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Abstract

Let D be a primitive digraph. Then there exists a nonnegative
integer k such that there are walks of length k and &£ + 1 from u to
v for some u,v € V(D) (possibly u again ). Such smallest k is called
the Lewin index of the digraph D, denoted by {(D). In this paper,
the extremal primitive digraphs with both Lewin index n — 2 and
girth 2 or 3 are determined.
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1 Introduction

In this paper, we permit no loop and no multiple arcs for a digraph.
Let D = (V, E) be a digraph with order n. We call a digraph D is strongly
connected if there exist both directed walks from « to v and from v to
u for any u,v € V(D). Let W = voeyviez---exvy (e; = (vi-1, v;) for
1 £ i £ k) be a directed walk of digraph D and we call a directed walk
W directed circuit when vy = vp. If all the vertices of directed circuit W
are different, W can be called a directed cycle. Sometimes a directed walk
can be denoted simply by W = vov;---vx or W = ejey:- - e if there is
no ambiguity. Positive integer k is called the length of the directed walk
W, denoted by L(W). If all vertices of a directed walk W are different,
W can be called directed path, denoted by P usually. The length of the
shortest directed path form v; to v; is called the distance from v; to vj in
S, denoted by d(v;,v;). A directed cycle with length & is called k-cycle.
The length of the shortest directed cycle in D is called the girth of D,
denoted by g usually. In a strongly connected digraph D, let d(C;,C3) =
min{d(u,v) : u € V(C1),v € V(C;)} denote the distance from directed
cycle C to directed cycle C; and d°(C,,C3) = min{d(C,C3),d(C2,C1)}
denote the distance between directed cycle C) and directed cycle C;. If p is
a positive integer and C is a direct cycle, then pC denotes the direct walk
obtained by traversing C p times. If a direct cycle C passes through the
end vertex of W, W|JpC denotes the the direct walk obtained by going
along W and then going around the cycle C p times. pC|JW is similarly
defined. The union of two digraph S and H is always denoted by S| H.

Definition 1.1 A digraph D is primitive if there exists an nonnegative
integer k such that for each ordered pair of vertices v;,v; € V(D) (not
necessarily distinct) there is a directed walk from v; to v; with length k.
Such smallest k is called the exponent of the graph D, denoted by exp(D).

Definition 1.2 Let D be a primitive digraph. Then there exists a nonneg-
ative integer k such that there are directed walks of length k and k41 from
u to v for some u,v € V(D) (possibly u again ). Such smallest k is called
the Lewin index of the digraph D, denoted by I(D).

In a primitive digraph D, let C, = {C}, CZ, .-+, C*} (m € Z+) denote
the k-cycle set, Qx = {Qk, QF, --+, QL} (¢t € Z*) denote the set of all
cycles satisfying that ged(k, L(Q})) = 1fori =1, 2, -+, t, and d*(Cy,
Qx) = min{d°(C}, Q}) : C} € Cx, @} € Qx}. We also let u “*3" 4 denote

k, k+1
that there exist directed walks with length £ and k+1 and let v +— v
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denote there exist no directed walk with length & or ¥ + 1 from vertex u to
v,

Lewin proved that a strongly connected digraph is primitive if and only
if there exists a nonnegative integer k such that there are directed walks of
length k and k + 1 from u to v for some u, v € V(D) (possibly u again )
and so proposed the Lewin index about the primitive digraph in [1].

Definition 1.3 Let D be a primitive digraph. For any u, v € V(D), let
l(u,v) = min{k|u pias v} denote the Lewin indez from u to v and l(u) =
min{l(u,v)lv € V(D)} denote the Lewin index at u. It is easy to see that
(D) = min{l(u)|u € V(D)} = min{l(u,v)|u,v € V(D)}. Let Ri(u) denote
the set of vertices arrived by i steps from vertez u in primitive digraph D.
Denote by D, 4 the set of all primitive digraphs with girth g and order n.

In [2], J. Shen proved that {(D) < n — 2 for all primitive digraphs with
girth g = 2,3 and order n. In [5], X.Q. Zhuang get the Lewin index set
for all primitive digraphs with both girth 2 and order n. In [4], L.Q. Wang
and Z.K. Miao get the Lewin index set for all primitive digraphs with both
girth 3 and order n. In this paper, the extremal digraphs with both Lewin
index n — 2 and girth 2 or 3 are determined.

2 Preliminaries

Lemma 2.1 ([3]) Let {r1, 72, --+, T2} denote the cycle length set of di-
graph D. Then D is primitive if and only if D satisfies that D is strongly
connected and ged(ry, 7o, -+, TA) = 1.

Lemma 2.2 ([2]) Let D be a primitive digraph of order n. Then (D) <
n—-2if2<g<3.

Suppose n = 0 (mod 3), n > 6, and Dg(o) is a digraph consisting of
(n—1)-cycle Cp—y = (v1, V2, * * -, Un—2, Un—1, 1) and 3-cycle C3 = (vy, vn,
Un-1, V1). Suppose n =1 (mod 3), n > 7, and D§(1) is a digraph consisting
of (n—2)-cycle Cp_2 = (v1, v3, * * *, Un—-3, Un—2, ¥1) and 3-cycle Cs = (vn_2,
Up—1, Un, Un—2). Suppose n =2 (mod 3), n > 5, and D5(2) is a digraph
consisting of n-cycle (v1, vz, «**, Un—1, Un, v1) and 3-cycle C3 = (v1, v2, Un,
v1). Then {D3y, D31)» D3z} € Dns-
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Lemma 2.3 ([4]) {(D3;))=n—2fori=0,1,2.

Suppose n = 0 (mod 2), n > 4, and D;(o) is a digraph consisting of

(n = 1)-cycle (v1, v2, +++, Un_2, ¥n—1, v1) and 2-cycle C; = (vy, vn, v1).
Suppose n =1 (mod 2), n > 3, and D;U) is a digraph consisting of n-cycle
(v1, v2, *** Un—1, Un, v1) and 2-cycle C; = (v1, va, v1y. Then {D;(O),

D31)} € Dna.

Lemma 2.4 ([5]) {(Dj;)) =n—2 fori=0,1.

3 Main results of this paper
Lemma 3.1 Let D€ D, 3. Ifd*(C3, Q3) >0, then (D) < n -3,

Proof. Let d*(Cs, Q@3)= d°(C}, Q3), C} = (v1, v2, v3, v1), Q3 = (vi,
Vigls 00 Uj oo, vi) (j > i). Because the girth g = 3, so L(Q}) > 4.
Let P, = (v;, vi—1, * -+, 7, U, Us, V4, v3) denote the shortest path from
Qj to C}. Let P, denote the shortest path from C} to Q). Suppose
L(Py) = d(vi, us) = d°(CL, Q}). Let D, = CU P QL.

(i) v2 is the starting vertex of P; and v, (ve € V(Q3)) is the end vertex
of P2.

Case 1 L(P,) = 2.

We assert |[V(D;)| < n—1 now. Otherwise, |V(D,)] = n. Now there
must be L(P,) > 2 and all vertices of P, be in V(P,) but the vertices
vp and v.. If there is a vertex v, € V(P,) such that v,, # vs, ve, and
Um & V(P1), then vy, € V(C}) or vm € V(Q3). Suppose v, € V(C}), then
the length of the shortest path from vy, to v, is less than that of P,, which
contradicts that P; is the shortest path from C} to Q. Suppose vy is the
first common vertex of P; and P, along P,, there must be 6 < k < 7 and
k =0 (mod 3). Otherwise there cause cycle (vq, va, Vg, Vk—1, * - -, Vs, Vg, V3,
v1), which contradicts d*(Cs, Q3) > 0 because ged(k,3) = 1. There is no
arc (vs,vp) (s —h > 2) in P,. Otherwise there cause shorter path P = (v;,
“++, Vs, Un, Up-1, **+, V3), L(P) < L(Py), which contradicts L(P,) = d(v;,
v3) = d°(C}, @}). So uvs, v4 are not in P, and L(P,) < L(P;) — 2, which
contradicts L(P;) = d(v;, v3) = d°(C}, Q3). Thus, the assertion holds.

Subcase 1.1 L(Q1) =1 (mod 3).



There exist directed walk Qi Jvi|J P, of length L(P;) + L(Q}) and
1y _
directed walk P, |J LQ‘;)—-EC:} of length L(Py) + L(Q}) — 1 from v; to
v3. Note that |V(D;)| < n—1and L(P,)+L(Q})—1 < n—4,s0 l(v;) < n—4
and [(D) £ n —4.
Subcase 1.2 L(Q}) =2 (mod 3).

Similar to Subcase 1.1, there must be two directed walks of length
L(P,) + L(Q}) and L(P,) + L(Q}) + 1 from v; to v3. Note that |V(Dy)| <
n—1and L(P,) + L(Q}) <n—3,s0l(v;) <n—3 and {(D) <n-3.

Case 2 L(P) = 1.
Subcase 2.1 |V(Dy)| <n—1.
Similar to Subcase 1.1 and Subcase 1.2, there must be {(D) < n — 3.

Subcase 2.2 |V(D,)| = n.

Both P,, P, are arcs now. Along Q3, let a; denote the path from v, to
v; and ag denote the path from v; to ve.

If L(Q}) = 1 (mod 3), similar to Subcase 1.1, there must be two directed
walks of length L(P;) + L(Q}) and L(P,) + L(Q}) — 1 from v; to vs. Note
that L(P)) + L(Q3) —1=n—-3,s0 l(v;) <n—3and (D) <n-3.

If L(Q}) = 2 (mod 3), then L(a1) =2 ('mod 3), L(az) =0 (mod 3) and

L{ap) > 3. Ot’;herwise, there cause cycle C' = (v;, v3, v1, va, ve){Ja1 such
that ged(L(C ), 3) = 1, which contradicts d*(Cs, @3) > 0.

Let P = (vi, vs, v1, V2, Ve).
If L(ag) = 3, it is easy to see that (D) < 3 because there are two
directed walks a; and P3 from v; to ve.

If L(az2) > 3, then there exist directed walks P, |J L—(a—Z)-—:-:;-C;}U(va,

vy, V2, ve) of length L(az) + 1 from v; to v.. Note that L(ag) < n — 3, so
(s €n—-3and (D)< n-3.

In a same way as (i), for the cases: (ii) v, is the starting vertex of P, and
ve (ve € V(Q3)) is the end vertex of Py; (iii) v3 is the starting vertex of P
and v, (ve € V(Q})) is the end vertex of P, we can prove that {(D) < n-3
m}

Similar to Lemma 3.1, we have the following Lemma 3.2.
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Lemma 3.2 Let D € Dy, 5. Ifd*(C3, Q2) > 0, then (D) < n-3.
Corollary 3.3 Let D € Dp3. IfI(D) =n —2, then d*(C3, Q3) =0.
Corollary 3.4 Let D € Dy, 3. If (D) =n — 2, then d*(C2, Q2) =0.

Theorem 3.5 Suppose thatn =i (mod 3) wherei =0,1,2. Let D € Dy, 3.
Then (D) =n—2 if and only if D = D;(t.).

Proof. We only prove the case that i = 0. The other two cases can be
proved similarly.

Now we prove the case that i = 0. It is clearly that the sufficiency holds
by Lemma 2.3. We prove the necessity.

It is clearly that d*(Cs3, @s) = 0 now by Corollary 3.3. Let d°(C3},
Q}) =d*(Cs, Q3) =0. Let D, = C; UQj.

If |V(D1)| £ n—1, then [(D,) <n—3 by Lemma 2.2 and I(D) < n-3,
which contradicts {(D) =n — 2. So |V(D)| = n.

It is easy to check that Dy % Dy, because ged(3, L(Q3)) = 1.

If D, = D‘;(l)’ we can suppose Dy = Dj,, for convenience. Then

C:} = (vn—2a Un—1, Un, 'vn—Z), Qé = (‘Ul, V2, 'y VUn—3, Un—-9, ‘111). There
are directed walk of length n — 2 by going around Q} once and directed

walk of length n — 3 which is ——>C} from v,_j to itself, so [(D;) < n—3
and {(D) < n — 3, which contradicts {((D) = n — 2. So Dy = Dj,. For
convenience, suppose D1 = Dy, C} = (v1) Vn, Un-1, v1) and Q} = (v,
V2, ** %y Un—2, Un—1, V1).

Assertion 1 There is no arc (v;,v;) (1<i<j<n,j—i>2).

Otherwise, suppose that there is arc (vi,v;) (1 <i<j<n,j—1i>2).
Let P, denote the path from v; to v; along Q3, P2 denote the arc (v;,v;),
P; denote the path from v; to v; along Q}, P, denote the path from v; to
vp—1 along Q} and C = P3| Py |J Py U(vn—1,v1). It is easy to check that
L(C) =0 (mod 3) and L(C) < n—3. Otherwise, if L(C) # 0 (mod 3), then
ged(L(C),3) = 1. Let D; = CJC}. Then I(D;) < n — 3 by Lemma 2.2
and [(D) < n — 3, which contradicts {(D) =n — 2. So L(P;) =0 (mod 3)
and L(P) £n-3.

Clearly, there is no case that v; = v,_; and v; = v;. Otherwise, there
is 2-cycle Cy = (v1, Yp—1, v1), which contradicts g = 3.



If v; # vn—1, then P3|J P, is a directed walk of length L(P3) + L(P)
from v; to vj; Mcgu P3| JP; is a directed walk of length L(P3) +

L(P;)+1 from v; to vj. Note that L(P3) + L(P,) < n—3,s0l(v;) <n—3
and /(D) < n — 3, which contradicts {(D) =n — 2.

If v; = vp-1, 5 # vy, then P2|J (Pl) —-=LC1 is a directed walk of length
L(P,) + 1 from v; to vp—1. Note that L(P) <n —3,s0 l(v;) <n—3 and
(D) < n — 3, which contradicts {(D) =n — 2.

So the Assertion 1 holds.

Assertion 2 There is no arc (vj, v;) (1<i<j<n,j—i#n—2).

Otherwise, suppose that there exists arc (v;, v;) (1 <i < 7 <n). Note
that the girth g 3in D. Then j —¢ > 2. Let P; denote the path from v;
to v; along Q3, P, denote the arc (vj, v;), Ps denote the path from v, to
v; along Q}, P; denote the path from v; to v,_; along Q}, C, = LU P,
and P = P4 U(vn—lnvl) UP3

Case 2.1 L(C,) =0 (mod 3).

Now L(P) =0 (mod 3) and 3< L(P)<n-3,3<L(C,) <n-3.

If L(C,) = L(P), suppose L(Co) — L(P) =3k, ke N. Co | J{v;}U P2
is directed walk of length L(C,) + 1 and P4 JkC} U(vn-1,m)UPs is a

directed walk of length L(C,) from v; to v;, so l(v;) < n —3 and (D) <
n — 3, which contradicts {(D) =n — 2.

If L(C,) < L(P), then L(P)—L(C,) > 3. Suppose L(P) = kL(C,)+m,
keZt,meN. Then m =0 (mod 3),0 <m < L(C,) -3, L(C,) —-m =0
{mod 3).

If m =0, kC, |U{v;} U P2 is a directed walk of length L(P) + 1 from v,
to v;, note that L(P) < n — 3, so l(v;) < n—3 and {(D) £ n — 3, which
contradicts {(D) =n — 2.

Ifm > 3, then L(P)+L(C,)—m = (k+1)L(C,). (k+1)CaU{v;}U P2 is

a directed walk of length (k+1)L(C,)+1 and Py |J ££C—°3—:20§U(v,,_1, n)UPs
is a directed walk of length L(P) + L(C,) — m from v; to v;. Note that
L(P)+ L(C;) =n and 3 <m, so L(P)+ L(C,) —m <n—3,l(v;) <n-3

and (D) < n — 3, which contradicts {(D) =n — 2.

Case 2.2 L(C,) =1 (mod 3).
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So there must be just two subcases as follow:

(@) n—|V(CIUC, UPs)| > 1;

(#) n— |V(CIUC, U Py)| > 1.

Suppose (i) holds. Then P3| JC; is a directed walk of length L(P3) +

L(C,) from v, to v;, M_—IC:}U{vl}U P; is a directed walk of length
L(P3) + L(C,) — 1 from v; to v;. Note that L(P3)+ L(C,) —1 < n—4, so
l(v1,v;) £ n —4 and (D) < n — 4, which contradicts {(D) = n — 2.

Case 2.3 L(C,) = 2 (mod 3).

If vj = vp_1, then i > 4. Thus C, is a directed walk of length L(C,)

from v,,— to itself and MC; is a directed walk of length L(C,) +1
from v,_; to itself. Because i > 4, then L(C,) < n —4 and I(D) <

l(vn—1) £ L(C,) £ n — 4, which contradicts I(D) =n — 2.

If v; = vy, then j < n—4. So there are directed walk of length L(C,) and
directed walk -L—(Ea—)—-{_—lC’; of length L(C,) + 1 from v, to itself. Because
Jj £ n—4,then L{C,) < n—4 and I(D) < L(C,) < n—4, which contradicts
I(Dy=n-2.

If v; # vn_1,v; # vi. There is no case v; = vp—3,v; = v because
L(C,) =2 (mod 3). So L(P3) > 2 or L(P,) > 2. Suppose L(P3) > 2, then
Ca\U{v;} P4 is a directed walk of length L(Cy) + L(P;) from v; to vpn—;

and P, MO& is a directed walk of length L(C,) + L(P,) +1 from

vj to vp-1. Note that L(C,) + L(P;) < n — 3, so (D) < n — 3, which
contradicts (D) =n — 2.

To sum up, the Assertion 2 holds.

Assertion 3 There is no arc between vertices v; and v,,.
Otherwise, there are the cases as follows.

Case 3.1 There is arc between v,_2 and v,.

Suppose that there is arc (v,—2,vn). Then (vn—2,vn,¥n-1) is a directed
walk of length 2 and (vy,—2,v,-1) is a directed walk of length 1 from v,_,
to Up—1, so (D) € l(vn-2) < 1, which contradicts [(D) = n — 2.

If there is arc (vn,vn—2), then (vp,Un_2,Vn—1,v1,9,) is a directed walk
of length 4 from v, to itself. So {(D) < l(vp) < 3, which contradicts



I(D)=n-2.
In a same way, we can prove the following Case 3.2.
Case 3.2 There is arc between vz and v,. Then (D) < 3.
Case 3.3 There is arc between v; (3 <¢ < n — 3) and vy,.

Along cycle Q1, let P, denote the directed path from v; to v; and P,
denote the directed path from v; to v,—1. Then L(P,) = 2, L(P;) > 2.
1° There exists arc (v;, Un).

(i) If L(P;) = 0 (mod 3), then L(P;) = 1 (mod 3) and 4 < L(P;) < n-5.
Let W) = P, | J(¥n—-1, v1, ¥»). Then L(W}) =0 (mod 3) and 6 < L(W;) <

n—3. Now (vs,vn)J E%V-ch is a directed walk of length L(W;)+1 from
v; to vy, so (D) < I(v;) € L(W1) £ n— 3, which contradicts (D) =n —2.

(ii) If L(P;) =1 (mod 3), then L(P;) =0 (mod 3),4 < L(P)<n -5
and 3 < L(P;) < n—6. Let Wi = Pa|J(vn-1,1, vn). Then L(W)) =2
(mod 3) and 5 < L(W;) < n—4. (vi,vn)UJ -LQV-;—);%C’; is a directed walk
of length L(W;) — 1 from v; to vn, so [(D) < l(v;) < L(W)) —1 < n -5,
which contradicts I(D) =n — 2.

(iii) L(P,) = 2 (mod 3), L(P) > 2.

Let Wy = P, U(vi, vn). Then L(W3) =0 (mod 3) and L(W3) < n - 3.
Now MC;} U(v1, va) is a directed walk of length L(W3) + 1 from v
to vy, so {(D) < l(v1) £ L(W,) < n — 3, which contradicts (D) =n — 2.

2° There exists arc (vp, ;).

Let Cp = (Un, v:) U P2 U(vn-1, v1, ¥n). Then 6 < L(Cy) < n — 3, and
L(Cy) = 0 (mod 3). Otherwise, let Dy = Cy|J(vn,vn-1). Then [(D;) <
n — 5 by Lemma 2.2, so (D) < l(D2) < n — 5, which contradicts /(D) =
n—2. Thus L(P,) = 1 (mod 3) and 4 < L(P,) £ n—5. Now (vy,

va) U -L(—Pl—);—lC;}U('un, v;) is a directed walk of length L(P;) + 1 from vy
to v;, so (D) < l(v1) £ L(P,) < n — 5, which contradicts {(D) =n - 2.

To sum up, the Assertion 3 holds.

In all, the necessity is proved. 0

In a same way, we can prove the following theorem.



Theorem 3.6 Suppose that n =i (mod 2) where i =0,1. Let D € Dy, 5.
Then {(D) =n—2 if and only if D = D3
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