Connected even factors in $\{K_{1,\ell}, K_{1,\ell} + e\}$ -free graphs*

Fang Duan[†], Weijuan Zhang and Guoping Wang School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China

Abstract. A connected factor F of a graph G is a connected spanning subgraph of G. If the degree of each vertex in F is an even number between 2 and 2s, then F is a connected even [2,2s]-factor of G, where s is an integer. In this paper, we show that every superculerian $\{K_{1,\ell+1},K_{1,\ell+1}+e\}$ -free graph $(\ell \geq 2)$ contains a connected even $[2,2\ell-2]$ -factor.

Key words: $\{K_{1,\ell}, K_{1,\ell} + e\}$ -free graph; even factor

CLC number: O 157.5

1 Introduction

All graphs considered here are finite, undirected and simple. Suppose that S is a subset of the vertex set V(G) of a graph G. Then we denote by G[S] the subgraph of G induced by S; in particular, G[S] will be written for $G[x_1, x_2, \cdots, x_n]$ if $S = \{x_1, x_2, \cdots, x_n\}$. A graph is $\{H_1, H_2, \cdots, H_k\}$ -free if it contains no induced subgraph isomorphic to any H_i $(1 \le i \le k)$. If k = 1 and H_1 is $K_{1,3}$, then it is claw-free. $K_{1,\ell} + e$ is the graph obtained from $K_{1,\ell}$ by joining a pair of nonadjacent vertices. Obviously, every claw-free graph is $\{K_{1,4}, K_{1,4} + e\}$ -free. R. Li and R. Schelp [6, 7] and F. Duan [2] obtained some results on $\{K_{1,4}, K_{1,4} + e\}$ -free graphs.

A connected factor F of a graph G is a connected spanning subgraph of G. If the degree d(v) of each vertex v in F is an even number, then F is a connected even factor of G, and if $2 \le d(v) \le 2s$, then F is a connected even [2, 2s]-factor of G, where s is an integer. Obviously a Hamiltonian

^{*}Supported by science foundation of Xinjiang Normal University (No. XJNU1213); NSFC(No.11361062) and Key Program of Xinjiang Higher Education(XJEDU2012I28) †Corresponding author. Email: fangbing327@126.com

cycle of a graph is one of its connected even [2, 2]-factors. H. Broersma et al. [1] proved the following

Theorem 1 Every 4-connected claw-free graph has a connected [2, 4]-factor.

A trail of length k in G is an alternating sequence $v_0e_0v_1e_1\cdots e_{k-1}v_k$ of vertices and edges such that $e_i=v_iv_{i+1}$ for all i< k and $e_i\neq e_j$ if $i\neq j$. A graph G is supereulerian if G has a closed trail containing every vertex (not necessarily containing every edge). M. Li et al. in [5] obtained the following

Theorem 2 Every superculerian $K_{1,\ell}$ -free $(\ell \geq 2)$ graph contains a connected even $[2, 2\ell - 2]$ -factor.

We denote by $K_{1,\ell}+e$ the graph obtained from $K_{1,\ell}$ by joining a pair of nonadjacent vertices. Obviously, if a graph is $K_{1,\ell}$ -free, then it is also $\{K_{1,\ell+1},K_{1,\ell+1}+e\}$ -free. The graph in Figure 1 shows that the supereulerian $K_{1,\ell+1}$ -free graph can contain no connected even $[2,2\ell-2]$ -factor.

Fig. 1.

But in this paper we obtain the following result.

Theorem 3 Every superculerian $\{K_{1,\ell+1}, K_{1,\ell+1} + e\}$ -free $(\ell \geq 2)$ graph contains a connected even $[2, 2\ell-2]$ -factor.

2 Proof of Theorem 3

We denote by $\Delta(G)$ the maximum degree of G.

Proof of Theorem 3. Let G be a superculerian $\{K_{1,\ell+1}, K_{1,\ell+1} + e\}$ -free graph $(\ell \geq 2)$. Since G is superculerian, G contains some connected even factors. It suffices to show that among these connected even factors there exists one whose maximum degree is smaller than 2ℓ . Let

 $\Delta = min\{\Delta(F) : F \text{ is a connected even factor of } G\}$

and $m(F, \Delta)$ be the number of vertices of F whose degrees in F are Δ . We assume without loss of generality that $m(F, \Delta)$ is minimum among all connected even factors of G whose maximum degrees are Δ . Now we verify that $\Delta(F) \leq 2\ell - 2$. If $\Delta(F) \geq 2\ell \geq 4$ and w is the vertex whose degree is $\Delta(F)$, then there are at least ℓ edge-disjoint cycles C_1, C_2, \cdots, C_ℓ in F with a common vertex w. Let u_i and v_i be two neighbors of w on C_i $(1 \leq i \leq \ell)$.

Claim 1. Let $x_i \in \{u_i, v_i\}$ and $x_j \in \{u_j, v_j\}$ $(i \neq j)$. Suppose that $x_i x_j \in E(G)$. Then we have

- (i) $x_i x_i \in E(F)$;
- (ii) exactly one of $\{x_ix_j, wx_i\}$ and $\{x_ix_j, x_jw\}$ is an edge-cut of F;
- (iii) if $u_i v_i \in E(G)$, then $u_i v_i \in E(F)$.
- **Proof.** (i) If $x_i x_j \in E(G) \setminus E(F)$, then we can get another connected even factor F' from F by deleting wx_i and wx_j and adding $x_i x_j$. Clearly, $m(F', \Delta) = m(F, \Delta) 1$, a contradiction.
- (ii) If $F' = F \{x_i x_j, x_j w, w x_i\}$ is connected, then F' is clearly another connected even factor of G. But $m(F', \Delta) = m(F, \Delta) 1$, a contradiction. Hence $\{x_i x_j, x_j w, w x_i\}$ is an edge-cut of F. Since none of $x_i x_j, x_j w$ and $w x_i$ is a cut-edge, $F \{x_i x_j, x_j w, w x_i\}$ contains exactly two components, that is, exactly one of x_i and x_j is in the same component as w, say x_i . This implies that x_i is also on C_j . Thus $\{x_i x_j, x_j w\}$ is an edge-cut of F but $\{x_i x_j, w x_i\}$ is not.
- (iii) If $u_i v_i \in E(G) \setminus E(F)$, then we can get another connected even factor F' of G from F by deleting wu_i and wv_i and adding $u_i v_i$. But $m(F', \Delta) = m(F, \Delta) 1$, a contradiction.
- Claim 2. If $n \leq \ell$, then we can choose a vertex set X of n+1 order from $\{u_1, v_1, \dots, u_n, v_n\}$ such that G[X] contains at most one edge.

Proof. Let $U = \{u_1, v_1, \cdots, u_n, v_n\}$ $(n \leq \ell)$. We prove this Claim by induction on n. If there is no edge between $\{u_1, v_1\}$ and $\{u_2, v_2\}$ in G, then let $X = \{u_1, u_2, v_1\}$. So we assume that there is one edge between $\{u_1, v_1\}$ and $\{u_2, v_2\}$ in G, say $u_1v_2 \in E(G)$. By Claim 1 (i), $u_1v_2 \in E(F)$, and further, by Claim 1 (ii) we can assume without loss of generality that $\{u_1v_2, u_1w\}$ is an edge-cut of F, which implies that $u_1u_2, u_1v_1 \notin E(F)$. Hence, by Claim 1 (i), $u_1u_2 \notin E(G)$, and by Claim 1 (iii), $u_1v_1 \notin E(G)$. In this case let $X = \{u_1, v_1, u_2\}$.

Next suppose that $n \geq 3$. If for any $i \neq j$, there is no edge between $\{u_i, v_i\}$ and $\{u_j, v_j\}$ in G, then let $X = \{x_1, x_2, \dots, x_n, x_{n+1}\}$, where $x_i \in \{u_i, v_i\}$ $(i = 1, 2, \dots, n)$ and $x_{n+1} \in U \setminus \{x_1, x_2, \dots, x_n\}$. Now we suppose that there exists one edge between $\{u_i, v_i\}$ and $\{u_j, v_j\}$ in G, say $u_1u_2 \in E(G)$. Then $u_1u_2 \in E(F)$ by Claim 1 (i). Thus, by Claim 1 (ii), we

can assume without loss of generality that $\{u_1u_2, u_1w\}$ is an edge-cut of F, which implies that u_1u_2 is a unique edge of F between u_1 and U. By Claim 1 (i) and (iii) we know that u_1u_2 is a unique edge of G between u_1 and U.

Let $C_2' = wv_2 \cdots v_1 w$. Then C_2', C_3, \cdots, C_n are n-1 edge-disjoint cycles contained in F having w on common. By the inductive hypothesis we can choose a set X_1 of n vertices from $U \setminus \{u_1, u_2\}$ such that $|E(G[X_1])| \leq 1$. In this case, let $X = X_1 \cup \{u_1\}$. The proof of Claim 2 is completed.

Therefore, by Claim 2, we can find a set Y of $\ell+1$ vertices from $\{u_1, v_1, \cdots, u_\ell, v_\ell\}$ such that $G[Y \cup \{w\}]$ is isomorphic to either $K_{1,\ell+1}$ or $K_{1,\ell+1} + e$. This contradicts with the assumption of Theorem 3. Up to now we prove that $\Delta(F) \leq 2\ell - 2$, as required. \square

The following well-known conjecture made by M. Matthews and D. Sumner [8] is still wide open.

Conjecture 4 Every 4-connected claw-free graph is Hamiltonian.

H. Broersma et al. [1] and T. Kaiser et al. [4] obtained its positive results for two special cases as follows. An *induced hourglasses* S of a graph G is an induced subgraph of G isomorphic to the graph in Fig. 2 (a). The graph G has the *hourglass property* if in every induced hourglass S, there are two non-adjacent vertices which have a common neighbor in G - V(S) as in Fig. 2 (b).

Fig. 2.

Theorem 5 Every 4-connected claw-free hourglass-free graph is hamiltonian.

Theorem 6 Every 4-connected claw free graph with the hourglass property is hamiltonian.

As one consequence of Theorem 3, we obtained positive result for the special case of conjecture 4 too.

Corollary 7 Every superculerian $\{K_{1,3}, K_{1,3} + e\}$ -free graph is Hamiltonian.

Since 4 edge connected graph is supereulerian [3], it follows that

Corollary 8 Every 4 edge connected $\{K_{1,3}, K_{1,3} + e\}$ -free graph is Hamiltonian.

3 Acknowledgment

We thank the referee for pointing out an error in the paper.

References

- H.J.Broersma, M. Kriesell, Z. Ryjáček, On factors of 4-connected clawfree graphs, J. Graph Theory 20 (2001) 459-465.
- [2] F. Duan, G. Wang, Note on the longest paths in $\{K_{1,4}, K_{1,4} + e\}$ -free graphs, Acta Math. Sinica 28 (2012) 2501-2506.
- [3] F. Jaeger, A note on subsulerian graphs, J. Graph Theory 3 (1979) 91-93.
- [4] T. Kaiser, M.C.Li, Z. Ryjacek, L. Xiong, Hourglasses and Hamiltonian cycles in 4-connected claw-free graphs, J. Graph Theory 48 (2005) 267-276.
- [5] M. Li, L. Xiong, H.J.Broersma, Connected even factors in claw-free graphs, Discrete Math. 308 (2008) 2282-2284.
- [6] R. Li, Hamiltonicity of 2-connected $\{K_{1,4}, K_{1,4} + e\}$ -free graphs, Discrete Math. 287 (2004) 69-76.
- [7] R. Li, R. Schelp, Hamiltonicity of $\{K_{1,4}, K_{1,4}+e\}$ -free graphs, Discrete Math. 245 (2002) 195-202.
- [8] M. Matthews, D. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984) 139-146.