma 2.1.** Let G be a (finite) set, if  $f \in T(G)$  and there exist  $a, b \in G$  with  $f(a) \neq f(b)$  and  $f^2(a) = f^2(b)$ , then f is not completely regular.

**Proof.** Take f is a mapping of the set G. Let  $a,b \in G$  with  $f(a) \neq f(b)$  and  $f^2(a) = f^2(b)$ . Assume that f is completely regular, then there exists  $g \in T(G)$  with fgf = f and fg = gf. Consider at vertices a and b, we have

$$gf^{2}(a) = fgf(a) = f(a) \neq f(b) = fgf(b) = gf^{2}(b) = gf^{2}(a).$$

This is a contradiction. Then we get f is not completely regular.

We call this property square injective since it is equivalent to saying  $f^2(a) = f^2(b)$  implies f(a) = f(b).

For the next theorem, we were inspired from Proposition 2.4 in [7]. It gives a condition such that any regular endomorphism f of any graph G is completely regular. Now we give another way to show which endomorphisms are completely regular.

**Theorem 2.2.** Let G be a finite graph and f be an endomorphism of G. Then f is completely regular if and only if for all  $a, b \in V(G)$ ,  $f(a) \neq f(b)$  implies  $f^2(a) \neq f^2(b)$ , i.e., f is square injective. In this case, if f is not idempotent, we have  $ff^{i-1}f = f$  and  $ff^{i-1} = f^{i-1}f$  where  $f^i$  is the idempotent power of f.

Proof. Necessity. This follows from Lemma 2.1.

Sufficiency. Let f be a square injective endomorphism of G. Since G is finite, there exists some  $i \in \mathbb{N}$  such that  $f^i$  is an idempotent, i.e.,  $(f^i)^2 = f^i$ .

If f is idempotent, it is clear that f is completely regular. Now we suppose that f is not idempotent. So there exists  $2 \le i \in \mathbb{N}$  such that  $f^i$  is idempotent.

First we show that  $f(a) = f^{i+1}(a)$  for all  $a \in V(G)$ . Let  $a \in V(G)$ . Since  $f^i$  is an idempotent, we have  $f^2(f^{2i-2}(a)) = f^{2i}(a) = (f^i)^2(a) = f^i(a) = f^2(f^{i-2}(a))$ . Since f is square injective, we get that  $f^{2i-1}(a) = f^{i-1}(a)$ . By repeating this process for i-1 times, we get that  $f^{i+1}(a) = f(a)$ , i.e.,  $ff^{i-1}f = f$ . It is clear that  $ff^{i-1} = f^{i-1}f$ . Now we have f is completely regular.

Next, we will specify the condition in Theorem 2.2 for an endo-regular split graph G. We begin with a lemma which shows an additional property of a completely regular f of an endo-regular split graph G.

**Lemma 2.3.** Let  $G = K_n \cup I_r$  be an endo-regular split graph and let f be a completely regular endomorphism on G. If |N(a)| < n-1 for all  $a \in I$ , then for any  $d \in I_r$ , if  $f(d) \in K_n$ , then  $d \notin Im(f)$ .

Proof. Let f be a completely regular endomorphism of G. Let  $d \in I_r$  with  $f(d) \in K_n$ . Assume that  $d \in Im(f)$ . By Lemma 1.9,  $f(K_n) = K_n$ , there exists  $c \in I_r$  such that f(c) = d. Now we have that  $f^2(c) = f(d) =: x \in K_n$ . Since  $f(K_n) = K_n$ , there exists  $u \in K_n$  with  $f(u) \in K_n$  and  $f^2(u) = x$ . Since  $f^2(u) = f^2(c)$  and f is completely regular, by Theorem 2.2, we have that  $f(u) = f(c) = d \in I_r$ . This a contradiction. Then we get that  $d \notin Im(f)$ .

We reprove one direction of the main theorem from [11] with the next lemma. For any  $f \in End(G)$ , define

$$End_f(G) := \{ g \in End(G) | \rho_f = \rho_g \}$$

the set of all endomorphisms of G with congruence relation  $\rho_f$ . Note that  $End_f(G)$  is Green's  $\mathscr{L}$ -class of f.

**Lemma 2.4.** For any endo-regular split graph  $G = K_n \cup I_r$ , let f be an endomorphism of G. If f is a bijective or  $f(G) \cong K_n$ , then  $End_f(G)$  is a group.

*Proof.* If f is bijective, we see that  $End_f(G) = Aut(G)$ . Otherwise:

- (a) If |N(a)| = m < n-1 for all  $a \in I_r$ , by Lemma 1.9, it is clear that  $End_f(G) \cong End(K_n) \cong S_n$ .
- (b) If |N(a)| = n 1 for all  $a \in I_r$ , we have to consider the ways  $Im(f) \cong K_n$  can be embedded into G. There are r+1 ways each followed by all permutation of the image. So we get r+1 times  $S_n$ . Moreover, it is clear that  $End_f(G)$  altogether is isomorphic to the left group  $S_n \times L_{r+1}$ .

**Theorem 2.5.** ([11]) For any endo-regular split graph  $G = K_n \cup I_r$ , End(G) is completely regular if and only if r = 1.

*Proof.* Let  $G = K_n \cup I_r$  be an endo-regular split graph. If r = 1, then by Lemma 2.4 and Theorem 1.4 we get End(G) is completely regular. If r > 1, we get that End(G) is not completely regular monoid by Lemma 1.10.

Continuing the consideration from Remark 1.12 we get the following remark.

**Remark 2.6.** For any endo-regular split graph  $G = K_n \cup I_r$ ,

- 1) if |N(a)| < n-1 for all  $a \in I_r$ , then  $f \in End(G)$  is a strong endomorphism if and only if  $f(c) \in I_r \ \forall c \in I_r$ ;
- 2) if  $K_n \cup I_r$  is not a unique decomposition of G with the clique size n, then all  $f \in End(G)$  are strong endomorphisms.

*Proof.* 1) Necessity. Let  $f \in End(G)$  be a strong endomorphism. Assume that there exists  $c \in I_r$  with  $f(c) = u \in K_n$ . By Lemma 1.9, we have that  $f(K_n) = K_n$ . Then there exist  $x \in K_n$  such that f(x) = u, so f(x) = f(c). Since |N(c)| < n-1 and  $|N(x)| \ge n-1$ , by Lemma 1.11 we get that f is not a strong endomorphism. This is a contradiction. Then  $f(c) \in I_r$  for all  $c \in I_r$ .

Sufficiency. Let  $f \in End(G)$  with  $f(c) \in I_r$  for all  $c \in I_r$ . Let  $\{f(u), f(v)\} \in E(G)$ . If  $f(u), f(v) \in K_n$ , it is clear that  $u, v \in K_n$ , so  $\{u, v\} \in E(G)$ . It remains to consider  $f(u) \in K_n$  and  $f(v) \in I_r$ . By Lemma 1.9 and hypothesis we have that  $u \in K_n$  and  $v \in I_r$ . Since  $v, f(v) \in I_r$ , by hypothesis we have |N(v)| = |N(f(v))|. Since f is an endomorphism, then f(N(v)) = N(f(v)). Since  $f(u) \in N(f(v))$  and  $f(K_n) = K_n$ , then  $u \in N(v)$  so  $\{u, v\} \in E(G)$ . Then we get that f is a strong endomorphism.

2) This case is obvious, look for example to the graph in Example 1.2 without point 5.

## 3 Completely Regular Subsemigroups

## - Exactly one split component

In this section, we characterize completely regular subsemigroups contained in End(G). We will begin with the endo-regular split graph G whose independent set has exactly

one split component. And then, in the next section, we consider the endo-regular split graph G whose independent set has s > 1 split components. First, we give some lemma which describes the image of any endomorphism and the composition of any two endomorphisms of an endo-regular split graph  $G = K_n \cup I_r$  restricted to  $K_n \setminus N(a)$  and to N(a).

**Lemma 3.1.** Let  $G = K_n \cup I_r$  be an endo-regular split graph such that  $I_r$  has exactly one split component, i.e., N(a) = N(b) for all  $a, b \in I_r$ . If  $f, g \in End(G)$  with  $f(G) \ncong K_n$  and  $g(G) \ncong K_n$ , we have f(N(a)) = N(a), and  $(f \circ g)(N(a)) = N(a)$ . If |N(a)| < n - 1 for all  $a \in I_r$ , we have in addition  $f(K_n \setminus N(a)) = K_n \setminus N(a)$ ,  $(f \circ g)(K_n \setminus N(a)) = K_n \setminus N(a)$  and the statement is also true for  $f(G) = K_n$ .

*Proof.* Let f be an endomorphism of G which  $f(G) \ncong K_n$ . Let  $u \in N(a)$ . Assume that  $f(u) \notin N(a)$ . Then  $f(u) \in (K_n \setminus N(a)) \cup I_r$ . We consider two cases.

Case 1. N(a) < n-1 for all  $a \in I_r$ . By Lemma 1.9, it is impossible that  $f(u) \in I_r$ , so  $f(u) \in K_n \setminus N(a)$ . Since  $f(G) \ncong K_n$  and  $f(K_n) = K_n$ , there exists a vertex  $v \in I_r$  such that  $f(v) \in I_r$ . Since  $f(u) \notin N(a)$  for all  $a \in I_r$ , then  $f(u) \notin N(f(v))$ , i.e.,  $\{f(u), f(v)\} \notin E(G)$ . But  $\{u, v\} \in V(G)$  and f is an endomorphism, then this is a contradiction.

Case 2. N(a) = n - 1 for all  $a \in I_r$ . Since  $I_r$  has exactly one split component and  $K_n$  is a maximal complete subgraph, there exists one vertex  $x \in K_n$  such that  $x \notin N(a)$  and N(x) = N(a). For example, we consider the graph as in Figure 3 where  $K_n = K_3 = \{1, 2, x\}$  and  $I_r = I_5 = \{a, b, c, d, e\}$ . It is clear that only vertex  $x \in K_3$  is such that  $x \notin N(a)$  and N(x) = N(a). It is obvious that  $I_r \cup \{x\}$  is an independent set

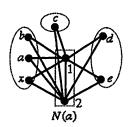


Figure 3: Endo-regular split graph  $G = K_3 \cup I_5$  which  $K_3 \cup I_5$  is not a unique decomposition of G with the clique size 3.

of G. Now we assume that  $f(u) \in I_r \cup \{x\}$ . Since  $f(G) \ncong K_n$  and f preserves  $K_n$ , there exists  $v \in I_r \cup \{x\}$  such that  $f(v) \in I_r \cup \{x\}$ . Since  $I_r \cup \{x\}$  is an independent set,  $\{f(u), f(v)\} \notin E(G)$ . But  $\{u, v\} \in E(G)$  and f is an endomorphism, we have a contradiction.

Moreover, if |N(a)| < n-1 for all  $a \in I_r$ , by Lemma 1.9, we have  $f(K_n) = K_n$ . So we get that  $f(K_n \setminus N(a)) = K_n \setminus N(a)$ .

Remark 3.2. Lemma 3.1 is not true in the case when |N(a)| = n - 1 for all  $a \in I_r$  and  $f \in End(G)$  with  $f(G) \cong K_n$ . For example, take G a graph as in Figure 3. We see that  $K_3 = \{1,2,x\}$  is a maximal complete subgraph of G,  $I_5 = \{a,b,c,d,e\}$  is an independent

dent set and  $N(a) = \{1,2\}$ . It is obvious that  $f = \begin{pmatrix} 1 & 2 & x & a & b & c & d & e \\ a & 1 & 2 & 2 & 2 & 2 & 2 \end{pmatrix}$  is an endomorphism of G with  $f(G) \cong K_3$ . But  $f(N(a)) = f(\{1,2\}) = \{1,a\} \neq N(a)$ .

Note that if A is any set, then we denote by  $S_A$  the group of permutations of the elements in A. For examples,  $S_{\{1,2,3\}}$ ,  $S_{\{\{a,b\},\{c,d\}\}}$  are the symmetric group  $S_3$  and  $S_2$ , respectively.

In Theorem 3.3 and Corollary 3.5,  $K_n$  is not necessary to be a maximal complete subgraph of the split graph  $G = K_n \cup I_r$ . Since for some  $f \in End(G)$  with f(G) isomorphic to a maximal complete subgraph of G, we may have the following situation. For example, we consider f as in Remark 3.2. We see that  $f(\{a,b,c,d\}) = \{2\} \not\subseteq I_4 = \{a,b,c,d,\}$ , so there is no congruence class whose a subset of  $I_4$ . Then we can not construct the set of representatives A as is defined in Theorem 3.3. This implies that we can not construct the set  $CRE_f^A(G)$ . Then in the next theorem and its corollary, we leave the case when f(G) isomorphic to a maximal complete subgraph of G. Although, we have Lemma 2.4 whose shows  $End_f(G)$  is a group, so  $End_f(G)$  is completely regular monoid.

**Theorem 3.3.** Let  $G = K_n \cup I_r$  be an endo-regular split graph such that  $I_r$  has exactly one split component and  $K_n \cup I_r$  is a unique decomposition of G with the clique size n. Suppose  $f \in End(G)$  with f(G) is not isomorphic to the maximal complete subgraph of G. Suppose that f has q congruence classes which are subsets of  $I_r$  for some  $q \in \mathbb{N}$ , namely,  $[i_1]_{\rho_f}$ ,  $[i_2]_{\rho_f}$ ,...,  $[i_q]_{\rho_f}$ ,  $i_1,...,i_q \in I_r$ . For every j = 1,2,...,q, choose a representative  $a_j \in [i_j]_{\rho_f}$  for all j = 1,2,...,q and set  $A := \{a_1,a_2,...,a_q\}$ . Set  $I_r^f := \{i \in I_r \mid f(i) \in I_r\}$  and

$$CRE_f^A(G) := \{ h \in End_f(G) | h \ c.r., \ h(I_r^f) = A \}$$

the set of all completely regular endomorphisms in  $End_f(G)$  such that their restrictions on  $I_r^f$  give the set A. Then we have that  $CRE_f^A(G)$  is the group  $S_{n-m} \times S_m \times S_q$ .

*Proof.* Case 1.  $K_n$  is a maximal complete subgraph of G. To illustrate the situation in this case, i.e., |N(a)| = m < n - 1 for all  $a \in I_r$ , we consider the graph as in Figure 4. In this graph we use  $K_n = K_5$ , m = 2 and q = 3. Take f such that the dotted ovals in the picture are the congruence classes induced by f which are subsets of  $I_r$ . Now take  $A = \{a, d, e\}$ . We get  $CRE_f^A(G)$  is isomorphic to  $S_3 \times S_2 \times S_3 = S_{\{1,2,3\}} \times S_{\{4,5\}} \times S_A$ .

By the graph as in Figure 4 and Lemma 3.1, it is obvious that  $CRE_f^A(G)|_{(K_n\setminus N(a))}$  and  $CRE_f^A(G)|_{N(a)}$ , the sets of restrictions of all endomorphisms in  $CRE_f^A(G)$  to  $K_n\setminus N(a)$  and to N(a), are isomorphic to  $S_{n-m}$  and  $S_m$ , respectively. For any endomorphism h in  $CRE_f^A(G)$ , we get  $h(u)=h(a_j)$  for all  $u\in [i_j]_{\rho_f}$ , j=1,2,...,q. So we have that  $CRE_f^A(G)|_{I_f^F}$  is isomorphic to  $CRE_f^A(G)|_A$ . By inspection it is clear that  $CRE_f^A(G)|_A$  is isomorphic to  $S_q$ . Then we have that  $CRE_f^A(G)$  is isomorphic to  $S_{n-m}\times S_m\times S_q$ 

Case 2.  $K_n$  is not a maximal complete subgraph of G. Consider the graph as in Figure 3. Here  $K_n = K_2 = N(a)$  and q = 3. The three dotted ovals in the graph are the congruence classes induced by f which are subsets of  $I_r$ . Take now  $A = \{x, c, d\}$ . We get  $CRE_f^A(G)$  is isomorphic to  $S_2 \times S_3 = S_{\{1,2\}} \times S_A$ .

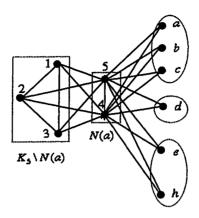


Figure 4: Endo-regular split graph  $G = K_5 \cup I_6$  which  $K_5 \cup I_6$  is a unique decomposition of G with the clique size 5.

Formally the result is the same as before since now  $K_n \setminus N(a) = \emptyset$ , then m = n - 1 and  $CRE_f^A(G) = S_{n-m} \times S_m \times S_q \cong S_{n-1} \times S_q$ .

Before we determine the maximal completely regular subsemigroup contained in  $End_f(G)$  for an endo-regular split graph  $G = K_n \cup I_r$  where  $I_r$  has exactly one split component, we give two examples which show the composition between the elements of two groups  $CRE_f^A(G)$  and  $CRE_f^B(G)$  which are contained in  $End_f(G)$ , where f is an endomorphism of an endo-regular split graph G.

**Example 3.4.** First, we consider  $K_n \cup I_r$  with a unique decomposition of G with the clique size n and next we consider  $K_n \cup I_r$  with a non-unique decomposition of G with the clique size n, where  $K_n$  is a maximal complete subgraph of G.

(1) Take G a graph as in Figure 5.

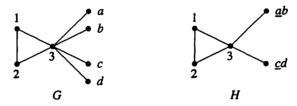


Figure 5: Endo-regular split graph  $G = K_3 \cup I_4$  and H a factor graph induce by f in Example 3.4 (1).

Consider the mapping  $f = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & a & a & c & c \end{pmatrix}$  from G to G. Note that  $\underline{a}b$ ,  $\underline{c}d$  in graph H (in Figure 5) mean  $f(\{a,b\}) = \{a\}$  and  $f(\{c,d\}) = \{c\}$ . It is clear

that f is an endomorphism. The graph H in Figure 5 is the factor graph of G induced by f. It is clear that f is idempotent, so it is completely regular. We have two congruence classes  $\{a,b\}$  and  $\{c,d\}$  which are subsets of the independent set  $I_4 = \{a, b, c, d\}$ . For every completely regular endomorphism  $h \in End_f(G)$ , it is impossible that  $h(\{a,b\}) \cap h(\{c,d\}) \neq \emptyset$ , since  $h(\{a,b\}) \cap h(\{c,d\}) \neq \emptyset$ , would imply that  $h(a) \neq h(c)$  and  $h^2(a) = h^2(c)$ . This contradicts to Theorem 2.2. Now we get that for any completely regular endomorphism  $h \in End_f(G)$ ,

- (a) h sends  $\{a,b\}$  to  $\{a,b\}$  if and only if h sends  $\{c,d\}$  to  $\{c,d\}$
- (b) h sends  $\{a,b\}$  to  $\{c,d\}$  if and only if h sends  $\{c,d\}$  to  $\{a,b\}$ .

By Theorem 3.3, we know that  $CRE_f^{\{a,c\}}(G)$  is isomorphic to  $S_2 \times S_1 \times S_2 = S_2 \times S_2$ . The 4 endomorphisms in  $CRE_f^{\{a,c\}}(G)$  are

The 4 endomorphisms in 
$$CRE_f^{\{a,c\}}(G)$$
 are
$$f_1 = f, \ f_2 = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & c & c & a & a \end{pmatrix}, \ f_3 = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 2 & 1 & 3 & a & a & c & c \end{pmatrix} \text{ and } f_4 = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 2 & 1 & 3 & c & c & a & a \end{pmatrix}.$$

Similarly, we know that  $CRE_f^{\{a,d\}}(G)$  is isomorphic to  $S_2 \times S_2$ . The 4 endomorphisms

$$g_{1} = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & a & a & d & d \end{pmatrix}, g_{2} = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & a & a & d & d \end{pmatrix}, g_{3} = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 2 & 1 & 3 & a & a & d & d \end{pmatrix} \text{ and } g_{4} = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 2 & 1 & 3 & d & d & a & a \end{pmatrix}.$$

We will consider the composition between the elements of  $CRE_f^{\{a,c\}}(G)$  and the elements of  $CRE_f^{\{a,d\}}(G)$ . For any  $h \in CRE_f^{\{a,c\}}(G)$  and  $k \in CRE_f^{\{a,d\}}(G)$ , it is clear by inspection that  $(h \circ k) \in CRE_f^{\{a,c\}}(G)$ . The table in Table 1 shows the composition between the elements of these two groups.

From the Table 1, it is clear that we get the left group  $(S_2 \times S_2) \times L_2$ . Moreover, we

| 0                | $f_1$          | $f_2$      | f <sub>3</sub> | f <sub>4</sub> | 81               | 82                    | 83             | 84             |
|------------------|----------------|------------|----------------|----------------|------------------|-----------------------|----------------|----------------|
| $\overline{f_1}$ | $f_1$          | $f_2$      | f <sub>3</sub> | f <sub>4</sub> | $\overline{f_1}$ | f <sub>2</sub>        | f <sub>3</sub> | f <sub>4</sub> |
| f <sub>2</sub>   | $f_2$          | $f_1$      | f4             | f <sub>3</sub> | f <sub>2</sub>   | $f_1$                 | f4             | f <sub>3</sub> |
| f <sub>3</sub>   | f <sub>3</sub> | f4         | $f_1$          | $f_2$          | f <sub>3</sub>   | $f_4$                 | $f_1$          | $f_2$          |
| f <sub>4</sub>   | f <sub>4</sub> | <i>f</i> 3 | $f_2$          | $f_1$          | f <sub>4</sub>   | <i>f</i> <sub>3</sub> | $f_2$          | $f_1$          |
| 81               | 81             | <b>82</b>  | 83             | 84             | 81               | 82                    | 83             | 84             |
| 82               | 82             | 81         | 84             | 83             | 82               | 81                    | 84             | 83             |
| 83               | 83             | 84         | 81             | 82             | 83               | 84                    | gi             | 82             |
| _84              | 84             | 83         | 82             | 81             | 84               | 83                    | 82             | 81             |

Table 1: Composition of two completely regular subsemigroups  $CRE_f^{\{a,c\}}(G)$  and  $CRE_f^{\{a,d\}}(G)$  in Example 3.4 (1).

have two more groups  $CRE_f^{\{b,c\}}(G)$  and  $CRE_f^{\{b,d\}}(G)$  contained in  $End_f(G)$ . Then we

get  $\bigcup_{i\in\{a,b\}}\bigcup_{j\in\{c,d\}} CRE_f^{\{i,j\}}(G)$  is isomorphic to the left group  $(S_2\times S_2)\times L_4$  and this is a maximal completely regular subsemigroup of  $End_f(G)$ .

(2) Take  $G = K_2 \cup I_5$  the split graph as in Figure 6, with  $K_2 = \{1,2\}$  and  $I = \{a,b,c,d,e\}$ .

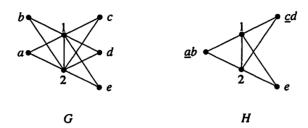


Figure 6: Endo-regular split graph  $G = K_2 \cup I_5$  and H a factor graph induce by f in Example 3.4 (2).

Consider the mapping  $f=\begin{pmatrix}1&2&3&a&b&c&d&e\\1&2&a&a&c&c&e\end{pmatrix}$  from G to G. It is clear that f is an endomorphism. The image graph H=f(G) (in Figure 6) is a subgraph of G. Now we know that all endomorphisms in  $End_f(G)$  are the embeddings of H into G. By Theorem 1.7, we have that f is regular. And we have three congruence classes  $\{a,b\}, \{c,d\}$  and  $\{e\}$  induced by f which are subsets of f. For every completely regular endomorphism f in f is impossible that f is impossible that f in f in

We have 4 different sets of representatives,  $\{a,c,e\}$ ,  $\{a,d,e\}$ ,  $\{b,c,e\}$  and  $\{b,d,e\}$ . By Theorem 3.3, we know that  $CRE_f^{\{i,j,e\}}(G)$  is isomorphic to  $S_2 \times S_3 (= S_{\{1,2\}} \times S_{\{i,j,e\}})$  for all  $i \in \{a,b\}$  and  $j \in \{c,d\}$ .

By inspection, it is clear that  $\bigcup_{i \in \{a,b\}} \bigcup_{j \in \{c,d\}} CRE_f^{\{i,j,e\}}(G)$  is isomorphic to the left group  $(S_2 \times S_3) \times L_4$ .

Using Theorem 3.3 and Example 3.4, we get the next corollary.

**Corollary 3.5.** Let  $G = K_n \cup I_r$  be an endo-regular split graph such that  $I_r$  has exactly one split component and  $K_n \cup I_r$  is a unique decomposition of G. Suppose  $f \in End(G)$  with f(G) is not isomorphic to maximal complete subgraph of G. Suppose that f has g congruence classes which are subsets of  $I_r$  for some  $g \in \mathbb{N}$ , namely,  $[i_1]_{\rho_f}$ ,  $[i_2]_{\rho_f}$ ,...,  $[i_q]_{\rho_f}$ ,  $[i_1,...,i_q \in I_r$ . Set  $\mathscr{A} := \{\{a_1,a_2,...,a_q\} \mid a_j \in [i_j]_{\rho_f}\}$  the set of sets of representatives. The maximal completely regular subsemigroup of  $End_f(G)$  denote by  $CRE_f(G)$ 

is the union of  $|\mathcal{A}|$  groups  $CRE_f^A(G)$  where  $A \in \mathcal{A}$ . And we have that  $CRE_f(G)$  is the left group  $(S_{n-m} \times S_m \times S_q) \times L_{|\mathscr{A}|}$ .

## Completely Regular Subsemigroups

## - s > 1 split components and |N(a)| = 1

Now we turn to characterize completely regular subsemigroups of endo-regular split graphs  $G = K_n \cup I_r$  where  $I_r$  has s > 1 split components  $J_1, J_2, ..., J_s$  and  $|N(\alpha)| = 1$  for all  $a \in I_r$ . Let f be a completely regular endomorphism of G. This notation will be used everywhere in this section. To get the theorem which describes the structure of this completely regular subsemigroups, we need 3 lemmas.

The following lemma is the analogue of Lemma 3.1 for s > 1 and |N(a)| = 1.

**Lemma 4.1.** With the above notation, suppose that  $J_1, J_2, ..., J_p$  are the split components of  $I_r$  with  $f(J_j) \subseteq K_n$  for j = 1, 2, ..., p. Set  $J := J_1 \cup J_2 \cup ... \cup J_p$ . Then we have  $f(K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)) = K_n \setminus \bigcup_{a \in I_r \setminus J} N(a) \text{ and } f(\bigcup_{a \in I_r \setminus J} N(a)) = \bigcup_{a \in I_r \setminus J} N(a).$ 

*Proof.* Let  $u \in K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)$ . Assume that  $f(u) \in \bigcup_{a \in I_r \setminus J} N(a)$ . Since  $f(K_n) = K_n$  by Lemma 1.9, there exists  $v \in \bigcup_{a \in I_r \setminus J} N(a)$  such that  $f(v) \in K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)$ , i.e.,  $f(v) \notin K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)$ 

 $N(I_r \setminus J)$ . Suppose that  $v \in N(J_l)$  for some  $J_l \notin \{J_1, J_2, ..., J_p\}$ . Since |N(a)| = 1 for all  $a \in I_r$ , by Lemma 2.3, we know that for all  $d \in I_r \setminus J$  if  $f(d) \in I_r$ , then  $f(d) \in I_r$  $I_r \setminus J$ . Since  $J_l \notin \{J_1, J_2, ..., J_p\}$ , there exists  $e \in J_l$  such that  $f(e) \in I_r \setminus J$ . Now we have  $f(v) \notin N(f(e))$ . Since  $\{v,e\} \in E(G)$  and f is an endomorphism, we get that  $\{f(v), f(e)\} \in E(G)$ , i.e.,  $f(v) \in N(f(e))$ . This is a contradiction. Thus we have  $f(K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)) = K_n \setminus \bigcup_{a \in I_r \setminus J} N(a)$ . Consequently, since  $f(K_n) = K_n$ , we get that

 $f(\bigcup_{a\in I_r\setminus J}N(a))=\bigcup_{a\in I_r\setminus J}N(a).$ 

**Lemma 4.2.** With the above notation, set  $J_i^{\rho_f} := \{[i]_{\rho_f} \mid i \in J_j \text{ and } [i]_{\rho_f} \subseteq J_i\}$  and  $J_{i}^{f} := \{i \in J_{j} \mid f(i) \in I\} \text{ for all } j = 1, 2, ..., s. \text{ Then we have for any } \alpha, \beta \in \{1, 2, ..., s\}$ that  $f(J_{\alpha}^{f}) \subseteq J_{\beta}$  implies  $|J_{\alpha}^{\rho_{f}}| = |J_{\beta}^{\rho_{f}}|$ .

*Proof.* Let f be a completely regular endomorphism of G and  $f(I_{\alpha}^{f}) \subseteq J_{\beta}$  for some  $\alpha, \beta \in \{1, 2, ..., s\}, \ \alpha \neq \beta$ . Assume that  $\ell_{\alpha} := |J_{\alpha}^{\rho_f}| \neq |J_{\beta}^{\rho_f}| =: \ell_{\beta}$ .

First, we consider the case  $\ell_{\alpha} > \ell_{\beta}$ . Let  $[a_1]_{\rho_f}$ ,  $[a_2]_{\rho_f}$ , ....,  $[a_{\ell_{\alpha}}]_{\rho_f}$  be  $\ell_{\alpha}$  congruence classes in  $J_{\alpha}^{\rho_f}$ . Since  $f(J_{\alpha}^f) \subseteq J_{\beta}$ , then for any  $l \in \{1, 2, ..., \ell_{\alpha}\}$ ,  $f(a_l) = b_l$ for some  $b_l$  in  $J_{\beta}$ . By Lemma 2.3, we know that  $b_l \in J_{\beta}^f$ . Since  $\ell_{\alpha} > \ell_{\beta}$ , there exist  $j \neq k \in \{1, 2, ..., \ell_{\alpha}\}$  such that  $f(a_j) = b_j \neq b_k = f(a_k)$  and  $[b_j]_{\rho_f} = [b_k]_{\rho_f}$ , i.e.,  $f^2(a_i) = f^2(a_k)$ . That means f is not square injective, contradicting to Theorem 2.2.

Next, we consider the case  $\ell_{\alpha} < \ell_{\beta}$ . Since  $I_r$  is finite, there exists some split components  $J_{\mu}$  and  $J_{\nu}$  of  $I_r$  with  $f(J_{\mu}^f) \subseteq J_{\nu}$  and  $|J_{\mu}^{\rho_f}| > |J_{\nu}^{\rho_f}|$ . As in the first case we get a contradiction. Then we have that  $|J_{\alpha}^{\rho_f}| = |J_{\beta}^{\rho_f}|$ .

Now we give an example which illustrates the next lemma.

#### **Example 4.3.** Take $G = K_4 \cup I_9$ an endo-regular split graph as in Figure 7.

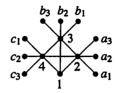


Figure 7: Split graph  $G = K_4 \cup I_5$  with  $Aut(G) = S_3 \times S_3 \times S_3 \times S_3 \times S_3$ .

Here  $J_1 = \{a_1, a_2, a_3\}$ ,  $J_2 = \{b_1, b_2, b_3\}$  and  $J_3 = \{c_1, c_2, c_3\}$  are the three split components of  $I_9$ . By Lemma 4.1, we have f(1) = 1 and  $f(\{2,3,4\}) = \{2,3,4\}$  for all  $f \in Aut(G)$ . And by Lemma 4.2, we get that all automorphisms of G permute three split components  $J_1, J_2$  and  $J_3$ . And in any split component, we can permute all vertices to get an automorphism. Then it is clear that  $Aut(G) = S_1 \times S_3 \times (S_3 \times S_3 \times S_3)$ .

**Lemma 4.4.** With the above notation, if  $|J_1| = |J_2| = ... = |J_s| =: \ell$ , we have that Aut(G) is isomorphic to  $S_{n-s} \times S_s \times \underbrace{S_\ell \times S_\ell \times ... \times S_\ell}_{\ell}$ .

**Theorem 4.5.** Take an endo-regular split graph  $G = K_n \cup I_r$  where  $I_r = \bigcup_{k=1}^s J_k$  with s > 1 split components  $J_1, J_2, ..., J_s$ . Suppose that for all  $a \in I_r$ , |N(a)| = 1 and  $|\bigcup_{a \in I_r} N(a)| = m$ . Take a regular endomorphism f of G with g congruence classes  $[i_1]_{\rho_f}$ ,  $[i_2]_{\rho_f}$ , ...,  $[i_q]_{\rho_f}$  each contained in  $I_r$ . Set  $I_r^f := \{i \in I_r | f(i) \in I_r\}$ ,  $J_f^f := \{i \in J_f | f(i) \in I_r\}$  and take the set of sets of representatives  $\mathscr{A} := \{\{a_1, a_2, ..., a_q\} \mid a_j \in [i_j]_{\rho_f}, \ j = 1, 2, ..., q\}$ . Take  $A \in \mathscr{A}$  and let  $CRE_f^A(G)$  be the same as in Theorem 3.3. For any k = 1, 2, ..., s, if  $J_f^f \neq \emptyset$ , take  $u \in N(J_k^f)$  and set  $M_A^f(u) := \{v \in N(J_i^f) \mid |J_k^f \cap A| = |J_f^f \cap A|, \ l \in \{1, ..., s\}\}$ . Suppose that there are t disjoint sets  $M_A^f(u_1)$ ,  $M_A^f(u_2)$ ,...,  $M_A^f(u_l)$ . Then we have that  $CRE_f^A(G) = S_{n-m+p} \times \prod_{j=1}^l S_{M_A^f(u_j)} \times \prod_{k=1}^s S_{J_k^f \cap A}$ . Here p is the number of split components whose vertices are all sent to  $K_n$  by f,

 $S_{n-m+p}$  is the group of permutations of all vertices in  $(K_n \setminus N(I_r)) \cup \bigcup_{\substack{|J_j^f|=0}} N(J_j^f)$ ,

 $S_{M^f(u_j)}$  is a the group of permutations of all vertices in  $M^f(u_j)$  and  $S_{J_k^f\cap A}$  is the group of permutations of all vertices in  $J_k^f\cap A$ .

The next example shows the idea how to prove the above theorem.

**Example 4.6.** Consider the split graph  $G = K_8 \cup I_{11}$  as in Figure 8 and  $f \in End(G)$  such that  $H = Im(f) \cong G/\rho_f$ , where notations  $\underline{b_1}b_2$ ,  $\underline{2}c$  and  $d_1\underline{d_2}$  are as in Example 3.4.

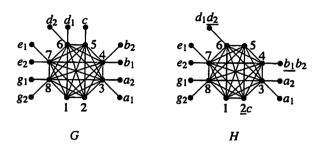


Figure 8: Endo-regular split graph  $G = K_8 \cup I_{11}$  and H a factor graph induce by f in Example 4.6.

We have the 6 split components,  $J_1 = \{a_1, a_2\}$ ,  $J_2 = \{b_1, b_2\}$ ,  $J_3 = \{c\}$ ,  $J_4 = \{d_1, d_2\}$ ,  $J_5 = \{e_1, e_2\}$  and  $J_6 = \{g_1, g_2\}$ . By Theorem 1.7, we know that all endomorphisms in End(G) are regular. Take

 $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & a_1 & a_2 & b_1 & b_2 & c & d_1 & d_2 & e_1 & e_2 & g_1 & g_2 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & a_1 & a_2 & b_1 & b_1 & 2 & d_2 & d_2 & e_1 & e_2 & g_1 & g_2 \end{pmatrix}$  the image graph is H (in Figure 8) as a subgraph of G. We see that  $f(G) \ncong K_8$  and we have 8 congruence classes induced by f which are subsets of  $I_{11}$ , namely,  $\{a_1\}$ ,  $\{a_2\}$ ,  $\{b_1,b_2\}$ ,  $\{d_1,d_2\}$ ,  $\{e_1\}$ ,  $\{e_2\}$ ,  $\{g_1\}$  and  $\{g_2\}$  only  $\{c,2\} \not\subseteq I_{11}$ , now we have for p from Theorem 4.5 that p=1.

Choose the set of representatives  $A = \{a_1, a_2, b_1, d_1, e_1, e_2, g_1, g_2\}$  then  $I_{11}^f = \{i \in I_{11} \mid f(i) \in I_{11}\} = \{a_1, a_2, b_1, b_2, d_1, d_2, e_1, e_2, g_1, g_2\}$ . We will show that  $CRE_f^A(G)$  is isomorphic to  $S_3 \times (S_3 \times S_2 \times S_2 \times S_2) \times S_2$ . We have exactly one split component,  $J_3$ , such that  $f(J_3) \subseteq K_8$ . And the congruence relation for all endomorphisms in  $End_f(G)$  is  $\rho_f$ . By definition, it is clear that  $CRE_f^A(G)|_{(\{1,2,5\})}$ , the set of restrictions of all endomorphisms in  $CRE_f^A(G)$  to  $\{1,2,5\}$ , is isomorphic to  $S_{\{1,2,5\}}$ , the group  $S_3$  of permutations of the set  $\{1,2,5\}$ .

Since  $J_j^f = \{i \in J_j \mid f(i) \in I_{11}\}$  for all j = 1,...,6, we see that  $2 = |J_1^f \cap A| = |J_5^f \cap A| = |J_5^f \cap A| \neq |J_2^f \cap A| = |J_4^f \cap A| = 1$ , then we get t = 2, t from Theorem 4.5, and we have  $M_A^f(3) = M_A^f(7) = M_A^f(8) = \{3,7,8\}, M_A^f(4) = M_A^f(6) = \{4,6\}$ . By definition of  $J_j^{\rho_f}$  in Lemma 4.2, we have  $J_1^{\rho_f} = \{\{a_1\}, \{a_2\}\}, J_2^{\rho_f} = \{\{b_1, b_2\}\}, J_4^{\rho_f} = \{\{d_1, d_2\}\}, J_5^{\rho_f} = \{\{e_1\}, \{e_2\}\}$  and  $J_6^{\rho_f} = \{\{g_1\}, \{g_2\}\}$ . Since  $2 = |J_1^{\rho_f}| = |J_5^{\rho_f}| = |J_6^{\rho_f}| \neq |J_2^{\rho_f}| = |J_4^{\rho_f}| = 1$ , by Lemma 4.2, we know that all endomorphisms in  $CRE_f^A(G)$  do not send an element in  $J_1^f \cup J_5^f \cup J_6^f$  to an element in  $J_2^f \cup J_4^f$ . Similarly, all endomorphisms in  $CRE_f^A(G)$  do not send an element in  $J_2^f \cup J_4^f$  to an element in  $J_1^f \cup J_5^f \cup J_6^f$ . This implies that all endomorphisms in  $CRE_f^A(G)$  do not send any vertex in  $M_A^f(4)$  to a vertex in

 $M_A^f(3)$ . Similarly, all endomorphisms in  $CRE_f^A(G)$  do not send any vertex in  $M_A^f(3)$  to

a vertex in  $M_A^f(4)$ . Now we consider  $CRE_f^A(G)|_{(M_A^f(3)\cup J_1^f\cup J_2^f\cup J_6^f)}$  and  $CRE_f^A(G)|_{(M_A^f(4)\cup J_2^f\cup J_4^f)}$ , the set of restrictions of all endomorphisms in  $CRE_f^A(G)$  to  $M_A^f(3) \cup J_1^f \cup J_5^f \cup J_6^f$  and to  $M_A^f(4) \cup J_5^f \cup J_6^f$  $J_2^f \cup J_4^f$ , respectively.

It is clear that  $CRE_f^A(G)|_{(M_A^f(3)\cup J_1^f\cup J_5^f)}\cong Aut(M_A^f(3)\cup\bigcup_{i\in\{1.5.6\}}(J_j^f\cap A))$ . Since  $(J_1^f \cap A) = \{a_1, a_2\}, (J_5^f \cap A) = \{e_1, e_2\} \text{ and } (J_6^f \cap A) = \{g_1, g_2\} \text{ are split components}$ of the factor graph H and  $|(J_1^f \cap A)| = |(J_5^f \cap A)| = |(J_6^f \cap A)| = 2$ , then by Lemma 4.4, we have that  $CRE_f^A(G)|_{(M_A^f(3) \cup J_1^f \cup J_2^f \cup J_6^f)}$  is isomorphic to  $S_{M_A^f(3)} \times S_{J_1^f \cap A} \times S_{J_2^f \cap A} \times S_{J_2^f$  $S_{J_2^f \cap A} \cong S_3 \times S_2 \times S_2 \times S_2$ . Similarly, we get that  $J_2^f \cap A = \{b_1\}, J_4^f \cap A = \{d_1\}$  and  $|J_2^f \cap A| = |J_4^f \cap A| = 1$ , so  $CRE_f^A(G)|_{(M_A^f(4) \cup J_2^f \cup J_4^f)}$  is isomorphic to  $S_{M_A^f(4)} \times S_{J_2^f \cap A} \times I_{J_2^f \cap A}$  $S_{J_1^f \cap A} \cong S_2 \times S_1 \times S_1 = S_2.$ 

Hence we get that  $CRE_1^A(G)$  is isomorphic to  $S_3 \times (S_3 \times S_2 \times S_2 \times S_2) \times S_2$ .

Moreover, it is clear by inspection that for any  $B, C \in \mathscr{A}$ ,  $CRE_f^B(G) \cong CRE_f^C(G)$ . In this example we have that

$$\{a_1, a_2, b_1, d_1, e_1, e_2, g_1, g_2\}, \{a_1, a_2, b_1, d_2, e_1, e_2, g_1, g_2\},$$
  
 $\{a_1, a_2, b_2, d_1, e_1, e_2, g_1, g_2\}$  and  $\{a_1, a_2, b_2, d_2, e_1, e_2, g_1, g_2\}$ 

are 4 distinct sets in  $\mathscr{A}$  so  $|\mathscr{A}| = 4$ . Then it is clear that the maximal completely regular subsemigroup containing in  $End_f(G)$  is

$$\bigcup_{B \in \mathscr{A}} CRE_f^B(G) \cong (S_3 \times (S_3 \times S_2 \times S_2 \times S_2) \times S_2) \times L_4.$$

**Corollary 4.7.** Take G, f and A as in Theorem 4.5. For  $A \in A$ , the maximal completely regular subsemigroup of  $End_f(G)$  denoted by  $CRE_f(G)$  is the left group  $(S_{n-m+p} \times$  $\prod_{i=1}^{n} S_{|M_A^f(u_j)|} \times \prod_{k=1}^{n} S_{|J_k^f \cap A|}) \times L_{|\mathscr{A}|}. Here S_{|M_A^f(u_j)|} and S_{|J_k^f \cap A|} are the symmetric groups$ on  $|M_A^f(u_i)|$  and  $|J_k^f \cap A|$  elements, respectively.

#### **Completely Regular Subsemigroups** 5

## - s > 1 split components and |N(a)| > 2

We can use the same idea from Sections 3 and 4 to find a completely regular subsemigroup of End(G), where  $G = K_n \cup I_r$  is an endo-regular split graph for which  $I_r$  has more than one split component and  $|N(a)| \ge 2$  for all  $a \in I_r$ . But we can not generalize which group is isomorphic to  $CRE_f^A(G)$  for any the set of representatives A. We give the reason as follows.

For any complete graph  $K_n$  and independent set  $I_r = \overline{K}_r$ , we can construct many non-isomorphic endo-regular split graphs whose  $I_r$  has s > 1 split components and  $|N(a)| = m \ge 2$  for all  $a \in I_r$ . Let  $G_1$  and  $G_2$  be two non-isomorphic endo-regular split graphs with the maximal complete subgraph  $K_n$  and the independent set  $I_r$  of both

 $G_1$  and  $G_2$ . If f is an endomorphism of both  $G_1$  and  $G_2$ , then  $CRE_f^A(G_1)$  may be not isomorphic to  $CRE_f^A(G_2)$  for some possible set of representatives A. The next example shows this fact.

## **Example 5.1.** Consider two graphs $G_1$ and $G_2$ as in Figure 9.

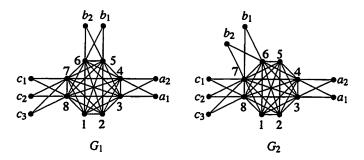


Figure 9: Split graph  $G_1 = K_8 \cup I_7$  and  $G_2 = K_8 \cup I_7$  with  $G_1 \ncong G_2$ .

The essential difference between the graph  $G_1$  and the graph  $G_2$  lie in the neighborhoods of  $b_2$  and of  $c_1$ . The neighborhood of the split component  $\{b_1, b_2\}$  and the neighborhood of the split component  $\{c_1, c_2, c_3\}$  are disjoint in the graph  $G_1$  but are not disjoint in the graph  $G_2$ . Consider the mapping as follows

It is clear that f is an endomorphism of  $G_1$  and  $G_2$ . By Lemma 1.7, we have that f is regular. And we have the congruence relation  $\rho_f = \{\{i\} | i \notin \{b_1, b_2, c_1, c_2\}\} \cup \{\{b_1, b_2\}, \{c_1, c_2\}\}$  and we have 5 congruence classes contained in an independent set, that is  $\{a_1\}$ ,  $\{a_2\}$ ,  $\{b_1, b_2\}$ ,  $\{c_1, c_2\}$  and  $\{c_3\}$ . The following pictures are the image graphs of  $G_1$  and  $G_2$  under f, notation as in Example 3.4.

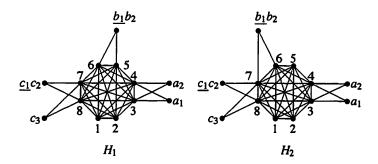


Figure 10:  $H_1$  and  $H_2$  factor graphs induce by f (in Example 5.1) of graphs  $G_1$  and  $G_2$  (in Figure 8), respectively.

We see that all endomorphisms in  $End_f(G_1)$  and  $End_f(G_2)$  are the embeddings from  $H_1$  (in Figure 10) to  $G_1$  and from  $H_2$  (in Figure 10) to  $G_2$ , respectively. Choose  $A = \{a_1, a_2, b_1, c_1, c_3\}$ . By inspection it is clear that  $CRE_f^A(G_1)$  and  $CRE_f^A(G_2)$ are isomorphic to  $S_{\{1,2\}} \times (S_{\{3,4\},\{7,8\}}) \times S_{\{3,4\}} \times S_{\{7,8\}} \times S_{\{a_1\},\{a_2\}}) \times S_{\{c_1\},\{c_3\}\}}) \times S_{\{5,6\}}$  and  $S_{\{1,2,5\}} \times (S_{\{3,4\}} \times S_{\{a_1\},\{a_2\}}) \times S_{\{\{c_1\},\{c_3\}\}}$ , respectively. These are the groups  $S_2 \times (S_2 \times S_2 \times S_2 \times S_2 \times S_2) \times S_2$  and  $S_3 \times (S_2 \times S_2) \times S_2$ , respectively.

Finally, we give an example to show that for any endo-regular split graph G, if  $f,g \in End(G)$  with  $\rho_f \neq \rho_g$ , it is not necessary that the composition between two endomorphisms in  $CRE_f(G)$  and  $CRE_g(G)$  is completely regular. This means  $CRE_f(G) \cup$  $CRE_{\sigma}(G)$  is not necessarily closed.

**Example 5.2.** Let G be the graph as in Example 3.4. It is clear that 
$$f = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & a & a & d & c \end{pmatrix}$$
 and  $g = \begin{pmatrix} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & b & b & b & d \end{pmatrix}$  are endomorphisms of G. Now the congruence relations

$$\rho_f = \{\{1\}, \{2\}, \{3\}, \{a,b\}, \{c\}, \{d\}\}\}$$

$$\rho_g = \{\{1\}, \{2\}, \{3\}, \{a, b, c\}, \{d\}\}.$$

It is clear that 
$$\rho_f \subseteq \rho_g$$
. And we get that  $CRE_f(G) = CRE_f^{\{a,c,d\}}(G) \cup CRE_f^{\{b,c,d\}}(G)$ 

$$CRE_{g}(G) = CRE_{g}^{\{a,d\}}(G) \cup CRE_{g}^{\{b,d\}}(G) \cup CRE_{g}^{\{c,d\}}(G)$$

are isomorphic to  $(S_2 \times S_3) \times L_2$  and  $(S_2 \times S_2) \times L_3$ , respectively. Since f and g are idempotents, it is clear that f and g are completely regular. Then  $f \in CRE_f(G)$  and  $g \in CRE_g(G)$ . Consider the following composition

$$f \circ g = \left(\begin{array}{ccccccc} 1 & 2 & 3 & a & b & c & d \\ 1 & 2 & 3 & a & a & a & c \end{array}\right).$$

We see that  $a = (f \circ g)(c) \neq (f \circ g)(d) = c$  and  $(f \circ g)^2(c) = a = (f \circ g)^2(d)$ , i.e.,  $f \circ g$ is not square injective. By Theorem 2.2, we get that  $f \circ g$  is not completely regular. This means  $f \circ g$  is not in  $CRE_f(G) \cup CRE_g(G)$ .

## References

- [1] S. Fan, On End-regular bipartite graphs, in: Combinatorics and Graph Theory, Proceedings of SSICC'92, World Scientific, Singapore, 1993, 117-130.
- [2] S. Fan, On End-regular graphs, Discrete Mathematics, 159 (1996), 95-102.
- [3] S. Fan, The regularity of the endomorphism monoid of a split graph, Acta Math. Sin., 40 (1997), 419-422.
- [4] S. Földes and P. L. Hammer, Split graphs, Congressus Numerantium, No. XIX, (1977), 311-315.

- [5] U. Knauer and M. Nieporte, Endomorphisms of graphs I. The monoid of strong endomorphisms, Arch. Math., 52 (1989), 607-614.
- [6] W. Li, Graphs with regular monoids, Discrete Mathematics, 265 (2003), 105-118.
- [7] W. Li, Split Graphs with Completely Regular Endomorphism Monoids, Journal of mathematical research and exposition, 26 (2006), 253-263.
- [8] W. Li and J. Chen, *Endomorphism Regularity of Split Graphs*, Europ. J. Combinatorics, **22** (2001), 207-216.
- [9] L. Marki, Problem raised at the problem session of the Colloquum on Semigroups in Szeged, August 1987, Semigroup Forum, 37 (1988), 367-373.
- [10] M. Petrich and N. R. Reilly, Completely Regular Semigroups, Wiley-Interscience Publication, 1999.
- [11] A. Wanichsombat, Endo-Completely-regular Split Graphs, in: V. Laan, S. Bulman-Fleming, R. Kaschek (Eds.), Semigroups, Acts and Categories with Applications to Graphs, Proceedings, Tartu 2007, Tartu 2008, 136-142.
- [12] E. Wilkeit, Graphs with a regular endomorphism monoid, Arch. Math., 66 (1996), 344-352.

Institut für Mathematik
Carl von Ossietzky Universität Oldenburg
D-26111 Oldenburg, Germany

e-mail address: ulrich.knauer@uni-oldenburg.de

e-mail address: apirat589@yahoo.com