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Abstract

In this paper we introduce a new kind of distance Pell num-
bers which are generated using the classical Fibonacci and Lucas
numbers. Generalized companion Pell numbers is closely related to
distance Pell numbers which were introduced in [12]. We present
some relations between distance Pell numbers, distance companion
Pell numbers and their connections with the Fibonacci numbers. To
study properties of these numbers we describe their graph interpre-
tations which in the special case gives a distance generalization of
the Jacobsthal numbers. We also use the concept of a lexicographic
product of graphs to obtain a new interpretation of distance Jacob-
sthal numbers.
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1 Introduction and preliminary results

Let F,, be the nth Fibonacci number defined recursively by F,, = F,,_1 +
F,_s for n > 2 with the initial terms Fy = F; = 1. There are many numbers
of the Fibonacci type defined by the linear recurrence relation,

(1.1) Lucas numbers
Lpn=Ln 14+ Ly g, forn>2withLo=2, Ly =1

(1.2) Pell numbers
P,=2P, 1+ P, forn>2with Bp=0, P, =1

(1.3) companion-Pell numbers
Qn=2Qn-1+Qn_2, forn >2with Qo =@, =1

(1.4) Jacobsthal numbers
Jn=Jdn_1+2Jp_g, forn>2with Jp =0, J; =1

(1.5) Jacobsthal-Lucas numbers
Jn = Jn-1+2jn-2, for n > 2 with jo =2, j1 =1

(1.8) Tribonacci numbers
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Thn=Tac1 +Tno+Tn_3, for n >3 with Ty = 0,1 =T=1

For other types of known sequences see The On-Line Encyclopedia of
Integer Sequences, [18]. In this paper we define one parameter generaliza-
tion of the Pell numbers in the distance sense.

In general we say that we generalize the numbers of the Fibonacci type
in the distance sense if these numbers are defined by the kth order linear
recurrence relations, for an arbitrary k > 3. Distance generalizations of
Fibonacci numbers and Pell numbers are studied recently, see [2], [10],
[12])-(17).

In [12] the special distance generalizations of Pell numbers was intro-
duced. We recall it.

Let k£ > 1, n > 0 be integers. The nth distance Pell numbers we define
recursively in the following way

Pd(k,n) = Pd(k,n — 1) + Pd(k,n — 2) + Pd(k,n — k), for n > k

with the initial conditions

Pd(k,0) =0,
Pd(k,i)=1fork<i+2,i>1and
Pd(k,iy=0fork>i+2,i>1.

For £ = 1,2,3 this sequence reduces to classical Pell sequence, the
Jacobsthal sequence and Tribonacci sequence, respectively.

The following Table presents few initial distance Pell sequences. The
numbers marked by bold type are Fibonacci numbers.

n JO|1]2]|3]4]5]6] 7] 8] 9] 10 ] 11
Pd(1,n) |0 1|25 12|20] 70| 169 | 408 | 985 | 2378 | 5741
Pd(2,n) [0 1135 [11]21] 43 | 85 | 171 | 341 | 683
Pd(3,n) [0|1]1]|2| 4| 7 |13]| 24 | 44 | 81 | 140 | 274
Pd(d,n)|0]0]|1]1]| 2|3 |6] 10| 1831 55 | 9
Pd(5,n)|0]0]|0]|1] 1| 2|35 | 0 |15] 26 | 44
Pd(6,n)|0]0]0]0|1|1]|2] 3|5 | 8| 14| 23

Table 1. The distance Pell numbers Pd(k,n).

Let k > 2, n > 0 be integers. Then
Pd*(k,n) = Pd*(k,n — 1) + Pd*(k,n — 2) + Pd*(k,n— k), forn > k+1
and
Pd*(k,0) =0,
Pd*(k,n) = Fh_y,for1<n <k
Clearly Pd*(k,n) = Pd(k,n + k — 3) for k > 3.
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In this paper we introduce the distance companion Pell sequence and
this kind of the generalization is inspired by results given in [12].

Let k > 1, n > 0 be integers. The nth distance companion Pell number
Qd(k,n) we define in the following way
Qd(k,n) = Qd(k,n — 1) + Qd(k,n — 2) + Qd(k,n — k) for n > k
Qd(k,0) = k,
Qd(1,1) =1 and
Qd(k,n) =Ly, forn=1,..,k—1.

If £ = 1 we have the classical companion Pell numbers P,.

If k = 2 then we obtain the Jacobsthal-Lucas numbers jy.

If k = 3 then Qd(3,n) gives the Tribonacci numbers T,, with Tp = 3,
Th=1,T,=3

The following Table presents few initial distance companion Pell sequences.
The numbers marked by bold type are Lucas numbers.

n JO|1]2]3]4][5]6] 78] 9 | 10] 11
Qd(T,n) [1|1]3]| 7|17 41|99 239577 | 1393 | 3363 | 8119
Qd(2,n) | 21|57 |17 31 |65]127 ] 257 511 | 1025 | 2047
Qd(3,n) |3 | 13| 7|11 21|30 71 | 131 241 | 443 | 815
Qd(d,n)[4|1|3|4|11]16]30] 50 | 91 | 157 | 278 | 485
Qd(B,n) |5|1|3|4] 7|16 ]24] 43 | 71 | 121 | 208 | 353
Qd(6,n) |6|1|3|4]| 7 |11]24| 36 | 63 | 103 | 173 | 287

Table 2. The distance companion Pell numbers Qd(k, n).
Question about relations between generalizations of numbers of the Fi-
bonacci type and the classical Fibonacci numbers is the natural in the
context of results obtained by E. Kili¢ also with D. Tasci, see (8], [9].

We will prove some relations between Pd(k,n), Qd(k,n) and F,.

Theorem 1. Let k > 1, n > k be integers. Then for firted 1 <i<n—k
holds

Pd(k,n) = Fiy1 Pd(k,n—(i+1))+ F;Pd(k,n—(i+2))+ Y F.Pd(k,n—k—1).
t=0

Proof. (by induction on i) Let ¢ = 1. Then
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Pd(k,n) = FyPd(k,n — 2) + Fy Pd(k,n — 3) + z F.Pd(k,n—k —t) =

= 2Pd(k,n — 2) + Pd(k,n — 3) + Pd(k,n — k)+Pd(k n—k—-1)=

= Pd(k,n — 2) + Pd(k,n — 3) + Pd(k,n — k — 1) + Pd(k,n — 2)+

+Pd(k,n — k) = Pd(k,n — 1) + Pd(k,n — 2) + Pd(k,n — k)
by definition of Pd(k,n).

Assume now that the identity is true for an arbitrary ¢ > 2. We shall
show that it is true for i + 1, i.e.
i+1

Pd(k,n) = Fi1oPd(k,n—(i+2))+F;+ 1 Pd(k, n—(i+3))+z F,Pd(k,n—k—t).

t=0

(Fiyr + Fi) Pd(k,n — (i + 2)) + Fyy1 Pd(k,n — (i + 3))+

+ 3 FuPd(k,n — k — t) + Fiyy Pd(k,n— k — (i +1)) =

— FonPd(k,n — (i +2)) + F: iPd(k,n — (i+2)) + Fun Pd(k,n — (i +3)+
+Fp1Pd(k,n— k- (i + 1)) + z;F,Pd(k n—k—t)=

= Fip1 (Pd(k, n—(z+2))+Pd(k n— (i +3)) + Pd(k,n — k- (i +1))) +

+FPd(k,n— (i +2)) + 3 FPd(k,n—k —t) =
t=0

= Fup Pd(k,n — (i + 1) + FiPd(k,n - (i +2) + 3 FPd(k,n—k— ) =
t=0

= Pd(k,n +1)
by induction’s assumption. O

Using the same method we can prove the similar identity for Qd(k,n)
and F,,.

Theorem 2. Let k > 1, n > k be integers. Then for fized 1 <i<n—k
holds

Qd(k,n) = F,-.,.le(k,n—(i+1))+F,-Qd(k,n—(i+2))+i FQd(k, n—k—t).

t=0

2 Graph interpretations of Qd(k,n) and rela-
tions with Pd(k,n)

In this section we use the graph tools for studying properties of Pd(k,n)

and Qd(k,n). These properties are closely related to the concept of H-

matchings in graphs. Let G be a given graph. For a given collection
H = {H1,Hy,...,Hp}, m > 1 of graphs by an H-matchings M of G we
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mean a family of subgraphs of G such that each connected component of
M is isomorphic to some H;, 1 < i < m. If all H; € # are isomorphic to
the same graph H then 7{-matching is an H-matching M in graph. If M
cover the set V(G) then M is a perfect matching. If M is also an induced
subgraph of G, then the #-matching is called induced. We can observe
that if H = K3, then Ky-matching is a matching in the classical sense. If
H = K, then an induced K;j-matching is a well-known independent set.
The number of all matchings in the graph G is known as the Hosoya index
and it is denote by Z(G), see [7]. The number of all induced K;-matchings
(i-e. independent sets) in the graph G is the Merrifield-Simmons index and
it is denoted by o(G), see the last survey and its references, [5]. For graph
and combinatorics concepts not defined here see [1] and {3].
In [12] it has been proved:

Theorem 3. (12] Let k > 3, n > 1 be integers. Then the number of perfect
{P1,Pa, Pr}-matchings of a graph P, is equal to Pd(k,n + k — 2).

Using this theorem we can prove the result for the graph interpretation
of Qd(k,n).

Theorem 4. Let k > 3, n > k be integers. Then the number of all perfect
{Py, Py, P }-matchings of C,, is equal to Qd(k,n).

Proof. Let k, n be as in the statement of the theorem, and let M C C,
be a perfect {P;, P, Px}-matchings of C,. Then for an arbitrary vertex
z € V(C,) there exists a subgraph P; € M, for ¢ € {1,2,k} such that
z € P;. Assume that vertices from V(C,) are numbered in the natural
fashion and without loss of the generality we can choose the vertex z,. Let
g; be the number of all perfect {IP;, P2, Px}-matchings such that =, € P;,
i € {1,2,k}. Hence the number of all perfect matchings of a graph C,, is
equal to g; + g2 + qx. We distinguish the following cases.

1. z; € Py, where P; € M.
Then M = M; UP;, where M, is a perfect {P;, Py, Px}-matching
of the graph C, \ {z1} =~ Pn-1. Using Theorem 3 we have that
q1 = Pd(k,n+k - 3).

2. 2, € Py, where P, € M.
Then M = M; U P; where M is a perfect {P;, Py, Pi}-matching
either of a the graph C, \ {z1,22} or C, \ {zn,z2}. Both of these
graphs are isomorphic to P,—2. Using Theorem 3 we have that g =
2Pd(k,n+ k — 4).

3. 11 € Py, where P, € M, k > 3.
Then M = M3 U P, where M3 is a perfect {IPy,Py, P, }-matching of
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the graph C,, \ P, which is isomorphic to P,,_. Since there exists &
subgraphs P containing the vertex zx € IPx so g3 = k- Pd(k,n — 2).

From the above cases
q1 + g2 + gk = Pd(k,n + k — 3) + 2Pd(k,n + k — 4) + kPd(k,n — 2).
Claim. Qd(k,n) = Pd(k,n+ k — 3) + 2Pd(k,n + k — 4) + kPd(k,n — 2).

Proof. (Proof of Claim by induction on n).

If n = 2, then Pd(k,k — 1) + 2Pd(k,k — 2) + kPd(k,0) = 3 = Qd(k, 2).
Assume that the Claim is true for ¢ < n. From the definition Qd(k,n) =
Qd(k,n — 1) + Qd(k,n — 2) + Qd(k,n ~ k). Transforming right side of the
above equation using our induction’s assumption we have

Pd(k,n + k — 4) + 2Pd(k,n + k — 5) + kPd(k,n — 3)+
+Pd(k,n + k — 5) + 2Pd(k,n + k — 6) + kPd(k,n — 4)+
+Pd(k,n — 3) + 2Pd(k,n — 4) + kPd(k,n — k — 2) =

= Pd(k,n + k — 4) + Pd(k,n + k — 5) + Pd(k,n — 3)+
+2(Pd(k,n + k — 5) + Pd(k,n + k — 6) + Pd(k, n — 4)) +
+k (Pd(k,n — 3) + Pd(k,n — 4) + Pd(k,n — k — 2))

The definitions of the number Pd(k,n) implies that
Qd(k,n) = Pd(k,n+ k — 3) + 2Pd(k,n + k — 4) + kPd(k,n — 2),
which ends the proof. O

If k = 1, then it is well-known that Pd(1, n) is the classical Pell numbers
P, and P, = Z(P, o K,), where P, o K, is the corona of graph P, and
K\, see [5]. For k =1 the number Qd(1,n) is the classical companion Pell
number @, and 2Q,, = Z(C,0K}). Now we study the graph interpretation
of Pd(k,n) and Qd(k,n) for k > 2.

If k = 2, then Pd(2,n) gives the Jacobsthal number J, and Qd(2,n)
gives the Jacobsthal-Lucas numbers j,. In [12] it was observed that for
n>1,t>1 we have 0 (P,[K:]) = Ji nta.

For the Jacobsthal-Lucas numbers we can observe

Observation. Let n > 3 be integer. Then o(Cp, 0 K1) = jn.

We give the two-parameter generalizations of the Jacobsthal numbers
Jn and j, which are closely related to distance d-independent sets in graphs.
Let d > 2 be integer. A subset I C V(G) is a d-independent set of
G if for each u,v € I, dg(u,v) > d. For d = 2 we obtain the definition
of independent set in the classical sense. Let 04(G) be the number of all
d-independent sets in G. The definition of d-independent sets immediately
implies that for an arbitrary graph G holds 04(G) > |V(0)| + 1, for d > 2.
The theory of independence in graphs is intensively studied in the lit-
erature. It is worth to mention that special distance independent sets in
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digraphs are studied by H. Galeana-Sanchez also with C. Herndndez-Cruz,
see their last interesting papers [4], [6].

Let n > 0,¢t > 1, d > 2 be integers. The nth distance Jacobsthal
number J(d,t,n) we define recursively in the following way:

J(d,t,n) =J(d,t,n—-1)+t - J(d,t,n—d)forn>d
with initial conditions
J(d,t,0) =0,
Jd,t,n)=1,forn=1,..,d.

The below Table presents initial words of some distance Jacobsthal se-
quences for d = 3.

n 0Ji[2[3[4[5 6 7] 89010 11 | 12
JB.Ln)|0]1|1]1]|2|3|4]6] 9 |13 19| 28 | &1
J(3,2,n) |0]1]1|1[3]5 |7 |13]| 23 | 37 | 63 | 109 | 183
J(3,3,n) |0 1|1]1|4) 7 |10]22] 43 | 73 | 139 | 268 | 487
J(3,4,n)|0|1|1|1]5] 9 |13]33| 69 |121] 253 | 529 | 1013
J(3,5,n) |01 |1|1]6|11]16|46]101 181|411 916 | 1821
J(3,6,n) | 0| 1|1|1|7|13]| 1961|139 253|619 | 1453 | 2071

Table 3. The distance Jacobsthal numbers J(3,t,n).

Ift =1 and d = 2, then this definition reduces to the definition classical
Fibonacci numbers.

For t =1 and arbitrary d > 2 we obtain generalized Fibonacci number
F(d, n) introduced in [10].

We shall show some applications of numbers J(d,t,n) for determin-
ing of 04(G), where G is a special graph product. Let G be a graph
on V(G) = {u1,..,un}, n 2 2 and h, = (H;)ie(1,....n} be a sequence
of vertex disjoint graphs on V(H;) = {(uiyn1),..., (ui,¥z)}, ¢ 2 1. By
the generalized lexicographic product of G and hn = (Hi)ie(a,..n} We

mean the graph G[hy] such that V (G[h,]) = U V(H;) and E (G[hy]) =

{(ui, yp) (s, ¥g); (wi = uj and  (us, Yp)(uj,vq) G E(H )) or uiu; € E(G)}.
By Hf, i = 1,..,n we mean the copy of the graph H; in G[h,)]. If
H; = H for i = 1,...,n, then G[h,] gives the classical lexicographic product
of two graphs G[H). For d-independent sets in G[h,], see [11].
If d = 2, then the Jacobsthal number J(2,t,n) denoted as J; ,, has been
studied in [12] with respect to the number of independent sets in P, [K;).
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Theorem 5. [12] Letn > 1,t > 1 be integers. Then o (Pu|Ky]) = Jyngo =
J(2,t,n+2).

Theorem 6. Letn > 2,t > 1, d > 3 be integers. Then for an arbi-
trary sequence hn = (Hi)ic(1,...,.n} of vertex disjoint graphs on t vertices
04 (Pnlhn)) = J(d,t,n + d).

Proof. (by induction on n) Let n, ¢, d be as in the statement of the theorem.
Ifn=2,...,d, then d > 3 implies that every nonempty d-independent set
of Pn[hys] is a singleton, so 0a(Pnlhs]) = nt + 1 = J(d,t,n + d), by the
definition of J(d, ¢, n).

Assume that for an arbitrary subsequence of hy, holds 04(P..[A}]) =
J(d,t,m + d), where m < n. Let I C V(P,|hy]) be a d-independent set of
the graph P,[h,]. We consider the following cases:

1. (un,yp) € I, foreachp=1,...,¢.
Then I = I*, where I* is an arbitrary d-independent set of the graph

t
Pn[hn)\ U (2n,yp) which is isomorphic to Pr—_1[hn_1]. By induction’s
p=1

assumption there are J(d,¢,n — 1 +d) d-independent sets containing
no vertex (un,yp) ¢ I.

2. There is 1 < p <t such that (un,yp) € I.
The definition of P,(h,] implies that for arbitrary two vertices from
V(H;) the distance between them is at most 2. So only one vertex
from the copy Hy; can belong to d-independent set I. If (un,yp) € I,
then (un,y;) ¢ T forg#p=1,..,t and (vn_i,y;) ¢ I fori=1,..,d
and j = 1,...,t. This means that I = I’U{(un, yp)}, where I is an ar-

d ¢t
bitrary d-independent set of the graph Pn_a[hn_a]\ U U {(zn-i,¥;)}
1=0j=1
which is isomorphic to Pn_g4[h};_,4]. By induction’s hypothesis there
are J(d, t,n) d-independent sets I containing the vertex (u,,yp). Since
the vertex (un,yp) € I can be chosen on t ways, so the total number
of d-independent set including a vertex from the copy H¢ is equal to

t-J(d,t,n).
From the above cases we obtain that
0d(Pnlhn]) = J(d,t,n+d - 1)+ t- J(d,t,n) = J(d,t,n +d).
Thus the theorem is proved. O

Using this graph interpretation we give the direct formula for the Ja-
cobsthal number J(d, ¢, n).

418



Theorem 7. Letd > 2,t > 1, n > 1 be integers. Then

p20

Proof. Ifn=1,thenp=0o0rp=1and J(d,¢n) =1+ (n—d)t.
Let n > 2. Let j(d, n,p) be the number of p-elements d-independent set
in the graph P,, with the numbering of V(P,,) with the natural fashion. We

shall show that ( d-1)
. n—(p-1)(d-
j(d,n,p) = ( d » )

Let (ai,...,an) be a binary sequence associated with the graph P, and a
d-independent set of I C V(P,) such that
o = 0 if u; €17

Tl i uel

It is clear that for each a;, a; such that a; =a; =1 holds i — j| > d. In
the other words there are at least d — 1 zeros between two consecutive 1’s.
Hence p 1's we can put on n—(p—1)(d—1) places in the sequence (ay, ..., a»).
From the combinatorial statements we can do it on ("~®~1{@=1) ways,
In remaining places we give 0’s. Next we extend this sequence by adding
d — 1 zeros between every two consecutive 1’s. Consequently j(d,t,n) =
(r-e-D-1),

Let consider the graph P, [h,], where h, = (H;)ie{a,...,n} is the sequence
of arbitrary vertex disjoint graphs. From the fact that at most one vertex
from each Hf, i € {1,...,n} can belong to an d-independent set of Py [hy]
we conclude that are ("'d"(";l)(d' l))tf' p-element d-independent subsets of

P, [hn) and consequently ca(Palha]) = 3 ("_d'(”_l)(d_l))t” Using Theo-
pS0

rem 6 we obtain that J(d,t,n) = (""d (p'l)(d'l))t” If d = 2, then the

formula follows from Theorem 5 whlch ends the proof. a

Let n >0, ¢t > 1, d > 2 be integers. The nth distance Jacobsthal-Lucas
number JL(d,t,n) is defined by the following recurrence relation.

JL(d,t,n) = JL{d,t,n—-1)+t-JL(d,t,n—d) forn > d (1)

with the initial conditions
JL(d,t,0) =d and
JL(d,t,i)=1fori=1,..,d-1.

Ift =1 and d = 2, then this definition gives the Lucas numbers L,,.
For t = 1 and an arbitrary d > 2 we obtain the generalized Lucas numbers

L(d, n) introduced in [10].
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If t = 2 and d = 2, then JL(2,2,n) gives the classical Jacobsthal-Lucas
numbers jy.

The following Table presents initial words of distance Jacobsthal-Lucas
sequences for d = 3

n 0]1]2]3]4]5] 6] 7 8] 9 | 10 il
JL(3,1,n)|3]1]|1| 4|56 10] 15| 21| 31 | 46 | 67
JL(3,2,n) |3 1|1] 7|9 [11] 25 | 43 | 65 | 115 | 201 | 331
JL(3,3,n) |3 1]1|10|13]16] 46 | 85 | 133 | 271 | 526 | 925
JL(3,4,n) |3 1|1 13|17 ] 21| 73 | 141|225 517 | 1081 | 1981
JL(3,5,n) | 3| 1| 1| 16|21 |26 106 211|341 | 871 | 1926 | 3631
JL(3,6,n) | 3] 1| 1] 192531 145] 295 | 481 | 1351 | 3121 | 6007

Table 4. The distance Jacobsthal-Lucas sequences JL(3,¢,n).

In case d = 2 we can observe the following result.

Observation. Let n > 3, ¢t > 1 be integers. Then

0(CalKi]) = jn.

We give the graph interpretation of the distance Jacobsthal-Lucas num-
bers JL(d,t,n) for a general case d > 3.

Theorem 8. Letn > 3,t > 1, d > 3 be integers. Then for an arbitrary
sequence hn = (H;)ie(1,...,n) of vertez disjoint graphs on t vertices

0d(Cnhn]) = JL(d,t,n).

Proof. Let n, t, d be as in the statement of the theorem. If 3 < n <
2d — 1, then every nonempty d-independent set of C,[h,] has exactly one
vertex, so 04(Cnlhn]) = nt + 1 = JL(d,t,n). Assume that for an arbitrary
subsequence h}, of the sequence h, holds 64(Cm[h},]) = JL(d,t, m), where
m<n.

Let n > 2d and let I be an arbitrary d-independent set of the graph

d—1
Cn[hn]- Let V(Cn[hn]) >D= U V(Hzc)
We distinguish the followingl—cases:
1. |DnI|=90
Then I = I'*, where I* is an arbitrary d-independent set of the graph
Crlhn] \ D which is isomorphic to Pp_(a—1) [h‘_(d_l) . By Theorem

6 there are J(d,t,n+1) d-independent sets containing no vertex from
the set D.
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2. |DNI|#0
Since the subset D induces in C,[h,] subgraph with diameter equals
to d — 2 so |DNI| = 1. Assume that |V(Hf) N D| = 1, where
1 <! <d-1 Let (u,yp) € IND, where 1 < p < t. Then
Ny [(u1,yp)) N I = @ where Ny[z] is the d-distance close neighbour-
hood of the vertex z. This implies that I = I’ U {(u,yp)} where I’
is an arbitrary d-independent set of the graph Cy, \ Na|[(ui, yp)] which
is isomorphic to Pp_(24_1) [h:;-(2d—1) . The Theorem 6 implies that
there are J(d,t,n — d + 1) d-independent sets containing the vertex

(ulv yp)-

Since the vertex (ui,yp) can be chosen on t(d — 1) ways hence from the
above cases we obtain that

04 (Culhn)) = J(d,t,n+ 1) + t(d - 1)J(d, t,n — d + 1).
Claim.

J(d,t,n+1) +t(d—1)J(d,t,n —d+1) = JL(d,t,n) forn >d—1. (2)

Proof. (Proof of Claim by induction on n).
Ifn=d-1,...,2d — 1 then the result follows by simple calculations. Let
n > 2d and suppose that the Claim is true for m < n.
From the definition JL(d,t,n) = JL(d,t,n — 1)+t JL(d,t,n — d).
Using induction’s assumption for the right side of this equation we have
JL{d,t,n—-1)+t-JL({d,t,n—d) =
= J(d,t,n) +t(d—1)J(d, t,n—d) +t[J(d,t,n —d + 1)+
+t(d-1)J(d,t,n—2d+1)] =
=J(d,t,n) +t-J(d,t,n —d+ 1)+ t(d—1)[J(d,t,n — d)+
+t-J(d, t,n—-2d+1)] =
= J(d,t,n+1) +t(d-1)J(d,t,n —d+1),

which ends the proof of the Claim.

Consequently 04(C,.[hs]) = JL(d,t,n) and the theorem is proved. O

The identity (2) can be used to obtain the direct formula the number
JL(d,t,n). Using it in the Theorem 7 it immediately follows.

Theorem 9. Letd > 2,t > 1, n > 1 be integers. Then

JL(d,t,n) =3 (" _pid_ l))t” +td-1)Y ("‘d_ a(d - D)t".

p20 >0 q
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