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Abstract: The concept of signed cycle domination number of graphs in-
troduced by B. Xu [B. Xu, On signed cycle domination in graphs, Dis-
crete Math. 309 (2009)1007-1012) is extended to digraphs, denoted by
v:(D) for a digraph D. We obtain bounds on 7;., characterize all di-
graphs D with /(D) = |A(D)| -2 and determine the exact value of ;. (D)
for some special classes of digraphs D. Moreover, we define a parameter
g'(m,n) = min{y..(D) | D is a digraph with |V (D)| =n and |A(D)| = m}
and obtain its value for all integers n and m satisfying 0 < m < n(n —1).
Keywords: Induced cycle; Signed cycle domination function on digraphs;
Signed cycle domination number of digraphs

1 Introduction

All digraphs considered in this paper are finite without loops or multiple
arcs. The vertex set and arc set of a digraph D are denoted by V(D) and
A(D), respectively. For a vertex set X of D, the subdigraph induced by X
in D is denoted by D{X) and D — X = D{(V(D)\ X). A directed cycle C
of D is said to be an induced cycle if D(V(C)) = C, and we use A(C) to
denote the arc set of C.

In the last decade, some kinds of domination for graphs have been
investigated such as signed domination (see [2,3,7,10]), signed k-domination
(see [4]), signed total domination (see (5,14]), signed edge domination (see
[8,11,12]), signed star domination (see [9,11]), signed cycle domination (see
[13]), and so on. Most of those belong to the vertexr domination of graphs,
only a few results have been obtained about edge domination of graphs.
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For digraphs, the known results on this topic are more less (see [15] and
6)).

In this paper, we extend the concept of signed cycle domination number
of graphs (introduced by B. Xu in [13]) to digraphs.

Let D = (V(D), A(D)) be a digraph with A(D) # 0. A function f :
A(D) = {-1,1} is called a signed cycle domination function (abbreviated
SCDF) on D if 3°.c 4(c) f(e) = 1 holds for every induced cycle C of D.
The signed cycle domination number -y,.(D) of D is defined as: v,.(D) =
min{}_.c 4p) f(€) | f is an SCDF on D} when A(D) # 0; 7v,.(D) = 0
when A(D) = 0. An SCDF f is called a minimum signed cycle domination
functionon D if 3-.¢c 4(py f(€) = Ysc(D).

We present some bounds on v;,, characterize all digraphs D with ~/_(D)
= |A(D)| — 2 and determine the exact value of v, (D) for some spe-
cial classes of digraphs D. Moreover, we define a parameter g'(m,n) =
min{v,.(D) | D is a digraph with |V(D)| = n and |A(D)| = m} and ob-
tain its value for all integers n and m satisfying 0 < m < n(n —1).

2 Terminology and preliminaries

We refer the reader to [1] for terminology and notation not defined here.
Let D = (V(D), A(D)) be a digraph. If zy is an arc of D, then we denote
it by £ — y. In the case when z — y and there is no arc from y to z, we
write £ — y. A directed cycle (or path) of order k is called a k-cycle (or
k-path), denoted by Cy {or Py). If an arc is contained in a 2-cycle, then we
say that this arc is bioriented. Let C = z1x5...x¢z; be a directed cycle of
a digraph D. Then we call the arc z;z; a chord of C in D if it belongs to
A(D)\ A(C) for some 1,5 € {1,2,...,£}.

The underlying graph UG (D) of D is the graph obtained by ignoring all
orientations on the arcs of D and deleting possible multiple edges arising
in this way. We say that D is connected if UG(D) is a connected graph. A
connected component of a digraph D is a maximal induced subdigraph of
D which is connected.

A tournament is a digraph such that for every pair of distinct vertices,
there is exactly one arc between them. An acyclic tournament is called a
transitive tournament.

The complement D of a digraph D is the digraph with vertex set V(D)
and zy € A(D) if and only if zy ¢ A(D). K, is a digraph of order n such
that for any two distinct vertices z and y, there are two mutually opposite
arcs zy and yz.

For two digraphs D; and Da, we define D = D) U D, to be a digraph
with V(D) = V(D) U V(D;) and A(D) = A(D;) U A(Dz). Moreover, we
define H = D; + D, to be a digraph with V(H) = V(D,) U V(D2) and
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A(H) = A(Dy) U A(D3) U {zy,yz | for every vertex z € V(D;) and y €
V(Da)}

According to the definition of signed cycle domination number of di-
graphs, we can easily get the following observation.

Observation 2.1. For any digraph D, |A(D)| > v..(D) > —|A(D)|.
Moreover, for any two digraphs Dy and D,, v..(D1 U D3) = v,.(D1) +
Yae(D2).

For convenience, we define 7(D) = 3 (|A(D)| —v;.(D)). Then v,.(D) =
|A(D)| - 2m(D) for #(D) = 0,1,...,|A(D)|, and immediately, we obtain the
following two useful lemmas.

Lemma 2.2. Let D be a digraph with A(D) # 0 and f be a minimum
SCDF on D. Then (D) = |{e € A(D) | f(e) = -1}|.

Proof. Let E = {e € A(D) | f(e) =1} and F = {e € A(D) | f(e) =
—1}. Then (D) = 3(|A(D)| = 7:c(D)) = 3((|El + |F]) - (IE| - |F])] =
|F| =|{e € A(D) | f(e) =—1}|. D

Lemma 2.3. Let e be an arc of a digraph D such that e is contained
in a 2-cycle. Then for any SCDF f on D, we have f(e) = 1.

To present our main results, we define the following four particular
classes of digraphs:

(1) T = {D| D is a digraph and every arc of D is contained in a 2-cycle};

(2) F ={D| D is a connected digraph and every arc except one of D is
contained in a 2-cycle};

(3) £ = {D| D is a connected digraph as shown in Fig. 1, where D; € T};

(4) H = {D | D is a connected digraph as shown in Fig. 2, where D, € T}

/0\3\ C‘J

Fig.1. The arrow < denotes_that an Fig.2. The arrow <> denotes that an
g setween Cs and (B; is blonente arg between C; and Dy is blorlentedy

3 Main results

First we glve two characterizations of a digraph D with «! (D) =
—|A(D)| and v..(D) = |A(D)|, respectively.

Theorem 3.1. v..(D) = —|A(D)| if and only if D has no directed
cycles.

Proof. As the sufficiency is clear, we will only prove the necessity.
Assume to the contrary that there exists a directed cycle in D, then the
shortest directed cycle C is just an induced cycle. Let f be a minimum
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SCDF on D. Since v;.(D) = —|A(D)|, then f(e) = —1 for every e € A(D).
So L.ca(c)f(e) £ —2. This contradicts the definition of SCDF. Therefore,
D has no directed cycles.O

Theorem 3.2. 4. (D) = |A(D)| if and only if D e T.

Proof. The sufficiency is clear by Lemma 2.3. Now we prove the
necessity. Assume to the contrary that there exists an arc e not contained
in any 2-cycle. Then define f(e) = —1 and f(e’) = 1 for all arcs ¢’ €
A(D) \ {e}. It is easy to check that f is an SCDF on D. According to
Lemma 2.2, we have w(D) > 1, and then, v,.(D) < |A(D)| - 2. This yields
a contradiction. So every arc of D is contained in a 2-cycle, i.e., D€ 7. O

The following theorem provides a characterization of a connected di-
graph D with v;.(D) = |A(D)| — 2 and is proved by five cases: (1) no
cycles in D, (2) no 2-cycles in D but D has an induced 3-cycle, (3) no
2-cycles in D and no induced 3-cycles in D, (4) D has a 2-cycle and an
induced 3-cycle, (5) D has a 2-cycle but no induced 3-cycles. Note that
7:e(D) = |A(D)] — 2 if and only if (D) = 1.

Theorem 3.3. Let D be a connected digraph. Then -, (D) = |A(D)|-2
if and only if D € {P2,C3,C4}, or D€L, orDE F, or D € H.

Proof. (Sufficiency). It is obvious by Lemma 2.3.

(Necessity). If D has no directed cycles, then by Theorem 3.1, v..(D) =
—|A(D)|. Combining with v, (D) = JA(D)| — 2, we have |A(D)| = 1. So
D = P,. Assume in the following that D has at least one directed cycle,
which implies that D has an induced cycle.

Claim 1. D has no induced cycle of length more than 4.

Proof. Assume to the contrary that D has an induced cycle C of length
more than 4. Then let e; and e; be two independent arcs of C. This implies
that e; and e cannot simultaneously lie in an induced cycle of length 3 or
4. Define f(e1) = f(e2) = —1 and f(e) = 1 for all arcs e € A(D) )\ {ey1, ez2}.
It is not difficult to check that f is an SCDF on D. So #(D) > 2, which
leads to a contradiction.O

Case 1. D has no 2-cycles but D has an induced 3-cycle.

Let C3 = ujuguau be an induced 3-cycle. Then V(D) \ {u1,us,us} =
0. In fact, if V(D) \ {u1,u2,us} # 0, then by the connectivity of D,
there exists a vertex v € V(D) \ {u1, u2,u3} such that v is adjacent to Cj.
Assume without loss of generality that v — ;. Since D has no 2-cycles,
we have v — u;. Define f(vu;) = f(uau1) = —1 and f(e) = 1 for all arcs
e € A(D) \ {vu1,uau1}. Clearly, f is an SCDF on D, and then, (D) > 2.
This contradicts the assumption of this theorem. Therefore, D = Cs.

Case 2. D has no 2-cycles and no induced 3-cycles.

In this case, D has an induced 4-cycle by Claim 1. Let Cy = ujugusuquy
be such one. If V(D) \ {u1, uz,u3,us} # 0, then by the connectivity of D,
there exists a vertex v € V(D) \ {u1,u2,us, us} such that v is adjacent
to C4. Assume without loss of generality that v — u;. Define f(vu;) =
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f(uquy) = —1 and f(e) =1 for all arcs e € A(D) \ {vu;,uqu;}. Note that
D has no 2-cycles. So f is an SCDF on D, and hence, 7(D) > 2. This
yields a contradiction. Therefore, V(D) \ {uy, u2,u3, 24} =0 and D = C,.

Case 3. D has a 2-cycle and an induced 3-cycle.

Let C3 = ujuguau; be an induced 3-cycle. Since D has a 2-cycle and
is connected, then V(D) \ {u1,u2,u3} # @ and there is a vertex in V(D) \
{u1,u2,us} adjacent to Cj.

Claim 2. Every arc between C3 and D — V(Cj) is contained in a
2-cycle.

Proof. Assume without loss of generality that wu, is an arc between
C; and D — V(C3). If wu, is not contained in any 2-cycle, then we define
flwuy) = f(uauy) = —1 and f(e) =1 for all arcs e € A(D) \ {wu1, uau,}.
Obviously, f is an SCDF on D. So 7(D) > 2, a contradiction.O

Claim 3. Every arc in D — V(C3) is contained in a 2-cycle, ie., D —
V(C3)eT.

Proof. Let v1v2 be an arbitrary arc in D—V/(C3). If vyv; is not contained
in any 2-cycle, then we define f(viv2) = f(uju2) = —1 and f(e) =1 for all
arcs e € A(D) \ {viva, uruz}. It follows from Claim 2 that ujuz and vyv
cannot lie in an induced 4-cycle simultaneously. So f is an SCDF on D,
and then, 7(D) > 2, which leads to a contradiction.D

From the discussion above, we conclude that D € L.

Case 4. D has a 2-cycle but no induced 3-cycles.

Subcase 4.1 D has no induced 4-cycles.

If every arc of D is contained in a 2-cycle, then it follows from Theorem
3.2 that v}.(D) = |A(D)]. This contradicts the assumption of this theorem.
So there exists an arc not contained in any 2-cycle.

If there are at least two arcs which are not in any 2-cycle, say e; and e,
then define f(e;) = f(ez) = —1 and f(e) = 1 for all arcs e € A(D)\{ey, e2}.
Clearly, f is an SCDF on D, which implies that #(D) > 2, a contradiction.

Therefore, every arc except one of D is contained in a 2-cycle, ie.,
DeF.

Subcase 4.2 D has an induced 4-cycle.

Let C4 = ujusuguqu; be an induced 4-cycle. Since D has a 2-cycle and
D is connected, we know V(D) \ {u1,u2,us,us} # @ and there exists a
vertex in V(D) \ {u1, u2, u3, uq} adjacent to C,.

By a similar argument as in the proof of Claim 2 and Claim 3, we
deduce that every arc between C; and D — V(Cy}) is contained in a 2-cycle
and D — V(Cy) € T, respedctily. So D € H. This completes the proof of
Theorem 3.3.0

Note that v}.(D) < |A(D)| — 4 if and only if (D) > 2. So by Theorem
3.2 and 3.3 we can easily obtain the following corollary.

Corollary 3.4. If D is a connected digraph satisfying D ¢ {P;,C3,C4},
DéT,D¢L,D¢F andD¢H, then v, (D) < |A(D)| - 4.
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One could generalize Theorem 3.3 by removing the requirement that D
is connected.

Theorem 3.5. For any digraph D, v,.(D) = |A(D)| — 2 if and only
if D = Dy UD,, where Dy € T, and D; € {P2,03,C4}, orDy € L, or
D, € F, or D, € H. Here, D, is permitted to be non-eristent, and Dy
exists if and only if D is disconnected.

Proof. Let Di,Dj,...,D; be the connected components of D. Then
D =DjuDjuU...UDj. Note that t > 2 if and only if D is disconnected.
It follows from Observatlon 2.1 that m(D) = m(D7) + n(D3) + ... + n(D}).
Recall that v;.(D) = |A(D)| — 2 if and only if 7(D) = 1. We may assume
without loss of generality that w(Dj) = 1 and #(D!) = 0 for i = 2,...,¢
Let Dy = D, and if t > 2, let Dy = Dy U...UD;. Then D = D, U D,.
According to Theorem 3.3, 7(D;) = 1 if and only if D; € {P,,Cs,Cy},
or Dy € L,or D, € F, or D; € H, and from Theorem 3.2, we know
m(Dg) = w(D3) + ... + m(D;) = 0 if and only if D, € T. Note that when
t = 1, Dy does not exist. So, Ds exists if and only if D is disconnected.O

Theorem 3.1, Theorem 3.2 and Theorem 3.5 characterize all digraphs
D with n(D) = |A(D)|, (D) = 0 and m(D) = 1, respectively. It is natural
to pose the following problem.

Problem 3.6. Characterize all digraphs D with v, (D) = |A(D)| — 4,
ie, m(D) =2.

Next we give another sharp lower bound on +), in terms of the order
and the size of a digraph.

Theorem 3.7. Let D be a digraph with |V(D)| = n and |A(D)| = m.
Then v..(D) > m — n? + n and the equality holds if and only if D is a
transitive tournament.

Proof. First we show the inequality. If D has no 2-cycles, then n(D) <
m < 1(1-"—1 if D has at least one 2-cycle, then by Lemma 2.3, we have
m(D) < M:_l Hence, v..(D) = m — 21r(D) >m-—n?+n.

Now we show that v}.(D) = m —n? +n if and only if D is a transitive
tournament. As the sufficiency is clear, we will only prove the necessity.
If A(D) = @, then m = 0 and 7,,(D) = 0. Combining with v/.(D) =
m —n? +n, we have n = 1. So, D is a transitive tournament with only
one vertex. Assume now that A(D) # 0. Let f be a minimum SCDF on D
and £ = {e € A(D) | f(e) =1}, F = {e€ A(D) | f(e) = —1}. It is clear
that |F| = n(D) = }(m — vi.(D)) = 3(m = m + n? — n) = 21 Define
D, to be a subdigraph of D with V(D,) = V(D) and A(D,) = F. Then
|V(D1)| = n and |A(Dy)| = 20572,

Now we prove that D; has no directed cycles. Assume to the contrary
that D; has a directed cycle, then the shortest directed cycle C in D; is
just an induced cycle of D;. Since f(e) = —1 for every arc e € A(C) C F,
the cycle C can not be an induced cycle of D. That is to say the cycle C

430



has at least one chord belonging to E. Then there exists an induced cycle
C’ in D with only one arc in E and all the other arcs from C. This implies
Zeca(cf(e) < 0, which contradicts the assumption that f is an SCDF
on D. So D; has no directed cycles. Combining with |V (D;)| = n and
|A(D,)] = -'l(ﬁzﬂ, we deduce that D, is a transitive tournament of order
n. It follows that D = D; is a transitive tournament by Lemma 2.3. O

Corollary 3.8. For any digraph D with |V(D)|=n and |A(D)| = m,
if D is not a transitive tournament, then v,.(D) >m —n®+n + 2.

Proof. It follows from Theorem 3.7 that v/,(D) > m —n?+n + 1.
This implies that (D) = 3(m — 75.(D)) < jm —(m —n? +n+1)] =
2{2-) _ 1. Since (D) is an integer, we have m(D) < < 2220 1. So,
v.(D)=m—-2n(D) >m—-n®+n+2.0

Theorem 3.9. If D is a digraph of order n and not a transitive tour-
nament, then v,,(D) + 7..(D) =2 n—n? +4.

Proof. Since D is not a transitive tournament, then D is not a tran-
sitive tournament, too. According to Corollary 3.8, we have 7..(D) +
v..(D) = |A(D)|—n2+'n+2+|A(-D_)|—n2+n+2 = n(n—l)—2n2+2n+4 =
n—n?+4.0

It is very difficult to determine +, (D) for a general digraph D, but for
some special classes of digraphs, we can easily determine their signed cycle
domination numbers.

Theorem 3.10. (1)For any digraph D of order n, v..(D + K,) =
2n+'7,c(D) (2) For any transitive tournament T of order n, v, (T+K,) =
Sn—n

Proof 1) If A(D) = 0, then v..(D) =0and D+ K, € T. Theorem 3.2
implies that v, (D + K,) = 2n = 2n++,.(D). Assume now that A(D) # 0.
Let H= D+ K, and M = A(H)\ A(D). Obviously, |M| = 2n. Let f, be a
minimum SCDF on D and define an SCDF f on H as follows: f(e;) =1 for
all e; € M and f(e2) = fi(ep) for all ez € A(D). Clearly, f is a minimum
SCDF on H and +}.(D + K1) = 2n + v,.(D).

(2) Theorem 3.1 and (1) imply that v,(T + K;) = 2n — "0%°D =
511—n2 i)

Now we define a new parameter for digraphs: g’'(m,n) = min{v.(D) |
D is a digraph with |V(D)| = n and |A(D)| = m}. It is natural to pose the
following problem.

Problem 3.11. Determine the eract value of g’'(m,n) for all integers
n and m satisfying 0 < m < n(n - 1).

In [13], B. Xu defined a similar parameter and posed a similar prob-
lem for graphs. Up to now, his problem remains unsolved. For digraphs,
however, Problem 3.11 is fully solved as follows.

For n = 1and n = 2, it is clear that g’(0,1) = ¢’(0,2) =0, ¢’(1,2) = —
and ¢'(2,2) = 2. So we only need to consider Problem 3.11 for n > 3.
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Theorem 3.12. Ifn >3 and 0 < m < "("2_1), then g'(m,n) = —m.

Proof. Construct a digraph D with |V(D)| = n and |[A(D)] = m
as follows: Let V(D) = {z1,za2, ...,z } and add arbitrarily m arcs of the
form z;z; for some 1 < ¢ < j < n. This construction is reasonable since
m < -'5%;1-1 Then D contains no directed cycles. It follows from Theorem
3.2 that v._(D) = —m and then ¢'(m,n) = —m.O

Theorem 3.13. Ifn > 3 and 271 41 < m < n(n — 1), then
g'(m,n) =3Im —2n(n —1).

Proof. First we construct a digraph D with |V(D)| =n and |A(D)| =
m as follows: Let V(D) = {x;, 32, ...,Z»} and A(D) = {ziz; | i and j are all
integers satifying 1 < i < j < n} U A, where A consists of (m — ﬂl‘{—lz)
arcs of the form z;z; forsome 1 <i<j<n.

From the construction above we know D has exactly (m — 1("2—"11) 2-
cycles and no other induced cycles. Define an SCDF f on D: f(e;) = 1
for all arcs e; contained in a 2-cycle and f(ez2) = —1 for all arcs e; not
contained in any 2-cycle. Obviously, f is a minimum SCDF on D and then
Yse(D) = 3m — 2n(n — 1). So, g’(m,n) < 3m — 2n(n — 1) holds.

On the other hand, for any digraph D with |V(D)| = n and |A(D)| = m,
since m > ﬂﬁ{—ll + 1, the digraph D has at least (m — ﬂﬁz:_ll) 2-cycles.
Lemma 2.3 implies that 7(D) < m — 2[m — 28=1) = n(n - 1) - m. It
follows that v, (D) = m ~ 2m(D) > m — 2[n(n — 1) —m] = 3m — 2n(n - 1).
According to the arbitrariness of D, we have g'(m,n) > 3m — 2n(n ~ 1).

In conclusion, we have g'(m,n) = 3m —2n(n—1). O
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