The extremal primitive digraph with both Lewin index n-2 and girth 2 or 3^*

Guanglong Yu^{a,b†} Zhengke Miao^c Chao Yan^d Jinlong Shu^b

^aDepartment of Mathematics, Yancheng Teachers University,
Yancheng, 224002, P.R. China

^bDepartment of Mathematics, East China Normal University,
Shanghai, 200241, P.R. China

^cDepartment of Mathematics, Xuzhou Normal University,
Xuzhou, 221116, China

^dDepartment of Mathematics and Phisics, University of science and Technology, PLA Nanjing, 211101, P.R. China

Abstract

Let D be a primitive digraph. Then there exists a nonnegative integer k such that there are walks of length k and k+1 from u to v for some $u, v \in V(D)$ (possibly u again). Such smallest k is called the Lewin index of the digraph D, denoted by l(D). In this paper, the extremal primitive digraphs with both Lewin index n-2 and girth 2 or 3 are determined.

AMS Classification: 05C50

Keywords: Primitive digraph; Girth; Lewin index; Extremal digraph

^{*}Supported by NSFC (Nos. 11271315, 11171290, 11171288, 11171728).

[†]E-mail addresses: yglong01@163.com (Yu).

1 Introduction

In this paper, we permit no loop and no multiple arcs for a digraph. Let D = (V, E) be a digraph with order n. We call a digraph D is strongly connected if there exist both directed walks from u to v and from v to u for any $u, v \in V(D)$. Let $W = v_0 e_1 v_1 e_2 \cdots e_k v_k$ $(e_i = (v_{i-1}, v_i))$ for $1 \le i \le k$) be a directed walk of digraph D and we call a directed walk W directed circuit when $v_k = v_0$. If all the vertices of directed circuit W are different, W can be called a directed cycle. Sometimes a directed walk can be denoted simply by $W = v_0 v_1 \cdots v_k$ or $W = e_1 e_2 \cdots e_k$ if there is no ambiguity. Positive integer k is called the length of the directed walk W, denoted by L(W). If all vertices of a directed walk W are different, W can be called directed path, denoted by P usually. The length of the shortest directed path form v_i to v_i is called the distance from v_i to v_i in S, denoted by $d(v_i, v_i)$. A directed cycle with length k is called k-cycle. The length of the shortest directed cycle in D is called the girth of D, denoted by g usually. In a strongly connected digraph D, let $d(C_1, C_2) =$ $\min\{d(u,v): u \in V(C_1), v \in V(C_2)\}\$ denote the distance from directed cycle C_1 to directed cycle C_2 and $d^0(C_1, C_2) = \min\{d(C_1, C_2), d(C_2, C_1)\}$ denote the distance between directed cycle C_1 and directed cycle C_2 . If p is a positive integer and C is a direct cycle, then pC denotes the direct walk obtained by traversing C p times. If a direct cycle C passes through the end vertex of W, $W \cup pC$ denotes the the direct walk obtained by going along W and then going around the cycle C p times. $pC \cup W$ is similarly defined. The union of two digraph S and H is always denoted by $S \mid H$.

Definition 1.1 A digraph D is primitive if there exists an nonnegative integer k such that for each ordered pair of vertices $v_i, v_j \in V(D)$ (not necessarily distinct) there is a directed walk from v_i to v_j with length k. Such smallest k is called the exponent of the graph D, denoted by $\exp(D)$.

Definition 1.2 Let D be a primitive digraph. Then there exists a nonnegative integer k such that there are directed walks of length k and k+1 from u to v for some $u, v \in V(D)$ (possibly u again). Such smallest k is called the Lewin index of the digraph D, denoted by l(D).

In a primitive digraph D, let $C_k = \{C_k^1, C_k^2, \dots, C_k^m\}$ $(m \in \mathbf{Z}^+)$ denote the k-cycle set, $Q_k = \{Q_k^1, Q_k^2, \dots, Q_k^t\}$ $(t \in \mathbf{Z}^+)$ denote the set of all cycles satisfying that $\gcd(k, L(Q_k^i)) = 1$ for $i = 1, 2, \dots, t$, and $d^*(C_k, Q_k) = \min\{d^0(C_k^i, Q_k^j) : C_k^i \in C_k, Q_k^j \in Q_k\}$. We also let $u \stackrel{k, k+1}{\longrightarrow} v$ denote that there exist directed walks with length k and k+1 and let $u \stackrel{k, k+1}{\longrightarrow} v$

denote there exist no directed walk with length k or k+1 from vertex u to v.

Lewin proved that a strongly connected digraph is primitive if and only if there exists a nonnegative integer k such that there are directed walks of length k and k+1 from u to v for some u, $v \in V(D)$ (possibly u again) and so proposed the Lewin index about the primitive digraph in [1].

Definition 1.3 Let D be a primitive digraph. For any $u, v \in V(D)$, let $l(u,v) = \min\{k|u \xrightarrow{k, k+1} v\}$ denote the Lewin index from u to v and $l(u) = \min\{l(u,v)|v \in V(D)\}$ denote the Lewin index at u. It is easy to see that $l(D) = \min\{l(u)|u \in V(D)\} = \min\{l(u,v)|u,v \in V(D)\}$. Let $R_i(u)$ denote the set of vertices arrived by i steps from vertex u in primitive digraph D. Denote by $D_{n,g}$ the set of all primitive digraphs with girth g and order n.

In [2], J. Shen proved that $l(D) \leq n-2$ for all primitive digraphs with girth g=2,3 and order n. In [5], X.Q. Zhuang get the Lewin index set for all primitive digraphs with both girth 2 and order n. In [4], L.Q. Wang and Z.K. Miao get the Lewin index set for all primitive digraphs with both girth 3 and order n. In this paper, the extremal digraphs with both Lewin index n-2 and girth 2 or 3 are determined.

2 Preliminaries

Lemma 2.1 ([3]) Let $\{r_1, r_2, \dots, r_{\lambda}\}$ denote the cycle length set of digraph D. Then D is primitive if and only if D satisfies that D is strongly connected and $gcd(r_1, r_2, \dots, r_{\lambda}) = 1$.

Lemma 2.2 ([2]) Let D be a primitive digraph of order n. Then $l(D) \le n-2$ if $2 \le g \le 3$.

Suppose $n \equiv 0 \pmod 3$, $n \geq 6$, and $D_{3(0)}^*$ is a digraph consisting of (n-1)-cycle $C_{n-1} = (v_1, v_2, \cdots, v_{n-2}, v_{n-1}, v_1)$ and 3-cycle $C_3 = (v_1, v_n, v_{n-1}, v_1)$. Suppose $n \equiv 1 \pmod 3$, $n \geq 7$, and $D_{3(1)}^*$ is a digraph consisting of (n-2)-cycle $C_{n-2} = (v_1, v_2, \cdots, v_{n-3}, v_{n-2}, v_1)$ and 3-cycle $C_3 = (v_{n-2}, v_{n-1}, v_n, v_{n-2})$. Suppose $n \equiv 2 \pmod 3$, $n \geq 5$, and $D_{3(2)}^*$ is a digraph consisting of n-cycle $(v_1, v_2, \cdots, v_{n-1}, v_n, v_1)$ and 3-cycle $C_3 = (v_1, v_2, v_n, v_1)$. Then $\{D_{3(0)}^*, D_{3(1)}^*, D_{3(2)}^*\} \subseteq D_{n,3}$.

Lemma 2.3 ([4]) $l(D_{3(i)}^*) = n-2$ for i = 0, 1, 2.

Suppose $n \equiv 0 \pmod 2$, $n \geq 4$, and $D_{2(0)}^*$ is a digraph consisting of (n-1)-cycle $(v_1, v_2, \cdots, v_{n-2}, v_{n-1}, v_1)$ and 2-cycle $C_2 = (v_1, v_n, v_1)$. Suppose $n \equiv 1 \pmod 2$, $n \geq 3$, and $D_{2(1)}^*$ is a digraph consisting of n-cycle $(v_1, v_2, \cdots, v_{n-1}, v_n, v_1)$ and 2-cycle $C_2 = (v_1, v_2, v_1)$. Then $\{D_{2(0)}^*, D_{2(1)}^*\} \subseteq D_{n,2}$.

Lemma 2.4 ([5]) $l(D_{2(i)}^*) = n-2$ for i = 0, 1.

3 Main results of this paper

Lemma 3.1 Let $D \in D_{n,3}$. If $d^*(C_3, Q_3) > 0$, then $l(D) \le n - 3$.

Proof. Let $d^*(C_3, Q_3) = d^0(C_3^1, Q_3^1)$, $C_3^1 = (v_1, v_2, v_3, v_1)$, $Q_3^1 = (v_i, v_{i+1}, \dots, v_j, \dots, v_i)$ (j > i). Because the girth g = 3, so $L(Q_3^1) \ge 4$. Let $P_1 = (v_i, v_{i-1}, \dots, v_7, v_6, v_5, v_4, v_3)$ denote the shortest path from Q_3^1 to C_3^1 . Let P_2 denote the shortest path from C_3^1 to Q_3^1 . Suppose $L(P_1) = d(v_i, v_3) = d^0(C_3^1, Q_3^1)$. Let $D_1 = C_3^1 \cup P_1 \cup Q_3^1$.

(i) v_2 is the starting vertex of P_2 and v_e ($v_e \in V(Q_3^1)$) is the end vertex of P_2 .

Case 1 $L(P_1) \geq 2$.

We assert $|V(D_1)| \leq n-1$ now. Otherwise, $|V(D_1)| = n$. Now there must be $L(P_2) \geq 2$ and all vertices of P_2 be in $V(P_1)$ but the vertices v_2 and v_e . If there is a vertex $v_m \in V(P_2)$ such that $v_m \neq v_2$, v_e , and $v_m \notin V(P_1)$, then $v_m \in V(C_3^1)$ or $v_m \in V(Q_3^1)$. Suppose $v_m \in V(C_3^1)$, then the length of the shortest path from v_m to v_e is less than that of P_2 , which contradicts that P_2 is the shortest path from C_3^1 to Q_3^1 . Suppose v_k is the first common vertex of P_1 and P_2 along P_2 , there must be $0 \leq k \leq i$ and $k \equiv 0 \pmod{3}$. Otherwise there cause cycle $v_1, v_2, v_k, v_{k-1}, \cdots, v_5, v_4, v_3, v_1$, which contradicts $v_m \in V(C_3^1) = 0$ because $v_m \in V(C_3^1) = 0$. There is no arc $v_m \in V(C_3^1) = 0$. Otherwise there cause shorter path $v_m \in V(C_3^1) = 0$ of $v_m \in V(C_3^1) = 0$. Otherwise there cause shorter path $v_m \in V(C_3^1) = 0$. There is no arc $v_m \in V(C_3^1) = 0$. So $v_m \in V(C_3^1) = 0$. Which contradicts $v_m \in V(C_3^1) = 0$. So $v_m \in V(C_3^1) = 0$. Thus, the assertion holds.

Subcase 1.1 $L(Q_3^1) \equiv 1 \pmod{3}$.

There exist directed walk $Q_3^1 \bigcup v_i \bigcup P_1$ of length $L(P_1) + L(Q_3^1)$ and directed walk $P_1 \bigcup \frac{L(Q_3^1) - 1}{3} C_3^1$ of length $L(P_1) + L(Q_3^1) - 1$ from v_i to v_3 . Note that $|V(D_1)| \le n-1$ and $L(P_1) + L(Q_3^1) - 1 \le n-4$, so $l(v_i) \le n-4$ and $l(D) \le n-4$.

Subcase 1.2 $L(Q_3^1) \equiv 2 \pmod{3}$.

Similar to Subcase 1.1, there must be two directed walks of length $L(P_1) + L(Q_3^1)$ and $L(P_1) + L(Q_3^1) + 1$ from v_i to v_3 . Note that $|V(D_1)| \le n-1$ and $L(P_1) + L(Q_3^1) \le n-3$, so $l(v_i) \le n-3$ and $l(D) \le n-3$.

Case 2 $L(P_1) = 1$.

Subcase 2.1 $|V(D_1)| \le n-1$.

Similar to Subcase 1.1 and Subcase 1.2, there must be $l(D) \leq n-3$.

Subcase 2.2 $|V(D_1)| = n$.

Both P_1 , P_2 are arcs now. Along Q_3^1 , let a_1 denote the path from v_e to v_i and a_2 denote the path from v_i to v_e .

If $L(Q_3^1) \equiv 1 \pmod 3$, similar to Subcase 1.1, there must be two directed walks of length $L(P_1) + L(Q_3^1)$ and $L(P_1) + L(Q_3^1) - 1$ from v_i to v_3 . Note that $L(P_1) + L(Q_3^1) - 1 = n - 3$, so $l(v_i) \le n - 3$ and $l(D) \le n - 3$.

If $L(Q_3^1) \equiv 2 \pmod 3$, then $L(a_1) \equiv 2 \pmod 3$, $L(a_2) \equiv 0 \pmod 3$ and $L(a_2) \geq 3$. Otherwise, there cause cycle $C' = (v_i, v_3, v_1, v_2, v_e) \bigcup a_1$ such that $\gcd(L(C'), 3) = 1$, which contradicts $d^*(\mathcal{C}_3, \mathcal{Q}_3) > 0$.

Let $P_3 = (v_i, v_3, v_1, v_2, v_e)$.

If $L(a_2)=3$, it is easy to see that $l(D)\leq 3$ because there are two directed walks a_2 and P_3 from v_i to v_e .

If $L(a_2) > 3$, then there exist directed walks $P_1 \cup \frac{L(a_2) - 3}{3} C_3^1 \cup (v_3, v_1, v_2, v_e)$ of length $L(a_2) + 1$ from v_i to v_e . Note that $L(a_2) \le n - 3$, so $l(v_i) \le n - 3$ and $l(D) \le n - 3$.

In a same way as (i), for the cases: (ii) v_1 is the starting vertex of P_2 and v_e ($v_e \in V(Q_3^1)$) is the end vertex of P_2 ; (iii) v_3 is the starting vertex of P_2 and v_e ($v_e \in V(Q_3^1)$) is the end vertex of P_2 , we can prove that $l(D) \le n-3$

Similar to Lemma 3.1, we have the following Lemma 3.2.

Lemma 3.2 Let $D \in D_{n,2}$. If $d^*(C_2, Q_2) > 0$, then $l(D) \le n - 3$.

Corollary 3.3 Let $D \in D_{n,3}$. If l(D) = n - 2, then $d^*(\mathcal{C}_3, \mathcal{Q}_3) = 0$.

Corollary 3.4 Let $D \in D_{n,2}$. If l(D) = n - 2, then $d^*(\mathcal{C}_2, \mathcal{Q}_2) = 0$.

Theorem 3.5 Suppose that $n \equiv i \pmod{3}$ where i = 0, 1, 2. Let $D \in D_{n,3}$. Then l(D) = n - 2 if and only if $D \cong D_{3(i)}^*$.

Proof. We only prove the case that i = 0. The other two cases can be proved similarly.

Now we prove the case that i = 0. It is clearly that the sufficiency holds by Lemma 2.3. We prove the necessity.

It is clearly that $d^*(\mathcal{C}_3, \mathcal{Q}_3) = 0$ now by Corollary 3.3. Let $d^0(C_3^1, \mathcal{Q}_3^1) = d^*(\mathcal{C}_3, \mathcal{Q}_3) = 0$. Let $D_1 = C_3^1 \bigcup \mathcal{Q}_3^1$.

If $|V(D_1)| \le n-1$, then $l(D_1) \le n-3$ by Lemma 2.2 and $l(D) \le n-3$, which contradicts l(D) = n-2. So $|V(D_1)| = n$.

It is easy to check that $D_1 \ncong D_{3(2)}^*$ because $gcd(3, L(Q_3^1)) = 1$.

If $D_1 \cong D_{3(1)}^*$, we can suppose $D_1 = D_{3(1)}^*$ for convenience. Then $C_3^1 = (v_{n-2}, v_{n-1}, v_n, v_{n-2}), \ Q_3^1 = (v_1, v_2, \cdots, v_{n-3}, v_{n-2}, v_1)$. There are directed walk of length n-2 by going around Q_3^1 once and directed walk of length n-3 which is $\frac{n-3}{3}C_3^1$ from v_{n-2} to itself, so $l(D_1) \leq n-3$ and $l(D) \leq n-3$, which contradicts l(D) = n-2. So $D_1 \cong D_{3(0)}^*$. For convenience, suppose $D_1 = D_{3(0)}^*$, $C_3^1 = (v_1, v_n, v_{n-1}, v_1)$ and $Q_3^1 = (v_1, v_2, \cdots, v_{n-2}, v_{n-1}, v_1)$.

Assertion 1 There is no arc (v_i, v_j) $(1 \le i < j < n, j - i \ge 2)$.

Otherwise, suppose that there is arc (v_i,v_j) $(1 \le i < j < n, j-i \ge 2)$. Let P_1 denote the path from v_i to v_j along Q_3^1 , P_2 denote the arc (v_i,v_j) , P_3 denote the path from v_1 to v_i along Q_3^1 , P_4 denote the path from v_j to v_{n-1} along Q_3^1 and $C = P_3 \bigcup P_2 \bigcup P_4 \bigcup (v_{n-1},v_1)$. It is easy to check that $L(C) \equiv 0 \pmod{3}$ and $L(C) \le n-3$. Otherwise, if $L(C) \ne 0 \pmod{3}$, then $\gcd(L(C),3) = 1$. Let $D_2 = C \bigcup C_3^1$. Then $l(D_2) \le n-3$ by Lemma 2.2 and $l(D) \le n-3$, which contradicts l(D) = n-2. So $L(P_1) \equiv 0 \pmod{3}$ and $L(P_1) \le n-3$.

Clearly, there is no case that $v_j = v_{n-1}$ and $v_i = v_1$. Otherwise, there is 2-cycle $C_2 = (v_1, v_{n-1}, v_1)$, which contradicts g = 3.

If $v_j \neq v_{n-1}$, then $P_3 \bigcup P_1$ is a directed walk of length $L(P_3) + L(P_1)$ from v_1 to v_j ; $\frac{L(P_1)}{3} C_3^1 \bigcup P_3 \bigcup P_2$ is a directed walk of length $L(P_3) + L(P_1) + 1$ from v_1 to v_j . Note that $L(P_3) + L(P_1) \leq n-3$, so $l(v_1) \leq n-3$ and $l(D) \leq n-3$, which contradicts l(D) = n-2.

If $v_j = v_{n-1}$, $v_i \neq v_1$, then $P_2 \cup \frac{L(P_1)}{3}C_3^1$ is a directed walk of length $L(P_1) + 1$ from v_i to v_{n-1} . Note that $L(P_1) \leq n-3$, so $l(v_i) \leq n-3$ and $l(D) \leq n-3$, which contradicts l(D) = n-2.

So the Assertion 1 holds.

Assertion 2 There is no arc (v_j, v_i) $(1 \le i < j < n, j-i \ne n-2)$.

Otherwise, suppose that there exists arc (v_j, v_i) $(1 \le i < j < n)$. Note that the girth g = 3 in D. Then $j - i \ge 2$. Let P_1 denote the path from v_i to v_j along Q_3^1 , P_2 denote the arc (v_j, v_i) , P_3 denote the path from v_1 to v_i along Q_3^1 , P_4 denote the path from v_j to v_{n-1} along Q_3^1 , $C_a = P_1 \bigcup P_2$ and $P = P_4 \bigcup (v_{n-1}, v_1) \bigcup P_3$.

Case 2.1 $L(C_a) \equiv 0 \pmod{3}$.

Now $L(P) \equiv 0 \pmod{3}$ and $3 \leq L(P) \leq n-3$, $3 \leq L(C_a) \leq n-3$.

If $L(C_a) \geq L(P)$, suppose $L(C_a) - L(P) = 3k$, $k \in N$. $C_a \bigcup \{v_j\} \bigcup P_2$ is directed walk of length $L(C_a) + 1$ and $P_4 \bigcup kC_3^1 \bigcup (v_{n-1}, v_1) \bigcup P_3$ is a directed walk of length $L(C_a)$ from v_j to v_i , so $l(v_j) \leq n-3$ and $l(D) \leq n-3$, which contradicts l(D) = n-2.

If $L(C_a) < L(P)$, then $L(P) - L(C_a) \ge 3$. Suppose $L(P) = kL(C_a) + m$, $k \in \mathbb{Z}^+, m \in \mathbb{N}$. Then $m \equiv 0 \pmod 3$, $0 \le m \le L(C_a) - 3$, $L(C_a) - m \equiv 0 \pmod 3$.

If m = 0, $kC_a \cup \{v_j\} \cup P_2$ is a directed walk of length L(P) + 1 from v_j to v_i , note that $L(P) \le n - 3$, so $l(v_j) \le n - 3$ and $l(D) \le n - 3$, which contradicts l(D) = n - 2.

Case 2.2 $L(C_a) \equiv 1 \pmod{3}$.

So there must be just two subcases as follow:

(i)
$$n - |V(C_3^1 \cup C_a \cup P_3)| \ge 1$$
;

(ii)
$$n - |V(C_3^1 \cup C_a \cup P_4)| \ge 1$$
.

Suppose (i) holds. Then $P_3 \bigcup C_a$ is a directed walk of length $L(P_3) + L(C_a)$ from v_1 to v_i , $\frac{L(C_a) - 1}{3} C_3^1 \bigcup \{v_1\} \bigcup P_3$ is a directed walk of length $L(P_3) + L(C_a) - 1$ from v_1 to v_i . Note that $L(P_3) + L(C_a) - 1 \le n - 4$, so $l(v_1, v_i) \le n - 4$ and $l(D) \le n - 4$, which contradicts l(D) = n - 2.

Case 2.3
$$L(C_a) \equiv 2 \pmod{3}$$
.

If $v_j=v_{n-1}$, then $i\geq 4$. Thus C_a is a directed walk of length $L(C_a)$ from v_{n-1} to itself and $\frac{L(C_a)+1}{3}C_3^1$ is a directed walk of length $L(C_a)+1$ from v_{n-1} to itself. Because $i\geq 4$, then $L(C_a)\leq n-4$ and $l(D)\leq l(v_{n-1})\leq L(C_a)\leq n-4$, which contradicts l(D)=n-2.

If $v_i = v_1$, then $j \le n-4$. So there are directed walk of length $L(C_a)$ and directed walk $\frac{L(C_a)+1}{3}C_3^1$ of length $L(C_a)+1$ from v_1 to itself. Because $j \le n-4$, then $L(C_a) \le n-4$ and $l(D) \le L(C_a) \le n-4$, which contradicts l(D) = n-2.

If $v_j \neq v_{n-1}, v_i \neq v_1$. There is no case $v_j = v_{n-2}, v_i = v_2$ because $L(C_a) \equiv 2 \pmod{3}$. So $L(P_3) \geq 2$ or $L(P_4) \geq 2$. Suppose $L(P_3) \geq 2$, then $C_a \cup \{v_j\} \cup P_4$ is a directed walk of length $L(C_a) + L(P_4)$ from v_j to v_{n-1} and $P_4 \cup \frac{L(C_a) + 1}{3} C_3^1$ is a directed walk of length $L(C_a) + L(P_4) + 1$ from v_j to v_{n-1} . Note that $L(C_a) + L(P_4) \leq n - 3$, so $l(D) \leq n - 3$, which contradicts l(D) = n - 2.

To sum up, the Assertion 2 holds.

Assertion 3 There is no arc between vertices v_i and v_n .

Otherwise, there are the cases as follows.

Case 3.1 There is arc between v_{n-2} and v_n .

Suppose that there is arc (v_{n-2}, v_n) . Then (v_{n-2}, v_n, v_{n-1}) is a directed walk of length 2 and (v_{n-2}, v_{n-1}) is a directed walk of length 1 from v_{n-2} to v_{n-1} , so $l(D) \leq l(v_{n-2}) \leq 1$, which contradicts l(D) = n - 2.

If there is arc (v_n, v_{n-2}) , then $(v_n, v_{n-2}, v_{n-1}, v_1, v_n)$ is a directed walk of length 4 from v_n to itself. So $l(D) \leq l(v_n) \leq 3$, which contradicts

l(D)=n-2.

In a same way, we can prove the following Case 3.2.

Case 3.2 There is arc between v_2 and v_n . Then $l(D) \leq 3$.

Case 3.3 There is arc between v_i $(3 \le i \le n-3)$ and v_n .

Along cycle Q_3^1 , let P_1 denote the directed path from v_1 to v_i and P_2 denote the directed path from v_i to v_{n-1} . Then $L(P_1) \geq 2$, $L(P_2) \geq 2$.

- 1° There exists arc (v_i, v_n) .
- (i) If $L(P_1) \equiv 0 \pmod 3$, then $L(P_2) \equiv 1 \pmod 3$ and $4 \le L(P_2) \le n-5$. Let $W_1 = P_2 \bigcup (v_{n-1}, v_1, v_n)$. Then $L(W_1) \equiv 0 \pmod 3$ and $6 \le L(W_1) \le n-3$. Now $(v_i, v_n) \bigcup \frac{L(W_1)}{3} C_3^1$ is a directed walk of length $L(W_1) + 1$ from v_i to v_n , so $l(D) \le l(v_i) \le L(W_1) \le n-3$, which contradicts l(D) = n-2.
- (ii) If $L(P_1) \equiv 1 \pmod{3}$, then $L(P_2) \equiv 0 \pmod{3}$, $4 \le L(P_1) \le n-5$ and $3 \le L(P_2) \le n-6$. Let $W_1 = P_2 \bigcup (v_{n-1}, v_1, v_n)$. Then $L(W_1) \equiv 2 \pmod{3}$ and $5 \le L(W_1) \le n-4$. $(v_i, v_n) \bigcup \frac{L(W_1) 2}{3} C_3^1$ is a directed walk of length $L(W_1) 1$ from v_i to v_n , so $l(D) \le l(v_i) \le L(W_1) 1 \le n-5$, which contradicts l(D) = n-2.
 - (iii) $L(P_1) \equiv 2 \pmod{3}, L(P_1) \ge 2$.

Let $W_2 = P_1 \bigcup (v_i, v_n)$. Then $L(W_2) \equiv 0 \pmod{3}$ and $L(W_2) \leq n-3$. Now $\frac{L(W_2)}{3}C_3^1 \bigcup (v_1, v_n)$ is a directed walk of length $L(W_2) + 1$ from v_1 to v_n , so $l(D) \leq l(v_1) \leq L(W_2) \leq n-3$, which contradicts l(D) = n-2.

2° There exists arc (v_n, v_i) .

Let $C_b = (v_n, v_i) \bigcup P_2 \bigcup (v_{n-1}, v_1, v_n)$. Then $6 \le L(C_b) \le n-3$, and $L(C_b) \equiv 0 \pmod{3}$. Otherwise, let $D_2 = C_b \bigcup (v_n, v_{n-1})$. Then $l(D_2) \le n-5$ by Lemma 2.2, so $l(D) \le l(D_2) \le n-5$, which contradicts l(D) = n-2. Thus $L(P_1) \equiv 1 \pmod{3}$ and $1 \le L(P_1) \le n-5$. Now $1 \le l(P_1) - 1 \le l(P_1) - 1 \le l(P_1) \le l(P_1) \le l(P_1) - 1$ from $1 \le l(P_1) \le l(P$

To sum up, the Assertion 3 holds.

In all, the necessity is proved. \Box

In a same way, we can prove the following theorem.

Theorem 3.6 Suppose that $n \equiv i \pmod{2}$ where i = 0, 1. Let $D \in D_{n,2}$. Then l(D) = n - 2 if and only if $D \cong D_{2(i)}^*$.

Acknowledgment

Many thanks to the referees for their kind reviews and helpful suggestions.

References

- L. M, On exponents of primitive matrices [J], Numer. Math 1971, 18: 154-161.
- [2] J. Shen, On a problem of Lewin [J], Linear Algebra Appl. 1998, 274: 411-426.
- [3] K.K. Hong, Boolean Matrix Theory and Applications [M], Marcel Dekkez New York, 1982.
- [4] L.Q. Wang, Z.K. Miao, The Lewin index set of primitive digraphs with order n and girth 3 [J], Natural Science Journal of Xuzhou Normal University 2007, 25 (4): 11-13.
- [5] X.Q. Zhuang, The Lewin index set of primitive digraphs with order n and girth 2 [J], Natural Science Journal of Hainan University 2003, 4 (21): 300-303.