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Abstract

In this paper we study defensive alliances in some regular
graphs. We determine which subgraphs could a critical defen-
sive alliance of a graph G induce, if G is 6-regular and the
cardinality of the alliance is at most 8.

Keywords: Alliance, induced subgraph.

1 Introduction

An alliance in a graph is a kind of community, in the sense that
nodes in the alliance either protect each other from attacks of other
nodes, in the case of defensive alliances, or are able to collaborate to
attack other nodes, in the case of offensive alliances.

Alliances, which where introduced in [9], can be defined as fol-
lows. A defensive alliance is a set of vertices satisfying that each ver-
tex has at least as many neighbors in the alliance (including itself)
than neighbors not belonging to the alliance. A defensive alliance is
strong if each vertex has more neighbors in the alliance than outside,
and it is critical if it doesn’t include other defensive alliances. An
offensive alliance [2] is a set of vertices satisfying that each vertex
in its boundary has at least as many neighbors in the alliance than
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neighbors not belonging to the alliance (including itself). Strong
and critical offensive alliances are defined similarly to the strong and
critical defensive ones.

An alliance is called global if it is also a dominating set. Global
defensive alliance and global offensive alliances were first studied
in [7] and [14], respectively.

Though the concept of alliance is relatively new, it is related with
some other well known concepts and problems. Moreover, it has
given rise to new concepts and problems that are worth to mention.
In the context of complex networks, the definition of web community,
as in [5], coincides with the definition of offensive alliance. Some
works relate alliances with community detection and partitioning [5,
8]. Other related concepts are modules [11] and, in the context of
distributed computing, coalition and monopolies [6, 10, 12]. From
an algorithmic point of view, the clustering coefficient is defined in
terms of small alliances in [1], and a study of algorithms for global
alliances is given in [19]. Some of the works reated with alliances
in the context of graph theory are [4, 17], where the concept of k-
alliance is defined and studied, and (13, 16}, in which the authors
focus on the spectral properties of alliances. The questions about
complexity and alliances are studied in [3].

In this paper we study defensive alliances in regular graphs. In a
d-regular graph, a defensive alliance is a set of vertices that induces
a subgraph with minimum degree at least I_%J and maximum degree
at most d. We are interested in the following problem: Which graphs
can a critical defensive alliance induce?

The answer is known for degree d < 5. For 6-regular graphs, it
turns out to be a difficult question. We study alliances in graphs of
degree 6, and of given cardinality ¥ < 8. Even in these restricted
cases, there is not an easy description of such alliances. Because
of the complexity of the problem, we also restrict the question to a
family of very symmetric graphs, the well known circulant graphs.

The paper is organized as follows. Basic definitions and proper-
ties are given in Section 2. Section 3 deals with alliances in regular
graphs of small degrees. We finish with some conclusions and open

problems.
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2 Definition and basic properties

First, we introduce some notation and basic definitions. Given a
graph G = (V,E) we denote by n and m its order and size, re-
spectively. The open neighborhood of a vertex v € V is the set
N(v) :={u €V : u~ v}, and the closed neighborhood of v is the set
N[v] :== N(v) U {v}. The degree of v is d(v) := |N(v)|]. We denote
by dc the minimum degree of G.

Given a non-empty set of vertices S, the neighborhood of v in
Sis Ng(v) := {u € § : u ~ v} = Nw)nS. Denoting by S
the complement in V of .S, we have N(v) = Ns(v) U Ng(v). The
boundary of S is the set 8(S) = UyesN(v) — S and we denote by (S)
the subgraph of G induced by S.

2.1 Alliances

The following definitions are taken from [9].

Definition 2.1 (Defensive alliance) A non-empty set S C V is
a defensive alliance of G if, for everyv € S,

[Ns[v]| 2 |N5(v)|. (1)

We say that the alliance is strong if, for every v € S, the inequality
18 strict.

The inequality (1) is called the (defensive) boundary condition.

Definition 2.2 (Offensive alliance) A non-empty set S C V is
an offensive alliance of G if, for every v € 8(S),

|Ns(v)| 2 [Ng[v]|. (2)

We say that the alliance is strong if, for every v € 8(S), the inequal-
ity is strict.

The inequality (2) is called the (offensive) boundary condition.

An alliance (of any type) is said to be global if it is also a dom-
inating set of the graph. (Recall that S is a dominating set if every
vertex of G is in S or has a neighbor in S, that is, N[S] = V.) An
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alliance (of any type) is said to be critical if none of its proper sub-
sets is an alliance (of the same type). A dual (or powerful) alliance
is a set that is both a defensive and an offensive alliance.

In the remaining of the paper we will focus on defensive alliances.
Notice that, the whole graph G is a defensive alliance in G. More-
over, if S is a critical (strong) defensive alliance in G, then (S) is
connected.

2.2 Alliance numbers

From the definition of alliance, some problems naturally arise. The
first studied problem is to find the minimum cardinality of a defensive
alliance of given a graph G. The problem we are interested in is which
subsets of V, or the induced subgraphs of G, are critical defensive
alliances and, among them, which are the minimal ones.

For a graph G, we can consider the following classes.

o A(G), the class of critical defensive alliances.

e A(G), the class of critical strong defensive alliances.
Associated with this classes, the following invariants are defined.

e The defensive alliance number of G,

a(G) := min{|S| : S € A(G)}.

The upper defensive alliance number of G,

A(G) :=max{|S| : S € A(G)}.

o The strong defensive alliance number of G,

a(G) := min{|S| : S € A(G)}.

The upper strong defensive alliance number of G,

A(G) :=max{|S| : S € A(G)}.
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For the defensive alliance number of a graph, or alliance number
from now, it is easy to find tight lower bounds in terms of the mini-
mum degree of the graph, as well as tight upper bounds in terms of
the order:

’.%G-J+1_<_ a(G) s[g], (3)
[%i]ug a@) <|3]+1 @)

The alliance number of a graph G is also related with its girth
g9(G), i.e., the length of the shortest cycle of the graph (if any): If
dc > 4 then

9(G) < a(G).

The classes of critical offensive alliances and critical strong of-
fensive alliances, with their corresponding alliance numbers can be
analogously defined. Also, we can define the classes and alliance

numbers for global alliances of any type.
It is worth mentioning that the decision problems associated to

the different variation of alliances are all NP-complete (see [3] and
the references therein). Therefore, it makes sense to study both the
properties of the different types of alliance numbers and the alliance
number of restricted classes of graphs.

3 Defensive alliances in regular graphs

The alliance numbers of regular graphs are known only for small
degrees [9, 15].

We denote by g(G) the girth of G and by l¢(G) the maximum
length of an induced cycle in G. If G is d-regular, then it is known
that:

e d=1=4a(G) = A(G) =1, 4(G) = A(G) = 2;

e d=2a(G) = AC) =4(G) = A(G) = 2

e d=3=a(G) = A(G) =2, 4(G) = g(G), and A(G) = l¢(G);

o d=4= a(G) = &(G) = 9(G), A(G) = A(G) = Ic(G); and

e d=5=a(G) = g(G), A(G) = lc(G).
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If G = (V,E) is a graph, we say that a vertex v € § C V is
defended in S if and only if it satisfies the boundary condition with
respect to S. Similarly, if v satisfies the strong boundary condition
with respect to S we say that v is strongly defended in S. Let
G = (V,E) a graph, and v € S C V. The following properties are
direct consequences of the definition of alliance and strong alliance.

Property 3.1 Ifd(v) = 2k, v is defended in S if and only if dg(v) >
k. Moreover, the strong boundary condition is equivalent to the
boundary condition, i.e., v is defended in S if and only if it is strongly
defended in S.

Property 3.2 If d(v) = 2k + 1, v is defended in S if and only if
ds(v) > k; v is strongly defended in S if and only if dg(v) > k + 1.

Property 3.3 If G is d-regular, then S is an alliance in G if and
only if S induces a subgraph of minimum degree 65 > [42-]; Sisa
strong alliance in G if and only if it induces a subgraph of minimum
degree &5 > [4].

In fact, the known results for regular graphs of degree d < 5 allow
us to completely characterize critical alliances for these graphs:

e If G is 1-regular, the critical alliances are exactly the singletons.

o The strong critical alliances in a 1-regular or 2-regular graph
and the critical alliances in a 2-regular or 3-regular graph are
exactly the edges.

e The strong critical alliances in a 3-regular or 4-regular graph
and the critical alliances in a 4-regular or 5-regular graph are
exactly the induced cycles.

Given a d-regular graph, G, we are concerned with two basic
problems: determine a(G), &(G), A(G), and A(G), and characterize
critical alliances in G, i.e., if S is a critical alliance in G, which graphs
could (S) be isomorphic to?

Unfortunately, there is no simple characterization of the alliances,
respectively strong alliances, of d-regular graphs if d > 5, respectively
d > 4. So, we will concentrate on alliances of given cardinality. For
that purpose, we give the following definition.



Definition 3.4 (Induced alliances set) The (k,d)-induced allian-
ces set is the set of graphs H of order k, minimum degree gy > [g_],
and mazimum degree Ay < d, with no proper subgraph of minimum
degree greater than |$]. We denote this set by Sk 4)-

Similarly, the (k,d)-induced strong alliances set is the set of
graphs H of order k, minimum degree dy > |' 1, and mazimum
degree Ay < d, with no proper subgmph of minimum degree greater
than [5 d] We denote this set by S(k d)-

For instance, 8(2_2) = 8(2,3) {KQ} and S(k 9) = ‘S(k 3) = G, if
k Z 3, 8(5‘4) = 8(515) = {Cs}, and S(k,4) S(k,5) {Ck}, if & > 6.

The following result is a consequence of the definitions of defen-
sive alliance and (k, d)-induced alliances set, or (k,d)-ias for short.

Proposition 3.5 If G is d-regular, then S is a critical alliance of
G of cardinality k, if and only if (S) € Si.q)-

Proof. It follows straightforward from Property 3.3. |

Notice that Proposition 3.5 says that alliances in regular graphs
are defined by induced subgraphs of given minimum degree. The
family of graphs that can be induced by a critical alliance can be

described by its degree sequence.

Definition 3.6 (Admittable sequence) A sequence
s = (dy,dy, . ..,dk) is a (k,d)-admittable sequence, or an admittable

sequence, if there is a graph Gs in S q) with degree sequence s.
3.1 Defensive alliances in 6-regular graphs

In this section we pay attention to 6-regular graphs. Our study is
based on determining all (k,6)-admittable sequences and then de-
scribing the corresponding (k, 6)-induced alliance sets.

o If |S| = 4 then (S) = K4 and its associated degree sequence is
(3,3,3,3). That is, S4.6) = {Ka}-

e If |S| = 5 then (S) = W, and its associated degree sequence is
(4,3,3,3,3). That is, Ss.6) = {Wa}-
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Figure 1: Proof of Lemma 3.7.

Lemma 3.7 If G is 6-reqular and contains a critical alliance S of
cardinality 6, then the associated degree sequence of (S) is one of the
following:

(3,3,3,3,3,3), (4,4,3,3,3,3), or(5,3,3,3,3,3)

Any other degree sequence with minimum degree 3 gives graphs con-
taining K4 or Wy.

Proof. Notice that if S is a critical alliance of G of cardinality 6
then any vertex v in (S) satisfies 3 < dg(v) < 5. Moreover, there
must be at least one vertex of degree 3 in (S).

First, we prove that if S is an alliance of cardinality 6 then (S)
cannot have two vertices, u and v, with dg(u) = 5 and dg(v) > 4.
For that purpose, assume d(u) = 5 and d(v) > 4. We can assume,
w.lo.g., that N(u) = {v,u1,u2,us,uq} and {u,uy,uz,uz} C N(v)
(see Figure 1 (a)). Now, there is no edge between the vertices u,
ug, and ug, that is, none of the grey edges in Figure 1 (a) is in (S),
otherwise there is an induced Ky4. But every vertex has degree at
least 3. So these three vertices must be all adjacent to u4, that is,
the dotted edges in Figure 1 (a) must be in (S), and then there is at
least one induced Wjy.

Notice that W5 does not contain K4, neither Wy as a subgraph.
Its degree sequence is (5, 3,3, 3,3, 3). So, this is the only admittable
sequence with one vertex of degree 5.

Let us consider now degree sequences with only vertices of degree
3 and 4, i.e., the sequences (3,3, 3,3,3,3),(4,4,3,3,3,3),(4,4,4,4,3,3),
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and (4,4,4,4,4,4). The graph K3 3 has degree sequence (3,3, 3,3, 3, 3)
and contains no K4 nor Ws. The graph K3 3+ e has degree sequence
(4,4,3,3,3,3) and contains no K4 nor Ws. Thus, both sequences
(3,3,3,3,3,3) and (4,4, 3,3,3,3) are admittable.

We only need to show that any graph H of order 6 with at least
four vertices of degree 4 contains either K4 or Wy. The graph H
must contain two adjacent vertices of degree 4, say u and v. There
are two possibilities: © and v have three common neighbors, w;, ws
and ws (see Figure 1 (b)), or u and v share only two neighbors, w;
and wy (see Figure 1 (c)).

In the first case, there is no edge between the vertices w;, wy and
ws, that is, none of the grey edges in Figure 1 (b) is in (S), otherwise
there is an induced K4. But, then, none of them can have degree
4, a contradiction. In the second case, assume that u; is adjacent
to u but not to v, and v; adjacent to v but not to u. Now, w; and
wy cannot be adjacent, that is, the grey edge in Figure 1 (c) cannot
be in (S), otherwise, there is a Ky, induced by {u,v,w;,ws}. Since
there are at least four vertices of degree 4, at least one of the vertices
uj or vy, say u;, is adjacent to w; and wo, that is, the dotted edges
in Figure 1 (c) must be in (S). Then, {u,v,u;,w;, w2} induce a
subgraph isomorphic to Wy.

This completes the proof. [ |

Notice that, by using Definition 3.6, this lemma can be refor-
mulated as: the only (6, 6)-admittable sequences are (3,3, 3,3, 3, 3),
(4,4,3,3,3,3) and (5,3,3,3,3,3).

Proposition 3.8 The (6,6)-ias are:
S(6,6) = {C30Ka, K33, (C30K3) +e, K33+ e, Cy + Ko, W5}
This set contains ezactly the siz graphs in Figure 2.

Proof. Let H be a graph in S6). Its degree sequence is one of
the sequences in Lemma 3.7, i.e., (3,3,3,3,3,3), (4,4,3,3,3,3), and
(5,3,3,3,3,3).

If the degree sequence of H is (5,3, 3, 3, 3, 3), then H & W;. If the
degree sequence of H is (3,3,3,3,3,3), then we consider two cases:
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(3,3,3,3,3,3) /\Cs0K, %I{m
(4,4,3,3,3,3) /\ (C30Kz) +%I{s,s +e Ci+ K,

5,3,3,3,3,3)

Ws

Figure 2: The (6,6)-induced alliances set, with their associated de-
gree sequence.

if H is triangle free, then H = K3 3; otherwise H contains a triangle
and then H = C30K5.

Finally, if the degree sequence of H is (4,4,3,3,3,3), and d(u) =
d(v) = 4, we consider the following two cases: if u ~ v then the
graph H —e, with e = {u, v}, has degree sequence (3,3, 3,3, 3,3) and
this implies that either H = K33+e, or H = (C30K3)+e; otherwise
u o v, then H — {u,v} = Cj and thus, H 2 C; + K. []

Lemma 3.9 If G is 6-regular and contains a critical alliance S of
cardinality 7, then the associated degree sequence of (S) is one of the
following:

(4,3,3,3,3,3,3),(4,4,4,3,3,3,3),(5,4,3,3,3,3,3) 0r (6,3,3,3,3,3,3)

Any other degree sequence with minimum degree 3 gives graphs con-
taining K4, Wy, or some graph in S ).

Proof. Notice that if S is a critical alliance of G of cardinality 7
then any vertex v in (S) satisfies 3 < dgs(v) < 6. Moreover, in (S)



Figure 3: Proof of Lemma 3.9.

there must be at least two vertices of degree 3. Assume that there
are only two vertices of degree 3, u and v. Then, if u ~ v, there is
a vertex w adjacent only to vertices of degree greater than 3. By
removing w, we obtain an induced subgraph of (S} with minimum
degree at least 3. On the other hand, if u and v are not adjacent,
then u is adjacent only to vertices of degree greater than 3. By
removing u, we obtain an induced subgraph of (S) with minimum
degree at least 3. But this is a contradiction, because S is a critical
alliance. Thus, (S) has at least three vertices of degree 3.

To find all the (7, 6)-admittable sequences, we first prove that (S)
cannot have two vertices, © and v, with dg(u) = 6 and ds(v) > 4.
Assume that d(u) = 6 and d(v) > 4, and let u;, ug, and ug be three
common neighbors of u and v (see Figure 3 (a)). There are two more
vertices x, y in (S), which must be adjacent to (at least) u. Since
there is no induced Ky, u1, ug, and ug are independent. That is, none
of the grey edges in Figure 3 (a) is in (S). Since the minimun degree
of (S) is 3, each of the vertices uj, ug, and uz has to be adjacent
to one of the vertices z, y. We can assume, w.l.o.g., that u; ~ z,
ug ~ z, and ug ~ y. That is, the dotted edges in Figure 3 (a) are in
(S). Then, {u,u1,v,us,z} induce Wy, a contradiction.
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Since Ws is clearly in S(g7), we have that the only admitted
degree sequence for (S) with maximum degree 6 is (6,3, 3, 3, 3, 3).

Now we prove that, if 3 < dg(v) < 5, at most one vertex can
have degree 5. Moreover, if there is one vertex u with degree 5, only
one vertex v has degree 4.

e If there are two adjacent vertices of degree 5, say u and v, with
four common neighbors (which have to be pairwise indepen-
dent) then there is one vertex, w, not adjacent to u nor v (see
Figure 3 (b)). In this case, w has to be adjacent to at least 3 of
the common neighbors of u and v and then there is an induced
K33 +e.

‘o If there are two adjacent vertices of degree 5, say u and v, with
three common neighbors (which have to be pairwise indepen-
dent) then there is one vertex, u; adjacent to u but not to v,
and a vertex v; adjacent to v but not to u (see Figure 3 (c)).
Since the minimum degree is 3, we can assume, w.l.o.g., that u;
is adjacent to two of the common neighbors of u and v. That
is, the dotted edges in Figure 3 (c) have to be in (S). But then,
there is an induced Wy, a contradiction.

o If there are two non adjacent vertices of degree 5, then there
are at least three edges between their five common neighbors
(see Figure 3 (d)). Two of these three edges must be incident
and thus, (S) contains a Wj.

Assume now that there is exactly one vertex u of degree 5. As-
sume also that there is more than one vertex of degree 4. Then, one
of them is adjacent to u, say v.

e If u and v share three neighbors, we have: w;, wy and w3 the
common neighbors of u and v, one vertex u; adjacent to u and
not to v, and one vertex z not adjacent to u neither to v (see
Figure 3 (e)). To avoid the existance of induced K33 + ¢, 2
can only be adjacent to two of the common neighbors. So, z
is adjacent to u;, wo and ws. Since w;, we and w3 have to
be independent, and the minimum degree in (S) is 3, w; is
adjacent to u;. But now, we cannot add more edges, without



introducing one of the forbidden induced subgraphs. So there
are no more vertices of degree 4, a contradiction.

e If u and v share only two neighbors, we have: two vertices u
and ug, adjacent to u and not to v, one vertex v;, adjacent to v
and not to u, and wj and we the common neighbors to v and v
(see Figure 3 (f)). Now, u; cannot be adjacent to both w, and
wg, and the same is true for uy. We can assume, w.l.o.g., that
u; ~ w; and uy ~ wy. That is, the dotted edges in Figure 3
(f) are in (S). Since the minimum degree is 3, both u; and
ug have to be adjacent to v;. We also have that v; cannot be
adjacent to w; neither ws, because this would induce a Wy.
That is, none of the grey edges in Figure 3 (f) is in (S). This
implies that the maximum degree of w;, wy and v; is 3. Now,
the only way to obtain two vertices of degree 4 is adding an
edge between u; and ug. But then, there is an induced Ws.

The graph G; obtained from Ps + K, by removing two edges
linking the same vertex of Ko with any two internal vertices of P
has degree squence (5,4, 3, 3,3, 3,3). Moreover, G; does not contain
K4, nor Wy, nor a graph of S 6), as induced subgraphs.

Finally, if 3 < dg(v) < 4, since we have seen that there are
at least three vertices of degree 3, the degree sequence is either
(4,4,4,3,3,3,3) or (4,3,3,3,3,3,3). The graph G5 obtained iden-
tifying an arbitrary pair of adjacent vertices of the cube Q3 in a
single vertex v, has degree sequence (4,3,3,3,3,3,3). The graph
G3 obtained by adding one edge to Gs, between two of the vertices
adjacent to v, has degree sequence (4,4,4,3,3,3,3). None of these
graphs contains K4, nor Wy, nor a graph of S(6.6)- |

Proposition 3.10 The set S76) of the (7,6)-ias contains ezactly
the 15 graphs in Figure /.

The proof of this proposition, which is omitted, is similar to but
longer than that of Proposition 3.8. For every admittable sequence
s in Lemma 3.9 we can constructively find every graph in S(7¢) with
degree sequence s. The obtained graphs are exactly the 15 graphs
in Figure 4.
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(4,3,3,3,3,3,3) | (4,4,4,3,3,3,3) | (5,4,3,3,3,3,3) (6,3,3,3,3,3,3)

Figure 4: The (7, 6)-induced alliances set, with their associated de-
gree sequence. The arrows indicate the subgraph relation.
Corollary 3.11 Let G = (V, E) be a 6-regular graph.

o o(G) =4 & K, is an induced subgraph of G;

¢ a(G) = 5 © Wy is an induced subgraph of G and K4 is not;
and

e a(G) = 6 & some graph in Sg) is an induced subgraph of G,
and neither K4 nor Wy are.




¢ a(G) =7 <> some graph in Sz ¢) is an induced subgraph of G,
and neither K4 nor Wy, nor any of the graphs in Sg ) are.

The number of (m,6)-admittable sequences and, consequently,
the number of graphs in S, 6), increases with the cardinality, m. A
similar but longer reasoning gives the set of degree sequences associ-
ated to (8, 6)-induced alliances. In this case, the number of graphs is
significantly larger. However, an exhaustive search allows us to give
the following two claims.

Claim 3.12 The (8, 6)-admittable sequences are
(6,4,3,3,3,3,3,3), (5,5,4,4,3,3,3,3), (5,5,3,3,3,3,3,3),
(5,4,4,4,4,3,3,3), (5,4,4,3,3,3,3,3), (4,4,4,4,3,3,3,3),

(4,4,3,3,3,3,3,3), and (3,3,3,3,3,3,3,3).

Claim 8.13 The set Sgg) of the (8,6)-ias contains ezactly the 65
graphs in Figure 5.

3.2 Defensive alliances in 7-regular graphs

We can easily extend the results in the previous section to 7-regular
graphs.

Indeed, we only need to notice that, if m < 7, then the (m, 7)-
admittable sequences coincide with the (m, 6)-admittable sequences,
and the (m, 7)-ias are the same as the (m, 6)-ias. Moreover, the set
of (8,7)-admittable sequences is exactly the set of (8,6)-admittable
sequences, adding the sequence (7, 3,3, 3, 3,3, 3,3). This implies that
the set of (8, 7)-ias, S(g7), contains exactly the graphs in S(s6) plus
W7, which corresponds to the degree sequence (7,3,3,3,3,3,3,3).
To summarize, we have

S =Se6)r San =516, S@a71=SseY{Wr}

(See Figures 2 and 4.)
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(3,3,3,3,3,3,3,3)

(4,4,3,3,3,3,3,3)

- ANATA A
ORARRRDG

(4,4,4,4,3,3,3,3)

A £ KX 55 5K K B
PPOOE B X X

YYVYAAAR
DRBABED
EHANDR

(6,4,3,3,3,3

<X XX Y

Figure 5: The (8,6)- and the (8, 7)-induced alliances set, with their
associated degree sequence. The first 65 graphs are the graphs in
S(86)» Which are also in Sg7). The set Sg7) \ Sg6) contains only
the graph W7.

(73,3, 3,3, 3,3, 3,

3.3 Strong defensive alliances in regular graphs

Defensive alliances and strong defensive alliances coincide if G is
d-regular, with d even. For d odd, a defensive alliance is a set of
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vertices that induces a subgraph with minimum degree at least d%
and maximum degree at most d, while a strong defensive alliance is
a set of vertices that induces a subgraph with minimum degree at
least %’—1 and maximum degree at most d. (See Property 3.3.)

5-regular graphs. We have that 5'(,,,'5), defined in Definition 3.4,
is the set of graphs of minimum degree at least 3 and maximum
degree at most 5. Thus, if m < 6, S¢p5) = Sim,e)- For m = 7,8, we
have to remove from S, g) the graphs with maximum degree 6. To
be precise, 3(7,5) = S(7,6) \ {We} and 3(8’5) contains the 59 graphs in
Ss6) (see Figure 5) corresponding to the degree sequences

(5,5,4,4,3,3,3,3), (5,5,3,3,3,3,3,3), (5,4,4,4,4,3,3,3),

(574’ 47 37 3’ 31 37 3)! (4’4,4?4’ 3) 31 31 3)’ (4’4’ 3, 3’ 3’ 3! 37 3)1
and (3,3,3,3,3,3,3,3).

6-regular graphs. We have that S(m,s) = S(m.6)-

7-regular graphs. A graph is in ‘S”'(mﬂ) if it has minimum degree
4 and maximum degree at most 7, and it contains no subgraph iso-
morphic to a graph in S'(m:’-,), for any 4 < m/ < m.

In this case, we cannot derive any result about the (m, 7)-induced
strong alliances set from the (m, 7)-induced alliances set.

4 Conclusions and open problems

We have studied defensive alliances of cardinality £ < 8 in regular
graphs of degree 6.

Open problems. We let some open problems about defensive al-
liances in regular graphs

o Can we describe, in some constructive way, the graphs in S, 6)?

e We think that the number of graphs in S, ) exponentially
increases with m.
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e We have seen that the study of defensive alliances in regu-
lar graphs becomes more and more complex as the degree in-
creases. Therefore, we propose to restrict the study of alliances
to more symmetric graphs. In particular, we propose the study
of alliances in the well known (undirected) circulant graphs.

Acknowledgments. The authors want to thank the anonymous
referees for their kind help and valuable suggestions which led to an
improvement of this paper.

Research supported by: CONACyT-México under project 5737
and Intercambio Académico, Coordinacién de la Investigacién Cien-
tifica. UNAM, under project "Construccién de Grificas: Jaulas y
Alianzas en redes”; and the Education and Science Ministry, Spain,
and the European Regional Development Fund under projects MTM
2005-08990-C02-01 and TEC2005-03575 and by the Catalan Research
Council under project 2005SGR00256.

References

[1] R. Carvajal, M. Matamala, I. Rapaport, and N. Schabanel, Small
Alliances in Graphs, Proceedings of the 32nd Symposium on
Mathematical Foundations of Computer Science (MFCS 2007),
Lecture Notes in Computer Science 4708 (2007) 218-227.

[2] O. Favaron, G. Fricke, W. Goddard, S. M. Hedetniemi,
S. T. Hedetniemi, P. Kristiansen, R. C. Laskar, and D. Sk-
aggs, Offensive alliances in graphs, Discussiones Mathematicae
- Graph Theory, 24 (2002) 263-275.

(3] H. Fernau and D. Raible, Alliances in graphs: a complexity-
theoretic study, in: Proceedings of SOFSEM 2007, Prague, Insti-
tute of Computer Science ASCR, 2007, Vol. II, pp. 61-70.

4] H. Fernau, J. A. Rodriguez and J. M. Sigar-
reta, Offensive k-alliances in  graphs, preprint:
http://aps.arxiv.org/abs/math/0703598v1 (2007).

52



[5] G.W.Flake, S. Lawrence, and C. L. Gilles, Efficient identification
of web communities, in: International Conference on Knowledge
Discovery and Data Mining ACM SIGKDD, ACM Press, 2000,
pp- 150-160.

(6] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro, Dy-
namic monopolies in tori, Discrete Applied Mathematics, 137(2)
(2004) 192-212.

(7] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Global
defensive alliances in graphs, The Electronic Journal of Combi-
natorics, 10 (2003), #R47.

[8] H. Ino, M. Kudo, and A. Nakamura, Partitioning of web graphs
by community topology, Proceedings of the 14th International
Conference on World Wide Web, 2005, pp. 661-669.

[9] P. Kristiansen, S. M. Hedetniemi, and S. T. Hedetniemi, Al-
liances in graphs, Journal of Combinatoral Mathematics and
Combinatorial Computing, 74 (2004) 157-177.

{10] N. Linial, D. Peleg, Y. Rabinovich, and M. Sacks, Sphere pack-
ing and local majority in graphs, in: Proc. of 2nd ISTCS, IEEE
Comp. Soc. Press, 1993, 141-149.

[11] F. Luo,Y. Yang, C.-F. Chen, R. Chang, J. Zhou, and
R. H. Scheuermann, Modular organization of protein interaction
networks, Bioinformatics 23 (2) (2007) 207-214.

(12] D. Peleg, Local majorities, coalitions and monopolies in graphs:
A review, Theoretical Computer Science 282(2) (2002) 231-257.

(13] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matri-
ces with eigenvectors of graphs, SIAM Journal on Matriz Anal-
ysis and Applications 11 (1990) 430-452.

[14] J. A. Rodriguez and J. M. Sigarreta, Global offensive alliances
in graphs, Electronic Notes in Discrete Mathematics 25(1) (2006)
157-164.

53



[15] J. A. Rodriguez and J. M. Sigarreta, Offensive alliances in cubic
graphs, International Mathematical Forum 1 (36) (2006) 1773-
1782.

[16] J. A. Rodriguez and J. M. Sigarreta, Spectral study of al-
liances in graphs, Discussiones Mathematicae Graph Theory
27(1) (2007) 143-157.

[17] J. M. Sigarreta, Alianzas en grafos, PhD Thesis, Universidad
Carlos III, Madrid, 2007.

(18] H. Wenfeng and W. Jianfang, Partitioning circulant graphs into
isomorphic linear forests, Acta Mathematicae Aplicatae Sinica,
15(3) (1999) 321-325.

(19] Z. Xu and P. K. Srimani, Self-stabilizing distributed algorithms
for graph alliances, in: Proceedings of the 20th International Par-
allel and Distributed Processing Symposium, 2006.

54



Lattices generated by partial injective
maps of finite sets

Baohuan Zhang* Qiuli Xu Wei Jiang Junli Liu
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Abstract Let n be a positive integer with n > 2 and [n] := {1,2,--- ,n}. An
m-partial injective map of [n] is a pair (4, f) where A is an m-subset of [n] and
f : A — [n] is an injective map. Let P = LU {1}, where L is the set of all the
partial injective maps of [r]. Partially ordered P by ordinary or reverse inclusion,
two families of finite posets are obtained. This article proves that these posets
are atomic lattices, discusses their geometricity, and computes their characteristic

polynomials.
AMS classification : 20G40, 05B35

Key words: Partial injective map; Atomic lattice; Characteristic polynomial

1 Introduction

The results on the lattices generated by transitive sets of subspaces under finite
classical groups may be found in Huo, Liu and Wan [4, 5, 6]. In {1], Guo discussed
the lattices associated with finite vector spaces and finite affine spaces. The
lattices generated by the orbits of subspaces under finite classical groups have
been obtained in a series of papers by Huo and Wan [7), Guo, Li and Wang (3],
Wang and Feng [9], Wang and Guo (10, 11}, Guo and Nan (2, 8], Wang and Li
{(12], Xu et al. [13] studied the lattices generated by partial maps of finite sets.
In this paper, we contiune this research, and consider the similar problem for
partial injective maps of finite sets.

Let (P, <) be a poset. We write a < b whenever a < b and a # b. For any two
elements a,b € P, we say a covers b, denoted by b < a, if b < a and there exists
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