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Abstract Let n be a positive integer with n > 2 and [n] := {1,2,--- ,n}. An
m-partial injective map of [n] is a pair (4, f) where A is an m-subset of [n] and
f : A — [n] is an injective map. Let P = LU {1}, where L is the set of all the
partial injective maps of [r]. Partially ordered P by ordinary or reverse inclusion,
two families of finite posets are obtained. This article proves that these posets
are atomic lattices, discusses their geometricity, and computes their characteristic

polynomials.
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1 Introduction

The results on the lattices generated by transitive sets of subspaces under finite
classical groups may be found in Huo, Liu and Wan [4, 5, 6]. In {1], Guo discussed
the lattices associated with finite vector spaces and finite affine spaces. The
lattices generated by the orbits of subspaces under finite classical groups have
been obtained in a series of papers by Huo and Wan [7), Guo, Li and Wang (3],
Wang and Feng [9], Wang and Guo (10, 11}, Guo and Nan (2, 8], Wang and Li
{(12], Xu et al. [13] studied the lattices generated by partial maps of finite sets.
In this paper, we contiune this research, and consider the similar problem for
partial injective maps of finite sets.

Let (P, <) be a poset. We write a < b whenever a < b and a # b. For any two
elements a,b € P, we say a covers b, denoted by b < a, if b < a and there exists
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no ¢ € P such that b < ¢ < a. If P has the minimum (respectively maximum)
element, then we denote it by 0 (respectively 1), and say that P is a poset with
0 (respectively 1). A poset P is said to be a lattice if both a Vb := sup{a, b} and
a Ab := inf{a,b} exist for any two elements a,b € P. Let P be a finite lattice
with 0. For a € P, if 0 < a, then a is called an atom. A lattice P with 0 is called
an atomic lattice if a € P\{0} is the least upper bound of some atoms. Let P be
a finite poset with 0. If there is a function r from P to set of all the nonnegative
integers such that

(1) r(0)=0,
(2) r(b) =r(e)+1,ifa<b.

Then r is said to be the rank function on P. Note that the rank function on P
is unique if it exists.

Let P be a finite atomic lattice. P is said to be a geometric lattice, if P
admits a rank function » and for any two elements a,b € P

r(aAb) +r(aVb) < r(a) +7(b).

Let P be a poset with 0 and 1, and P admits the rank function r. The

polynomial
x(P,z) = Z (0, @)z

a€P
is called the characteristic polynomial of P.

Let A be an m-subset of [n] := {1,2,--- ,n}, and f: A — [n] be an injective
map. Then the pair (A, f) is said to be an m-partial injective map of [n]. In
particular, we write (A4, f) =0if A= 0.

Let P = {(A,f) | (A, f) is a partial injective map of [n]} U {1}. For any
two elements (4, f), (B, g) € P\{1}, we define that 1 includes (4, f), and (B, g)
includes (A,f) if A C B and gja = f. Partially ordered P by ordinary or
reverse inclusion, two families of finite posets are obtained, denoted by Po and
Pp, respectively.

In this paper we will prove that Po and Pr are finite atomic lattices, discuss
their geometricity and compute their characteristic polynomials.

2 The poset Pp

In this section we will prove that Pp is a finite atomic lattice and computes its
characteristic polynomial. We begin with a useful lemma.
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Lemma 2.1 The poset Po is a finite lattice.

Proof. For any (A, f) € Po\{1}, it is easy to see that
1=(A,f)V1 and (4, f) =1 A(4, f).

For any (A, f), (B, g) € Po\{1}, we assert that

(AUB,h),hla = f,hlz =9, flans =glans,

(A4, f)Vv(B,g) = { 1, flans # glans.

Case 1. flanB = glans. Let (C, ) be an upper bound of (A4, f) and (B, g).

Then
ACC,BCCandyla=f=hlaplp=g=nhs.

It follows that AU B C C and ¢laus = h, ie, (AU B,h) < (C,¢). Hence
(A, f)V(B,g) =(AUB,h).
Case 2. flans # glans. Assume that (C,¢) is an upper bound of (A4, f) and

(B,g), i.e.,
(A, f) £(C,9) and (B,g) < (C, ).

Then ¢|ans = f|lans, ¢lans = g|anB, a contradiction.

On the other hand, for any (4, f), (B, g) € Po\{1}, we assert that (A, f) A
(B, g) = (D, h), where D is the maximum element of the set {C C ANB | fic =
glc} and h = f|p = g|p. In fact, let (C, ) be a lower bound of (A4, f) and (B, g).

Then
CC A,CCBand flc =glc.

Thus C belongs to {C C AN B| flc = glc}. Hence, (A4, f) A(B,g) = (D,h). O

Theorem 2.2 Let n > 2.Then Po is a finite atomic lattice, but not a geometric

lattice.

Proof. Define ro(A, f) = |A| for any (A, f) € Po\{1} and ro(1) =n+ 1. Then
ro is the rank function on Fo.

Pick A={1} and
f:A-o )11 g:A—[n),1—2 (1)

Then (4, f) and (4, g) are the atoms of Po, and 1= (4, f) V (4, 9).
For any (A4, f) € Po\{1} with A= {a1,a2, -+ ,am}, we have

(A, f) = ({ar}, fliar)y) V ({a2}s fliaz}) V- V ({am}, fliam))-
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Hence Po is a finite atomic lattice.

Pick f and g as in (1). Then (A, f)V(B,g) =1 and (A, f)A(B,g) =0, which
implies that

ro((4,f) V(B,9)) +ro(A,f) A (B,g)) =n+1>2=r0(4, f) +ro(B,9).

Therefore, the desired result follows. ]

Lemma 2.8 The Mébius function on Po is

0, z 2y,
_ (_l)lﬂl—lAl’ x’:(Aaf)S (B!g)=y¢1v
po(@V) =4 _snomoi 4i (1, o= (Af) <y=,ldl=m,
1, z=y=l,

where Ci_,,, ==8=™!_ and Ai_,. =(J"':;£¥)—,.

Shem=i)il
Proof. In order to prove that po is the Mdbius function on Po, we only need to
show that

Z po(z,z) =0

z<z<y
for any z,y € Po with z < y.
If 1# y = (B, g), let |B| — |A] = m. Then

¥ holsz) =3 Ch(-1* = (1= 1" =o0.

z<z<y k=0

If y =1, let |A] = m. Then

Z po(z,z) = Z G'k—mA:‘:—m(‘_1),c + p(z,1)
zLz< k=0
= ) CamAim(-D* - CimAi_n(-1)*
k=0 k=0
= 0.
Hence, the function po is the Mobius function on Po. D

Theorem 2.4 The characteristic polynomial of Po is

x(Po,z) =z"*' =14 ) (-)"CrAZ(z"*'"" —1).

m=1

58



Proof. By Lemma 2.3 we obtain

X(PO,&‘) = Z uo(o’u)wfo(l)—"o(u)

u€Po

= S (-D)mCRATEONT™ 4 o (0,1)zTo oM
m=0

= Y (-)rCrApge V" 1= N (-1)"mCr AR
m=0 m=1

= "™ -1+ () CrAT@E™tT™ - 1),

m=1
as desired. o

3 The poset Py

In this section we will prove that Pr is a finite atomic lattice and compute its

characteristic polynomial.

Theorem 8.1 Letn > 2.Then Pr is a finite atomic lattice, but not a geometric
lattice.

Proof. Similar to the proof of Lemma 2.1, P is a finite lattice. Define rr(A, f) =
n+1 - |A| for any (A, f) € Pr\{1} and rr(1) = 0. Then g is the rank function
on Pg.

Pick
f:ln)—=[n}i—iandg:[n] > [n],i—i+1(1<i<n—-1),n—1 (2

Then 0 = ([n], f) V ([n],g). For (A, f) € Pr\{1} with A = {a1,02,- ,am}, let
[n] = {al?az:"' 18m;Ama1 :aﬂ} and [n] = {f(al)a"‘ yflam), by, -+ :bn}'
Pick ([n], g), ([n), h) € Pr such that

g:[n] = [n],ai— fla)(1<i<m),a; = bj(m+1<j5< n);
h:[n] = [n],ai = f(ai)(1 < i <m),a; = bjsa(m+1<j<n—1),an — bmir.

Then ([n],g) and ([n], k) are atoms of Pr and (A, f) = ([n},q) V ([n], k).

Hence, Pgr is a finite atomic lattice.
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Pick f,g as in (2). Then
([n), ) v ([nl, 9) = 0,([n], £) A ([n], 9) =1,
which implies that

rr(([nl, £) V ([n), 9)) + rr((n], £) A ([n), 9)) = n +1 > 2 =r&([n], f) + rr([n], 9).
Therefore, the desired result follows. D

Lemma 3.2 The Mobius function on Pr is

0, T ﬁ Y,
_} (=pa-iey 12z=(4,f) <y=(B,9),
ROV =0 _smemok 4k (C1)F, 1=z <y=(B.g) Bl =m,
1, z=y=].

Proof. If x #1, let |A| — |B] = m. Then

z 'u,R(m,z) = Z: C,’:_k(—l)k = (1 - l)m =0.
zLz<y k=0

If £ =1, let |B] = m. Then
Z #R(])Z) = “R(171)+ Z #R(Lz)

1€2<y 1<z<y
n-m . n—m-—i
= 14+ Z Cl—mA:)—m (— Z Cvi:—m—iA:—m—i(—l)k)
i=0 k=0
= 0.
Hence, the function pg is the Mébius function on Pg. m]

Theorem 8.8 The characteristic polynomial of Pr ts
x(Pr,z) =2™*' 4+ ) (-1)"CTATz™.
m=0
Proof. By Lemma 3.3 we obtain
x(Pr,z) = Y pr(l,u)z RO7TRE

uE€Pg
n

= Z (-1)™CTATz™ + pr(l, 1)_,,;'&(0)—'11(1)
m=0
= "4 Z (-1)"CR AT z™,
m=0

as desired. a
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