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Abstract

Let P be a planar point set with no three points collinear. A k-hole
of P is a convex k-gon H such that the vertices of H are elements of
P and no element of P lies inside H. In this article, we prove that for
any planar 9 points set with no three points collinear, with at least §
vertices on the boundary of the convex hull, contains a 5-hole and a
disjoint 3-hole.

1 Introduction

In this paper, we only deal with the finite planar point set P in general
position, that is no three points in P are collinear. Let P be a planar point
set, denote Ch(P) the convex hull of P. For Q C P with CR(Q) P = Q,
we distinguish the vertices which lie on the convex hull boundary from the
remaining interior points. Let V(Q) be a set of the vertices of @, and I(Q)
be a set of the interior points of @, |Q| be the number of points contained
in Q. We say Q is empty if I(Q) = #. A k-hole of P is a convex k-gon
H such that the vertices of H are elements of P and no element of P lies
inside H. A family of holes {H;}icr is called pairwise disjoint, or simply
disjoint, if Ch(H;) NCh(H;) =0, i # j;i € I,j € I. Here, I is an index set.
Determine the smallest integer n(ky, ..., ki), k1 < k2 < ... < ki, such that any
set in general position of at least n(ky,..., k&) points of the plane, contains a
k;-hole for every i, 1 < i <!, where the holes are disjoint. Urabe (1] showed
that n(3,4) = 7 and Hosono and Urabe [2] showed that n(4,4) = 9. In [3],
Hosono and Urabe also showed that n(3,5) = 10. The result n(3,4) = 7
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and n(4,5) < 14 were reconfirmed by Wu and Ding [4]. In [5], Hosono and
Urabe proved n(4,5) < 13 and n(5,5) > 17. Aichholzer et al. [6] gave this
Ramsey-type theorem: Every set of 11 points in the plane, no three on a
line, contains either a 6-hole or a 5-hole and a disjoint 4-hole. Bhattacharya
and Das [7], [8] gave a geometric proof of this theorem. Later, they used this
result to prove n(4,5) = 12 [9]. Also, they evaluated the upper bound on
n(5,5) to 19 [10].

Let R be a region in the plane. An interior point of R is an element of
a given point set P in its interior, and we say R is empty if R contains no
interior points. Let py,pa, ..., pr be k points of set P. We denote (p1p2...px)
be a convex closed region with vertices p, ps, ..., px, Which are labeled consec-
utively; denote a k-hole H by H = (p1pa...pk )« if the closed region (p1ps...px)
is empty. Let {(a,b) be the line passing points a and b. Denote the closed
half-plane with /(e,b), which contains ¢ or does not contain ¢ by H(c;ab)
or H(T; ab), respectively. Denote the convex cone by v(a;b,c) with apex a,
determined by a, b and c¢. For 8 = b or c of ¥(a;b,c), let ' be a point
such that a is on the line segment BB’. If we see y(a;b',c), it means that
a lies on the segment b¥’. As shown in Figure 1, y(a;¥’,c), v(a;b,¢) and
¥(a;b’,¢’) mean the convex cone 1, 2 and 3, respectively. If v(a;b,c) is not
empty, we define an attack point a(a;b, c), such that from the half-line ab to
ac, v(a;b,a(a; b,c)) is empty. When indexing a set of ¢t points, we identify
indices modulo ¢.

Figure 1: v(a; ¥, ¢) and v(a; b’, ¢') mean the convex cone 1 and 3, respectively

Lemma 1. [10] Any set P of 9 points in the plane in general position with
more than 3 points on the boundary of the conver hull, contains a 5-hole.

Figure 2 shows a 9 points set with 4 vertices, we can not find a 5-hole and
a disjoint 3-hole. Figure 3 shows a 8 points set with 5 vertices, we can not
find a 5-hole and a disjoint 3-hole.

2 Main Result and Proof

Theorem 2. Any set P of 9 points in the plane in general position with
more than 4 points on the boundary of the convex hull, contains a 5-hole and
a disjoint 3-hole.



Figure 2: 9 points set with 4 vertices, no a 5-hole and a disjoint 3-hole.

Figure 3: 8 points set with no a 5-hole and a disjoint 3-hole

Proof. Let P be a planar 9 points set in general position, with |V(P)| > 5.
Obviously |V(P)| < 9. In the following, we depart two parts to discuss.

Part one: 6 < [V(P)| < 9.

Case 1: |V(P)| = 9. Denote the vertices of P by v; for i = 1,...,9 in
anticlockwise. We have (v1v2v3v405)s and (vev7vs)s.

Case 2: |V(P)| = 8. Denote the vertices of P by v; for ¢ = 1,...,8
in anticlockwise and the remaining 1 interior point by p;. Assume p; €
(v1v2v3vqvs). (Symmetrically, when py € H(Tz;v,vs), our conclusion is also
right.) Ifp; € (‘Ul‘Us’Us'U—,-'Us), we have (‘01115’061)71!8)5 and (’02’03‘04)3. Ifp €
(vavavy), we have (v1vep1v4vs)s and (vevrvs)s.

Case 3: |V(P)| = 7. Denote the vertices of P by v; for ¢ = 1,...,7 in
anticlockwise and the remaining 2 interior points by p;, p2. Consider the two
open half-planes H(vy; p1p2) and H(71; p1p2) separated by [(p1,p2). If either
of these two half-planes contains more than 4 points of V(P), the result is
correct. Otherwise, we may assume that |H(vy;p1p2) N V(P)| = 4. In this
case (H(vy;p1p2) N V(P)) U {p1} form a 5-hole disjoint from the 3-hole in
H(w;pp2) NV (P).

Case 4: |V(P)] = 6. Denote the vertices of P by v; for ¢ = 1,...,6
in anticlockwise and the remaining 3 interior points by pi,p2,ps. In the
following we will consider the location of p;, p2 and ps.

Subcase 4.1: All of the 3 points lie in (vjvovg). We have (vouzusvsvs)s
and (p1p2ps)s.

Subcase 4.2: Two of the 3 points, say pi, pa, lie in (vyvave).

If p3 € (vousvs), we have (pavouavavs)s and (vip1p2)a. If ps € (vavavs), we
have (p3vsvausvs)s and (vipipe)s. If ps € (vavavs), we have (vauapavsve)s
and (vip1pe)s. If pa € ~y(vs;vs,v6) N ¥(vs;v2,v3): and if (p3;vz,vy) is not
empty, we have (vovzuapspi)s and a 3-hole from the remaining 4 points,
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where py = a(ps; v2,vy); and if (ps;vs,v}) is empty, we have (v4vsvspaps)s
and a 3-hole from the remaining 4 points, where ps = a(ps; vs, v}).

Subcase 4.3: One of the 3 points, say p1, lies in (vvovs).

Then we will consider the location of the remaining 2 points, say ps,
p3. Assume po, p3 are in (vausvg). We have (vouzvqusps)s and (vip1ve)3,
where p2 = a(vo;us,vs). Assume pz, ps are in (vavsvaus). If (vowsvs)
is empty, we have (p1vov3usug)s and (p2psva)s; if (vavsvs) is not empty,
let po = o(vs;v2,v3), we have (p1vopousvg)s and (psvavs)s. Assume po
is in (vavusvs), and p3 is in (vovsvavs). If p2 € y(vg;va,v3) N Y(v2;vs,ve):
and if p3 € 7(p2;v2,v4), we have (pauavsvsve)s and (vivep;)s; and if p3 €
Y(p2; va, v§), We have (p2p3vsvsve)s and (vivep:)s; and if p3 € (p2; vs, vs),
we have (p2v2vzvaps)s and (vivepi1)s. If p2 € v(ve;vs,vs) N ¥(v2;vs,ve):
and if p3 € 7(p2;v3,v2), we have (p3vavqusp2)s and (vivep;)s; and if p3 €
v(p2; v3, vs), we have (p1vov3pave)s and (v4vsps)s.
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Figure 4: The shaded region is empty.

Subcase 4.4: No one of the three points lies in (vivovg). Similarly as
before we can prove the result is correct, when the shaded region of Figure 4
is not empty. So in the following, we may assume the shaded region of Figure
4 is empty.

If y(vg; v, va) or y(ve; v, v3) is empty, we can easy to see the result is cor-
rect. So we may assume y(vs; V3, v4) and 7(ve; vz, v3) are not empty, without
loss of generality, suppose p1 € v(vs; v3,v4) and pa,p3s € Y(vs;v2,v3). As-
sume p; € v(v4; v1,V6). If ¥(p1; ve,vy) or v(p1;va, vg) is not empty, the result
is right. If v(p1;ve,v4) and ¥(p1;v3,vg) are empty, we have (vausvgp1p2)s
and (v1vsve)s When v(p1;vq,vE) is empty and p2 = a(pi;vi,vs), we have
(v1v6vUsp1p2)s and (vav3ve)s when v(py; v1,vy) is empty and p; = a(p1;vh, v1),
we have (v)v2p2p1P3)s and (v3v4vs)3 when pa € (p1;v2,v5), p3 € ¥(p1;v1,v4).
Assume p; € y(vq;v1,v2). The result is also right by the similar reason for
P1 € Y(v4;v1,6)-

Part two: |V(P)| = 5.

By Lemma 1, we know P contains a 5-hole F', denoted by (vivov3vgvs)s.
Name the remaining 4 points p1, p2, p3, ps. Denote the convex cone E; =
¥(vi; Vig1,vi-;) for 1 < i < 5, and the triangular zone F; = E;NH (vi; vit1vi42)
for 1 <7 < 5. If any triangular zone F; contains at least three of the remain-
ing 4 points p1, p2, p3, ps, then the conclusion is right. So we may assume
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|Fi] < 2, that is to say, every triangular zone F; contains at most two of the
remaining 4 points py, p2, p3, pa. Let Q = {vy,v2,v3,v4,v5} N V(P). In the
following, we will consider the value of |@Q|. Since |V(P)| =5,s0 |Q| > 1. If
|@Q| = 5, then we can prove F is not a 5-hole, a contradiction. So |@Q| < 4.

Case 1: |@Q| = 4. Assume vy, v9,v3,74 € Q.

If F1, F> and F3 are not empty, then we have [Q] > 5. So suppose Fj,
F, and F; are empty. Assume |F5| = 0. Then p;,pa,p3,pa € v(v4; vs,v3),
we have the 5-hole F' and a 3-hole from {p;,p2,p3,p4}. Assume |F5| = 1.
Let p; € Fs, we have the 5-hole F' and (papsps)s. Assume |F5| = 2. Let
P1,P2 € F5 and p; = a(vs; v1,v4), we have (pv1v2v3vs)s and (v4p3pa)s.

Case 2: |Q| = 3. Assume v;,v2,v3 € Q.

If F, and F, are not empty, then we have |Q] > 4. So suppose F} and
F, are empty. Assume |Fz| = 0. If |F3| = 0, we have the 5-hole F and a
3-hole from {p1,p2,p3,pa}. If |F3| = 1, let p; € F3, we have the 5-hole F'
and (popsps)s. If |Fs| = 2, let p1,p2 € F3 and py = o(vs; vs,vg), we have
(p1vav1v2vs)s and (vspaps)s. Assume |F5| = 1. Let py € Fs. If |F3| = 0,
we have the 5-hole F and (papsps)s. If |F3| = 1, let po € F3, we have
(p1v1v2113p2)5 and a 3-hole from {1)4,’05,})3,174}. If [Fsl = 2, let py,p3 € F3,
we have (pv1v2v3vs)s and (vgpaps)s. Assume |Fj| = 2. Let p),p2 € Fp
and p; = a(vs;v1,v}). If [F3] = 0, we have (p1v1v2v3v4)s and (vspaps)s. If
|F3] = 1, let p3 € F3, we have (v1v2v3pavy)s and (vspipz2)s. If |F3| = 2, we
have (pyv1v2v3vs)s and (v4papa)s.

Case 3: |Q| = 2. Assume v;,v2 € Q.

If F} is not empty, then we have |Q| > 3. So suppose F) is empty.

Subcase 3.1: |F3| =0.

At first assume |Fs| = 0. If y(vq; v3, v5) N H(vs; v1v2) has at most 1 point
or at least 3 points, our conclusion is right. So we may suppose v(vy; v3,v§) N
H(v3;v1v2) has 2 points, say p1,p2. Let py = a(vs; v}, v3), p3, ps € ¥(v4; 3,
vs) N H(vyg;v192), and p3 = a(vs; vy, v1)- If pr € y(vs; vg, v5) N Y(va; v3,v5),
P3 € ¥(va; pi,v3), we have the 5-hole F and a 3-hole from {pi, p2,p3,p4}. For
other locations of p; and p3, the proof are similar.

Secondly assume |F5| = 1. Let py € Fs. If y(v4;vs,vg) N H(vs; vivz)
is empty, we have the 5-hole F' and (p2paps)s. If v(vs;vs, v§) N H(vs;viv2)
has 1 point, say ps, we have (p1v1v2v3vs)s and (Vgpaps)s. If y(vs;vs,vE) N
H(v3;v1v2) has 2 points, say p2, p3, We have (p1v1v2v3v5)s and (v4p2ps)s.

Thirdly assume |F5| = 2. Let p1,p2 € F5 and p; = ofvs;v1,v)). If
v(va; v3,v§) N H(vs; v1v2) is empty, we have (p1viv2v3vs)s and (vapsaps)s. If
v(va; v3,v5)N H (vs; v1v2) has 1 point, say ps: and if ps € y(v4; 5, v§), we have
(P1v1v2v3vs)s and (v4pspa)s; and if pa € ¥(vs; py,va) N H(vs;v3v4), we have
(p1v1vapavs)s and (vousps)s; and if ps € y(vs; p},v}), we have (p1v1v2v3v4)5
and (papavs)s. If y(vy;vs,v§) N H(vs; v1v2) has 2 points, say ps, ps, we have
(p1v1v2v3vs)s and (vapapa)s.

Subcase 3.2: |F3| = 1. Let p; € Fs.
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If |F5] = 0, by the Subcase 3.1, we know our conclusion is right. If
|Fs| = 1, let po € F5, we have the 5-hole F' and (pipsp4)s when the shaded
region of Figure 5 is empty; we have (pv3vapivs)s and a 3-hole from the
points in the shaded region when the shaded region of Figure 5 is not empty.
If |Fs| = 2, let pa, p3 € Fs, we have (pyv3v4v1v2)5 and (p2psvs)s.

Figure 5:

Subcase 3.3: |F3| = 2. Let py,p2 € Fo.

Let py = a(vs;ve,vy). If [F5] < 1, we know our conclusion is right
similarly as before. If |F5| = 2, let p3,ps € Fs, we have (p1vavqv1v2)s and
(vspapa)s.

Case 4: |Q| = 1. Without loss of generality, suppose v € Q. And
D1, D2, D3, P4 are all the vertices of P in clockwise.

Subcase 4.1: y(v1; v2,v}) is not empty (Similarly, when -y(v3; v, v§) is not
empty, the result is also right).

Let p; = a(v1;v2,v}). We have (p,vauzvgv:)s and (vspaps)s.

Subcase 4.2: y(vy; v2,v}) and vy(vs; v2,v§) are empty.

At first assume p; € (v1;v3,v3). Then ps € ¥(p1;vs,vs). Suppose p; €
¥(p1;vs,v5) N H(p1;v4vs). We have (p1v1v4vsp2)s and (vevsps)s. Suppose
p2 € ¥(vs; vy, vy). If p3 € y(p1;vs5,v5), we have the 5-hole F and (p1p2ps)s;
if p3 € y(v4;v],p2) N H(va; P1vs), we have (pyv1v4p3vs)s and (vovapy)s; if
s € ¥(v4; v1, p3) N H(v4; v203), we have (v1v2vspava)s and (vspipe)s; if ps3 €
¥(vs; vy, v5) N H(T3;v4v5), we have (v1vspapavs)s and (vsp1ps)s when py €
7v(v3;v1,v3), or we have (p1vapavavy)s and (v4uspa)s when py € v(vs; v}, v});
if ps € ¥(va; P2, v3) N H(T3; vav3), we have (Pivapapsva)s and (v4vspa)s. Sup-
pose p2 € y(vs; p},v1). If p2 € Fy, we have (pausv1v2v3)s and (vgpspa)s; if
P2 € v(vs; p},vy) N H(Vs;v3v4), we have the 5-hole F and (p2p3ps)s.

Secondly assume p; € y(v1;v5,v5) N H(vy;v4vs). Similarly as before, we
know the conclusion is also right when pgs € y(v3; v, v). So we can assume
Pa € v(v3;v1,v3) N H(va;v4vs). Suppose pa € ¥(p1;vs, v3) N H(py;vavs). If
ps € H(pa; p1vs), we have the 5-hole F and (p1papa)s; if ps € 7(vs; v4, 7)) N
H(vs;v1v4), we have (p1viv4pavs)s and (vausps)s; if ps € vy(vg;vl,vf) N
H (v4; vou3), we have (vivouspave)s and (p1pavs)s; if p3 € y(vs; vh,v}), we
have (p1v1v3v4vs)s and (vopsps)s. Suppose ps € v(p1;vs,v5) N y(v4; vs, v3).
If p3 € H(pa; p1vs), we have the 5-hole F' and (p1p2p3)s; if p3 € ¥(v4; pa, v{)N
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H(v4; p1vs), we have (pivivapavs)s and (vavspa)s; if pa € v(v4;p5,v1) N
H(vg;vqv3), we have (v1vpvspsvs)s and (vspipz)s; if ps € 7v(va;ph,v7) N
H (7g; vav3), we have(p;v1v3v4v5 )5 and (vopspe)s. Suppose p2 € y(vg; vy, vg)N
H(vg; p1vs). We have the 5-hole F' and (papsp4)s.

Thirdly assume p; € y(vs;v],v3) N H(T1;v4vs). If pg € y(vg;v5,v5) N
H(73; v4vs5), then we have the 5-hole F' and a 3-hole from {p1,p2,p3,ps}. If
P4 € Y(v3; v, vg) or pg € y(vs; vh,vy) NH(vs; v4vs), the proof is similar. O
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