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Abstract

In this paper we define new types of generalizations in the dis-
tance sense of Lucas numbers. These generalizations are based on in-
troduced recently the concept of (2, k)-distance Fibonacci numbers.
We study some properties of these numbers and present identities
which generalize known identities for Lucas numbers. Moreover, we
show representations and interpretations of these numbers.
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1 Introduction

In general we use the standard notation, see [2, 4]. The Fibonacci num-
bers F,, are defined by the following recurrence relation F,, = Fj,_1 + Fj,—2
for n > 2 with initial conditions Fo = F; = 1. The Lucas numbers L,
are defined by the same recurrence L, = L,_1 + Ln_o for n > 2 with
Lo =2, L; = 1. In the literature there are many directions of generaliza-
tions of the Fibonacci numbers with respect to one or more parameters,
see [6, 7, 8, 9, 10, 14]. Some of them generalize Fibonacci numbers in the
distance sense. In [13] M. Kwasnik and I. Wloch introduced generalized
Fibonacci numbers F(k,n) and generalized Lucas numbers L(k,n) as fol-
lows: F(k,n) = F(k,n—1)+ F(k,n—k) for n > k+1 with F(k,n) =n+1
for n < k. Generalized Lucas numbers L(k,n) were defined using numbers
F(k,n). Recently in [14] more comfortable recurrence for L(k, n) was given,
namely L(k,n) = L(k,n— 1)+ L(k,n — k) for n > 2k with L(k,n) =n+1
forn=0,1,...,2k—1. The paper [13] initiated studying of different kinds
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of distance generalizations of the numbers of the Fibonacci type, see for
instance the last papers [1, 3, 15, 17]. The interest of these numbers was
motivated by their graphs interpretations which are closely related with dis-
tance independent set. Independent sets and kernels are intensively studied
in the graph literature, see (18, 19] and the last interesting papers of H.
Galeana-Sanches and C. Hernandez-Cruz [11, 12].

In [1] it was presented the distance Fibonacci numbers Fd(k,n) de-
fined in the following way

Fd(k,n) = Fd(k,n — k+ 1) + Fd(k,n — k) for n > k,

where Fd(k,n)=1forn=0,1,...,k—1, k> 1.

Natural continuation of these numbers were distance Fibonacci num-
bers introduced in [17], called (2, k)-distance Fibonacci numbers Fy(k,n)
and defined recursively by the following relation

Fy(k,n) = Fa(k,n —2) + Fo(k,n—k) forn > k 1)
with initial conditions F5(k,i) =1 for i =0,1,...,k—1.
The Table 1 includes initial words of (2, k)-Fibonacci numbers for special

k and n.

Tab.1. (2, k)-distance Fibonacci numbers

n 0J1]2][3]4a]5] 6] 78] 9 J10] 11 12 13 14
Fo(1,n) | 1 | 1| 2| 3]5 8|13 |21 |34 | 55| 89| 144 | 233 | 377 | 610
Fo(2n) |1 [ 1|2 2]4]4a] 8 | 8 |16 |16 | 32| 32 | 64 | 64 | 128 |

 Fa@B.n) 1|1 [1(212] 3] 4 5 7 | 9 | 12 | 16 21 28 37
Fo@n) [1 11|12 2] 3| 35|58 [ 13 13 [ 21
2(5,m) |1 |1 ] 1|1 |1]2] 2] 3| 3] 4735 [ 8 9 12
[F2(6,n) [T [T |1 |1 |11 2] 2] 3]3]4 4 6 6 9

In this paper, being a sequel of papers (1, 3, 17] we introduce two
cyclic versions of the (2, k)-distance Fibonacci numbers F3(k, n) which gen-
eralize the Lucas numbers L,,.

2 Generalized Lucas numbers

Let k > 1, n > 0 be integers. The (2, k)-distance Lucas numbers L$" (k, n)
of the first kind are defined by the recurrence relation

L (k,n) = LY (k,n = 2) + LD (k,n — k) for n > & @)
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with initial conditions

L (k,0) = 2, for k=1,2,3,

L (k,0) = k, for k>4,

L& (k1) k, for k>1,
Lgl)(k,n) = 2forn=2,3,...,k—1.

The Table 2 includes initial words of (2, k)-distance Lucas numbers of the
first kind for special k¥ and n.

Tab.2. (2, k)-distance Lucas numbers of the first kind

n 0]1]21314] 5] 6 78] 9] 10 ] 1112 ] 13
ta,ny [2] 1 [3[af7[11[18]20|a7 | 76 123 ] 109 | 322 | 521
LiP@2,n) | 2] 24|48 8 |16]16]32]32 64 | 64 | 128 | 128
LV@ny 23255 71101217 [22] 2 [ 39 | 51 | 68
L4n) |a]la]l22]6] 6 | 8| 8 [14]14] 22 | 22 | 36 | 36
LVsny [s[s5[2f22] 7 79[ 9 [11] 16 ] 18 [ 25 | 27
LV@6n) [6]el2f2l2]2 8] 8 10[10f 12 ]12] 20| 20

It is easily seen that Lgl)(l,n) = L,. For k = 2 we obtain known
sequence with powers of 2 which double up. Moreover, Lgl)(3, n) = Pr(n+
2), where Pr(n) is the n-th Perrin number defined as follows: Pr(n) =
Pr(n—2)+ Pr(n-23) for n > 3 with Pr(0) = 3, Pr(1) = 0, Pr(2) = 2. For
even k and n > 0 we have Lg”(k, 2n) = Lgl)(k, 2n 4+ 1). It is easily seen
that for even k& and n > k the sequence of numbers Lgl)(lc, n) has terms
repeated twice. In addition, for k =4 and n > 1 L (4,2n) = 2L (1, n),
so in this case we obtain double Lucas sequence.

Now we give a combinatorial interpretation of the (2, k)-distance Lu-
cas numbers of the first kind. It is worth mentioning that Lg) (2,n-1)
for n > 1 is the number of symmetric partitions of n or equivalently the
number of subsets S of the set {1,2,...,n} which satisfies the following
condition: m € § implies that n —m +1 € §, see [5].

Assume now that k > 1, k # 2, n > 3 are integers and n > k. Let
X ={1,2,...,n}. Fori,j € X we define i @ j as follows

N L fori+j <m,
zeaJ_{-i+j—'n fori+j > n.
In other words we say that X contains n cyclically consecutive integers.

Let 1 < k < n+1 and C(k,n) = {Cyi;i = 1,2,...,p} such that
Ci={tic1®1,ti-1®2,...,t;} fori=1,2,...,pand
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(). 1is an element of Cy,
(%). |G| € {2, k:} fori=1,2,...,p,

(#43). n—1<Z|C|<n

The family C(k n) is called cyclic k-decomposition of the first kind of the
set X.

Let us recall from [17] that J = {Y;;t € T} being the family of
disjoint subsets of the set X such that each subset Y;, ¢ € T contains
consecutive integers and satisfies the following conditions:

d) |Y;] € {2,k} fort e T,
e) IX\thTYzI €{0,1},

fifme (X\ U Y:) then m =n.
T

te
is called a decomposition with the rest at most one of the set X.

Theorem 1 Letn > 3,1 < k < n, k # 2, be integers. Then the number
of all cyclic k-decompositions of the first kind of the set X is equal to the

number Lgl) (k,n).

Proof. It is easily seen that the Theorem holds for n = k. Let n > k+ 1.
By the definition of the family C(k,n) we consider two cases:

(1) |G| =2

Since 1 € C;, we have exactly two possibilities of subsets C; of the form
{1,2}, {1,n}. Thus C(k,n) = F(k,n)U C,, where F(k,n) is any decom-
position with the rest at most one of the set X \ C;. Therefore we obtain
2F(k,n — 2) families F(k,n) in this case.

(2) IC1]| = k.

Proving analogously to the case (1), we obtain kF3(k,n—k) families C(k, n)
including the subset C; of the cardinality k. Finally, we obtain that the
number of all families C(k, n) is equal to 2F3(k,n — 2) + kFy(k,n — k).

Claim.
2Fy(k,n —2)+ kFy(k,n— k) = Lgl)(k,n) for n>k. 3)

Proof (by induction on n). If n = k then the result is obvious. Let n > k.
Assume that the formula (3) is true for an arbitrary n. We will prove it for
n + 1. By the recurrence definitions of the numbers La(k,n) and Fp(k,n)
and by the induction hypothesis, we obtain

LOEn+1)=LPk,n—1)+ LP(k,n+1-k) =

= 2Fy(k,n—3) + kFy(k,n—k —1) + 2F3(k,n — 1 — k)+
+ kFy(k,n+1~2k) = 2Fy(k,n— 1) + kFy(k,n+1 — k),
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which completes the proof. ]
For k = 1 from the above Claim we obtain the well-known identity L, =
Fo1 +2F, .

Now we introduce (2, k)—distance Lucas numbers of the second kind.
Let k > 1, n > 0 be integers. The (2, k)—distance Lucas numbers of the

second kind ng)(k, n) are defined by the following recurrence relation
LOUk,n)=LPUk,n-2) + LP(kyn—k) forn > k 1)
with initial conditions
LP(k,0) = 2 fork#3, L¥(3,0)=1,
LP(k,1) = 2 fork#1, LP1,1)=1,
ng)(k,n) = 1 for2<n<k-1.

The Table 3 includes initial words of the (2, k)-Lucas numbers of the second
kind for special k¥ and n.

Tab.3. (2, k)-distance Lucas numbers of the second kind

n 0] 1] 2]3]a] 5T 6 78910111213
t¥,ny |21 ]34 7] 11]18 2 |47 |76 123 | 109 | 322 | 521
L¥@2,n) | 212]4]4]8] 8 |16]16]32]32] 64 | 64 | 128 | 128
L¥@,n) |1l2}1]3][3] 4] 6] 7 ]1w0]13[17] 23| 30| 40
LP4n) 221|133 ] a4l 4] 7] 711 ] 11 ] 18]18

L6, 22111 3] 3[4af[als 7 8 1n | 12
L¥e6,n |2]2]1]1]1] 113 [3]4a]a 5 5 8 8

Observe, that for k = 1 we have L§2)(1, n) = L,. Moreover, for k = 3 we
have special sequence, see [5]. Analogously as in the previous case for k = 2
we get the same sequence with powers of 2 which double up and for k = 4
we obtain double Lucas sequence. The sequence ng) (k,n) for even k and
n > k also has terms repeated twice.
Now we give the combinatorial interpretation of the numbers L‘(,Zz) (k,n).

For k = 1 we have known combinatorial representation of Lucas numbers.
Assume that £ > 3 and n > 3. Let X = {1,2,...,n} contains n cyclically
consecutive integers. For fixed k£ > 3 and n > 3 let C*(k,n) = {C};i =
1,2,...,p} such that C} = {to®1,1082,...,t:1}, C} = {t:91,1:82,...,1t2},
v Cp = {tp-1®1,t,_1®2,...,%,} and the following conditions hold
(8)- (tp =1 and |C;| = k) or to = n,

(%). |Cf| € {2,k} fori =1,2,...,p,

P
(i#). n—1< 3 G| <.
i=1
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The family C*(k,n) is called cyclic k-decomposition of the second kind of
the set X.

Theorem 2 Let n > 3, 3 < k < n be integers. Then the number of
all cyclic k-decompositions of the second kind of the set X is equal to the

number ng) (k,n).

Proof. For n = k — 1 the Theorem is obvious. Let n > k. By the definition
of the family C*(k, n) we consider the following possibilities:
(1) tp=1and |C}| = k.
Since the subset {n — k +2,...,n,1} € C*(k,n), we have that C*(k,n) =
F(k,n)U{n—k+2,...,n,1}, where F(k,n) is any decomposition with the
rest at most one of the set X \ {n — k + 2,...,n,1}, which is isomorphic
to the set X’ = {1,2,...,n —k}. From the combinatorial representation of
the number F3(k, n) we obtain that there are F5(k,n — k) families C*(k, n)
including the subset {n — &k +2,...,n,1}.
(2) to =n and |Cf| = k.
Proving analogously to the case (1), we obtain F3(k,n—k) families C*(k, n)
including the subset {1,2,...,k}.
(3) to=nand |[Cf| = 2.
Proving analogously to the case (1), we obtain F3(k,n —2) families C*(k, n)
including the subset {1,2}.

Finally, we obtain that the number of all families C*(k, n) is equal to
Fg(k, n-— 2) + 2F2(k, n-— k).

Claim.
Fy(k,n—2) + 2F(k,n— k) = LP (k,n) for n > k. (5)

Proof (by induction on n). If n = k then the result is obvious. Let n > k
and assume that the formula (5) holds for an arbitrary n. We will show
that it is true for n+ 1. Using the definitions of the numbers L (k, n) and
F,(k,n) and by the induction hypothesis, we have

LPk,n+1)=LPk,n-1)+LPkn—k+1) =
Fa(k,n—3) + 2Fy(k,n— k= 1) + Fy(k,n — k — 1)+
2Fy(k,n — 2k + 1) = Fy(k,n — 3) + Fa(k,n — k — 1)+
2Fy(kyn—k —1) + Fy(k,n — 2k + 1)) =

Fy(k,n—1) + 2Fy(k,n — k + 1),

which ends the proof. m]

It is worth mentioning that (2, k)-distance Lucas numbers of the first
and the second kind have graph interpretation closely related to the concept
of H-matchings. Let G and H be two graphs. An H-matching M of G is

m+ 4+
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a subgraph of G such that all components of M are isomorphic to H. If
M is also an induced subgraph of G, then H-matching is called induced.
Problem of counting H-matchings in some graphs was considered in [14].
Let V(C,) = {z1,22,...,Za}, n = 3, be the vertex set of the graph Cj,
numbering in the natural fashion. Graph interpretation of the numbers
Lgn (k,n) and ng)(k,n) concern the special coverings of C,, by subgraphs
P, i € {2,k}. In the first case the number Lgl) (k,n) is equal to the number
of { P2, P }-matching of C,, such that the vertex z, is an arbitrary vertex of
the subgraph P; which belongs to { Py, P;}-matching of C,, . The number

ng)(k, n) is equal to the number of all such {P;, P }-matchings of the graph
C., such that z; is a pendant vertex of a subgraph P;, i € {2,k}.

3 Identities

In this section we present the list of identities for the distance Lucas num-
bers of the first kind L{"(k,n) and the second kind L{? (k,n), which gen-
eralize known identities for Lucas and Perrin numbers.

Theorem 3 Forn>1

@) 3Lk, ki+m) = LY (k,nk +m+2) - 2 fork > 3 and
i=]

0<m<k-3

@) Y L33 +1) = L{P(3,3n +3) - 5.

i=1

Proof.
(¢) (by induction on n). For n =1 we have

LPUk+m+2) -2 = LPKEk+m)+LP(k,m+2)—2=
= L{P(kk+m)+2-2=LP Kk, k+m).

Assume that the formula (6) holds for an arbitrary n. We will prove that

n+1
3 LP(k, ki+m) = L (k, (n + 1)k +m +2) - 2.

i=1
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By the induction hypothesis and recurrence relation (2), we obtain

n+1l n
Y LP (k ki +m) =3 L& (k, ki + m) + L (k, (n + 1)k +m) =
i=1 i=1

= L{Vknk+m+2) -2+ L (k,nk+k+m) =
= LPknk+m+2+k)—2=LOKk, (n+ Dk +m+2)—2,

which ends the proof.
(%) analogously as in (z). o

Note that by (i) for £ = 3 we obtain the well-known identity for the Perrin
numbers: n
> Pr(3i) = Pr(3n +2) - 2.

i=1
Theorem 4 Letn > 1. Then
@) Y LP(kki+m)=LP(knk+m+2)—1fork >3 and
i=1

0<m<k-3

@) S LP(kki+m) =L (k,nk+m+2) -3 fork >3 and
=1

k-2<m<k-1,

n
() > LP(kki+k) =L (k,nk+k+2) -4 fork > 1,k #2.
i=1
Proof.
(iv) (by induction on n). It is easy to check that the formula (iv) is true
for n = 1. Assume that the formula (iv) holds for an arbitrary n. We
will prove that it holds for n + 1. Using the induction hypothesis and the
recurrence (4), we have

n+1l n
STLP (ko ki+m) = L (k,ki+m) + L (k, nk + k + m)
i=1

i=1
= LP(k,nk+m+2) -1+ LY (k,nk + k +m) =
= LP(knk+k+m+2) -1,

which completes the proof.
(v), (vi) analogously as in (iv). m]
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For k =1 by (vi) we get the well-known identity for Lucas numbers

z L‘-I-l n+3 -

Theorem 5 Forn>k andk >3
LY (k,n) = Fy(k,n) + Fy(k,n — k).
Proof. By the definition of the numbers F3(k,n) and (5), we have
F(k,n) + Fo(k,n — k) =
= Fy(k,n —2) + Fa(k,n — k) + Fo(k,n — k — 2) + Fp(k,n — 2k) =
= Fa(kyn —2) + Fa(k,n - k — 2) + Fa(k,n — 2k) +
+Fy(k,n — k —2) + Fy(k,n — 2k) =
= Fy(k,n —~4) + 2F(k,n—k —2) + Fo(k,n — k — 2) + 2F5(k,n — 2k) =
=LP(k,n - 2) + LY (k,n — k) = L (k, n).

(]
By the Table 4 we can observe that fork >3 and m=0,1,...,k-1
we have the following result:

Lg"’)(k,k+m)=3+[-’;-‘J.

Tab.4. Some (2, k)-distance Lucas numbers of the second kind

n 3 5(6|7(8[9[10f11)12 131415

LY3,n) | 3
L3 (4,n)
LP(5,n)
L(6,n) 3
Ly (7,n)
LS (8,n)

Wl |~

4
34
3

515
4 [ 5|5 ] 6
3[4 )4|5!5 16|86

w
wloo ]|
s fon

QIO | |

For both kinds of (2, k)-distance Lucas numbers we get.
Theorem 6 Forn>2k—2andk>1andj=1,2

L (kyn) = L (k,n = 3) + LY (kyn —k+2) — LY (k,n — 2k +2).  (6)
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Proof. We will prove the formula (6) for numbers L( )(k n). The same

proof works for numbers L( )(k n).
Using twice the recurrence (2), we obtain

Lgl)(k,n -2)+ Lgl)(k,n -k+2)=
=L (k,n—2) + LV (k,n — k) + L (k,n — 2k +2) =
= L{P(k,n) + LV (k, n — 2k + 2).
Hence we get the formula (6). o

In [17] it was proved the following result.

Theorem 7 (17] Letn > 2, k > 2 be integers. Then Fy(k,n) = E ('+l"""J).
i=0

By Theorem 5 and Theorem 7, we get the direct formula for numbers
LP (k,n).

Theorem 8 Letn > 2, k > 3 be integers. Then
L#] n—ik l-"-';Jij . n—k—ik
i+ i+ | B==
LO (k) = z( |25 J) 5 < | 3 J)_
i=0 =0
Analogously, using the equality (3) and Theorem 7, we get

Theorem 9 Letn > 2, k > 3 be integers. Then

L{P(k,n) =2 lzj (z + [";'2—sz) .\ kléj ( | pokeik k—sz)

Similarly to the classical Lucas numbers, (2, k)-distance Lucas num-

bers Lg’ )(k,n), Jj =1,2, can be extended to negative integers n. Let k > 1,
k # 2, n > 0 be integers. Then for j = 1,2

Lk, —n) = L (k,—n + k) = LY (k, ~n + k= 2) for n > 1 (7
with the same initial conditions as for ng )(k, n).

For example, the Table 5 includes initial words of (2, k)-distance Lu-
cas numbers of the second kind for special k and negative n.
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Tab.5. (2, k)-distance Lucas numbers ng)(k, n) for negative n

n ~10 -9 —8 -7 —6 -5 —4 -3 -2 -1 0 1
L¥,n) | 123 ] -76 ] a7 [ -20 ] 18| —11 7| -4 3| -1[2]1
L (3,n) 3 o] ~2 3] -2 1 1| -1 2 0|l1]2
L¥@4,n) [ -11 | —-11 7 7] -4 -4 3 3{-1}|-1]2]z2
L") (5,n) 6 1| -4 -3 1 3 2| -1] 1 o022

Proving analogously as Theorem 4, we get the following relations for
(2, k)-distance Lucas numbers ng)(k, n) for negative integers.

Theorem 10 Lei n > 0. Then
n
G) 2 LP(k,—ki+k)=-LP(k,—nk+2)+1 fork>3,

=1
(i) 3 LP(k,—ki) = —LP(k,—nk —k+2)—1 fork>4,
i=1

i) 3o L(3,-3i) = —LP(k, —3n — 1).
=1

4 Concluding remarks

In this paper we introduce special generalizations of the well-known Lucas
pumbers L,, in the distance sense. These generalizations are closely related
to the concept of distance independent sets. We express the generalized
Lucas numbers in terms of an integer parameter k determining any element
of the sequence of these numbers by adding two elements of the sequence:
one of the distance 2 and the second in the distance k, it was chosen in such
way to generalize the numbers L,,. Many natural related generalizations of
the Fibonacci numbers and the Lucas numbers remain for further study, in
particular interesting relations between different distance generalizations of
the Fibonacci numbers.
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