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Abstract. In this paper, we characterize all the spanning trees
of the r-cyclic graph Gn,r. We give the formulation of f-vectors
associated to spanning simplicial complexes 4,(Gn,-) and conse-
quently, we deduce a formula for computing the Hilbert series of the
Stanley-Reisner ring k[A,(Gn,r)]. For the facet ideal Ix(4,(Gn,r)),
we give the characterization of all its associated primes. In partic-
ular, for the uni-cyclic graphs with the length of the cycle equal
to m1, we prove that the facet ideal Ix(A,(Gn,1)) has linear quo-
tients with respect to its generating set. Moreover, we prove that

the projdim(Ir(As(Gn,1)}) = 1 and Bi(Ix(As(Gn,a))) = my for
1 <1
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1 Introduction

In (1], for a finite simple connected graph G(V, E) the authors
have introduced the concept of spanning simplicial complex A,(G),
which is defined on the edge set E of the graph G as follows:

Ay(G) = (F; | F; € s(G))
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where s(G) is the collection of edge-sets of all the spanning
trees of G. One can always associate A,(G) to any simple finite
connected graph G(V, E). In [1], the authors have discussed the
algebraic and combinatorial properties of spanning simplicial
complexes for uni-cyclic graphs. They prove that A,(G,,) is
shifted and give the formula to compute the Hilbert series of
the Stanley-Reisner ring k[As(Gn,1)]. Recently in [2], authors
have discussed the algebraic properties of spanning simplicial
complexes associated to friendship graphs.

In this article, we pick the class of r-cyclic graphs Gy, for
the algebraic and combinatorial properties of spanning simplicial
complez As(Gnr). A r-cyclic graph G, . is a connected graph
having exactly r cycles and n edges with no two cycles share
a common edge. In Proposition 6, we give the characterization
of $(G,,). We give the formulation for f — vectors in Lemma
8 which enable us to device a formula to compute the Hilbert
series of the Stanley Reisner ring k[{A;(G, )] given in Theorem
10. For the facet ideal Jr(A4(Gnr)) in Lemma 11, we give the
characterization of all its associated primes.

In particular, for the uni-cyclic graphs (G,,1) with the length
of the cycle equal to m;, we show that the facet ideal Ix(A;(G, 1))
has linear quotients with respect to its minimal generating set
in Theorem 14. Moreover, in Theorem 16, we prove that the
projdim(Zx(As(Gn,1))) = 1 and Bi(Ir(As(Gn,1))) = my for i <
1. This paper extents the results of [1] to another class of graphs.

2 Background and notions
In this section, we cover the background of the topic and define
some notions which we will follow in this paper.

Definition 1 A spanning tree of a simple connected finite graph
G(V, E) is a subtree of G that contains every vertex of G.

We represent the collection of all edge-sets of the spanning
trees of G by s(G), in other words;

s(G) := {E(T;) C E, where T; is a spanning tree of G}.
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In [1}, it is given that for any simple connected graph one can
obtain its spanning tree by removing one edge from each cycle
appearing in the graph. This method of finding the spanning
trees of a connected graph is known as cutting-down method.

For example by using cutting-down method for the graph
given in figure 1 we obtain:

s(G) = {{622, €23, €24, €12, €13, €1, €2, €3, 84}, {622, €23, €24, €11,
€13, €1, €2, €3, 64}, {622, €23, €24, €11, €19, €1, €2, €3, 64}, {621, €23, €24,
€11, €13, €1, €2, €3, 64}, {621, €23, €24, €11, €13, €1, €2, €3, €4}, {621, €23,
€24, €11, €12, €1, €2, €3, 64}, {621, €22, €24, €12, €13, €}, €2, €3, 64}, {621,
€22, €24, €11, €13, €1, €2, €3, 64}, {621, €22, €24, €11, €12, €1, €2, €3, 64},
{621, €22, €23, €12, €13, €1, €2, €3, 64}, {621, €22, €23, €11, €13, €1, €2, €3,
64}, {621,622,623, 611,612,61,62,63,84}}

€23
ey e €13 lej
ey es €21 €3 €11 €4 *
Fig. 1. G112

Definition 2 A Simplicial complex A over a finite set [n] =
{1,2,...,n} is a collection of subsets of [n], with the property
that {i} € A for all ¢ € [n], and if F € A then A will contain
all the subsets of F' (including the empty set). An element of
A is called a face of A, and the dimension of a face F' of A is
defined as | F| — 1, where |F| is the number of vertices of F'. The
maximal faces of A under inclusion are called facets of A. The

dimension of the simplicial complex A is :
dimA = mex{dimF|F € A}.
We denote the simplicial complex A with facets {Fy,. .., Fy} by

A= (F,...,F)
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Definition 3 For a simplicial complex A having dimension d,
its f — vector is a d + 1-tuple, defined as:

f(A) = (anfla cee :fd)
where f; denotes the number of 7 — dimensional faces of A.

Definition 4 (Spanning Simplicial Complex )
For a simple finite connected graph G(V, E) with s(G) = {E,, E;,
..., Eg}, we define a simplicial complex A;(G) on E such that
the facets of A,(G) are precisely the elements of s(G), we call
A,(G) as the spanning simplicial complez of G(V, E). In other
words;

A(G) = (B, Ea, ..., E,).

For example; the spanning simplicial complex of the graph G
given in figure 1 is:

Ay(G) = ({e2, €23, €24, €12, €13, €1, €2, €3, €4}, { €22, €23, €24, €11,
€13, €1, €2, €3, 64}, {622, €23, €24, €11, €12, €1, €2, €3, 64}, {621, €23, €24,
en, €13, €1, €2, €3, 64}, {621, €23, €24, €11, €13, €1, €2, €3, 64}, {621, €23,
€24, €11, €12, €1, €2, €3, 64}, {621, €22, €24, €12, €13, €1, €2, €3, 64}, {621,
€22, €24, €11, €13, €1, €2, €3, 64}, {621, €22, €24, €11, €12, €1, €2, €3, 64},
{621, €22, €23, €12, €13, €1, €2, 63,64}, {621,822,623,611,613,61, €2, €3,
64}, {621,622,623,611,612,61,62, 63,64})

We conclude this section with the definition of r-cyclic graph
Gnri

Definition 5 An r-cyclic graph G, is a connected graph hav-
ing n edges and containing exactly r cycles {C}, ,C2,,,...,Cr, }
of lengths m; < mgp < --- < m, such that no two cycles share a
common edge.

3 Spanning trees of G, , and Stanley-Reisner
ring A;(Gnr)

Throughout this paper, for G, ., we fix the edge-labeling {ey, .. .,
€1myy €215+« -+ €2mgs- - 1 €rly -+ -, Erm,, €1 . . . €¢} Such that {e;y, ...,
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eim,} is the edge-set of ith-cycle in G,, for 1 < ¢ < r and

t=n-— Zr: m;. In the following result, we give the characteriza-
i=1

tion of s(Gnr).

Lemma 6 Characterization of s(G, )

Let G, be the r-cyclic graph with the edge set E = {e11, ..., €1my,

€31, --->€amgs---rErly- -y Ermy, €1 .. e} A subset E(T (1 2iy,....ri))

of E will belong to s(G,,) if and only if E(T(i,2i,..ri)) =

E\ {e1, €05, €ri, } forsomed; € {1,...,m;} and 1 < j <.

In particular; s(Gnr) = {E(1i1,2i5,...vir) = B\ {€1i1s €2i95 -+ - rEri }
for i; € {1,...,m;}and 1< j <7}

Proof. As G, , contains r-cycles of lengths m;, my, ..., m,, soits
spanning trees will be obtained by removing exactly one edge
from each cycle of G, follows from cutting-down method [6].
For some j € {1,2,...,7} by removing ej; from Cy,; for each
1<j<rwithi;={1,2,... ,M;}, one obtains a spanning tree
of Gpr. In other words the edge-set E(T) of a spanning tree T
will be of the form: E(T) = { E\ {e1,,€2,,---,€ri.}

for some i; € {1,...,m;} for all j € {1,...,7}}. Which yields
the desired result for s(Gn ).

Here we recall an elementary result from [1] ;

Proposition 7 For a simplicial complex A over [n] of dimen-
sion d, if f; = (t_'l_‘l) for some ¢t < d then f; = (2.21) for all
0<ikt.

We will always consider (Z) = 0, whenever k >nor k < 0.
Our next result is the characterization of the f-vector of
Ay(Gnyr).

Proposition 8 Let A (G, ;) be the spanning simplicial com-
plex of r-cyclic graph G,, with cycles of lengths m; < my <
.-« < m,, then the dim(A,(Gr,) =n —r — 1 with f-vector
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n T r n-— Z: m;,
fi= < 1)-'-2:(_1)lc D "
t+ k=1 Gryeedr)=1, fr#-#jr | 441 — > m,,
s=1

where0<i<n—r—1.

Proof. Let E be the edge-set of G, , then from Lemma 6 ;

S(Gn,r) = {E(1i1,2i2,...,ri,-) = E\ {elil,e2i2, ey erir}

for i; € {1,...,m;}and 1 < j < r}. Therefore, by Definition
4 we have;

As(Gn,r) = <E'(1i1,2i2,...,rir) for ij € {1, ces ,mj}and 1< 7 < 7").

Since each facet E(lil,g,-,,,,.,m-,) is of the same dimension n—r—
1
(s | Eqiy2ig,..rir) |= n — 1), therefore Ay(G,,) will be of di-
mension n—r—1. Also, it is clear from the definition of A,(G,, ;)
that As(G, ) contains all those subsets of E that do not contain
{ei1,... ,€im;} foralll1 <i<r.

Now, let F' be any subset of E of order 7+ 1 such that it does
not contain any C; in it. The total number of such F is indeed
fi. We use inclusion exclusion to find this number, therefore we
have f; = Total number of subsets of E of order 7 4+ 1 not con-
taining ant C;. By Inclusion Exclusion Principle we have

fi = ( Total number of subsets of E of order i + 1) — ('21
1=

Total number of subsets of E containing C’,-l) + ( P

(i1,42)=1, i17402

Total number of subsets of E containing both C’,-,a.ndC',-z) +

---(—l)r( Er‘_, Total number of subsets of £ con-
(i15e0nsir)=1, Q17 F#ip

taining each Cj,, ..., C',-,).
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This implies that f; = (zZl) - [ f: (z-t;:n;;z )] +
11

ig=1
r ( n—mi, — My, ]+“
(31,82)=1, @142 i+1—my —my, ]
La N—MmM; — My, — *** — My
ey o msm )
( ) (il’..-,ir)=lzy iy FEip 1+ 1 - mil _ miz [ — mir
= .
n— > m;
n T T o L]
fi = ( ) 1)+E("1)k ) s_lk
1+ k=1 (inin)=1, st | G401 — S mg, )
s=1

Corollary 9 Let A,(G,2) be a spanning simplicial complez of
a 2-cyclic graph of lengths my < mq, then the dim(A;(Gr2)) =
n — 3 with f—vectors f(As(Gn2)) = (fo, f1,-- > fn-3)

n n—m n—m
fi= (72+1) - [(’i+1—7’1711)+(?:+1—72ng)]+

F|f NPT ],whereOSz’Sn—&
i+1—mp—my

For a simplicial complex A over [r], one would associate to
it the Stanley-Reisner ideal, that is, the monomial ideal Ix/(A)
in S = k[z;, zo,. .., zs] generated by monomials corresponding
to non-faces of this complex (here we are assigning one variable
of the polynomial ring to each vertex of the complex). It is
well known that the Stanley-Reisner ring k[4] = S/Iy(4) is
a standard graded algebra. We refer the readers to [7] and [8]
for more details about graded algebra A, the Hilbert function
H(A,t) and the Hilbert series H;(A) of a graded algebra.

Our main result of this section is as follows;

Theorem 10 Let A;(G, ) be the spanning simplicial complex
of G, , then the Hilbert series of the Stanley-Reisner ring k[A4(Gh 1))
is given by,

d (n V4i+l d r
HHAGn L) =1+ & LY £ £ (-1
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n— 3 m, gt
s=1 T
(1 —¢)it!

™

X P &
Guomie)=l, el | G4 1 — 3 my,
s=1

Proof. From [8], we know that if A is a simplicial complex of
dimension d and f(4) = (fo, f1,. .-, fa) its f-vector, then the
Hilbert series of Stanley-Reisner ring k[4)] is given by

d fitH—l

H(k[A],t) =1+ ; m
By substituting the values of f;’s from Proposition 8 in the above
expression, we get the desired result.

4 Associated primes of the facet ideal
Ir(A, (Gn,r))

In this section, we give the characterization of all associated
primes of the facet ideal Ir(A;(Gnr)) of spanning simplicial
complex Ay(G,r) of r-cyclic graph with cycles Cp ,C2,,...,Cr,
of lengths m; < mgy < -+ < m,.

Associated to a simplicial complex A over [n], one defines
the facet ideal Ix(A) C S, which is generated by square-free
monomials Z;; ... Zis, where {v;1,...,v;s} is a facet of A.

r

Lemma 11 If A,(G,,,) be the spanning simplicial complex of
the r-cyclic graph G, ,, then

Ix(As(Gny)) = ( n (zt)) n ( ﬂ (:sz, xjm))
et €Ch, i1<i<r 1<j<r1<l<m<m;
Proof. Let us consider the spanning simplicial complex A,(G, )

of the r-cyclic graph G,, having r-cycles C ,CZ% ,...,Cr,
with lengths m; < me < ... < m,. Let Ix(As(Gr,)) be the
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facet ideal of Ay(Gy r)-
From [4, Proposition 1.8], we know that a minimal prime ideal

of the facet ideal Ir(A) has one-to-one correspondence with
the minimal vertex cover of the simplicial complex. Therefore,
in order to compute the primary decomposition of the facet
ideal Ir(As(Grr)); it is sufficient to compute all the minimal
vertex cover of As(Gr ). From the definition of A,(Gr,) and
Lemma 6, we have {e;} a minimal vertex cover of A,(Gn,)
(with e; & C,"m, for all i € {1,...,7}) as {e;} € E'(lihg,-z,"_,n-,)
for any i; € {1,...,m;} and 1 < j < r. Moreover, {e;i, ejm}
is also a minimal vertex cover of A(G,,) (with 1 < j < r
and 1 < I < m < m;), because {e;;} € E(ul,.,_,,-,-j,_,,,,.,-,) for
all 1 < j < rif and only if 4; # [ with(l < ! < m;) and
{ejm} € E'(l,-,‘__,,,-l,,,,,r,-,) for any 1 <! < m < m;. Hence {ej;, ejm }
is a minimal vertex cover of A;(Gn r).

5 Facet ideal of uni-cyclic graph has linear
quotients

For a uni-cyclic graph G, containing the only cycle of length
m1(< n), we have

I]-'(As(Gn,l)) = (i‘lla v 1ﬁ1m1)1

where

. T11,- - Tlmyy Tle+ -y Tne ]

£ = 11 1m 1 :nml’ VlSZSTm
Zii

in the polynomial ring S = k[Z11,. .., Zim;, Z1- - -, Tnm, ] follows

from Definition 4 and Lemma. 6.

Definition 12 Let I C S be a graded ideal. We say that I has
linear quotients, if there exists a system of homogeneous genera-
tors f1, fa, ..., fm of I such that the colon ideal (f1,..., fi—1) : fi
is generated by linear forms for all 3.
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It is important to recall a result from [7] which tells that when a
monomial ideal has linear quotients with respect to its minimal
generating set;

Lemma 13 Let I be a square-free monomial ideal with G(I) =
{u1,u2,...,un}, and let F; = supp(w;) fori =1,...,m. Then ]
has linear quotients with respect to ui,uy, ..., un if and only if
for all j < i there exists an integer | with z; € F; \ F; and an
integer k < % such that Fi \ F; = {z;}

After giving the description about the facet ideal and linear
quotients, we are ready to give the following result;

Theorem 14 The facet ideal Ix(A,(G,,1)) C S of the spanning
simplicial complex of uni-cyclic graph A(G,.), has liner quo-
tients with respect to the monomial generator G(Ir(As(Gn,1))) =
{ilh :‘i:12) LR j:lml}-

Proof. Let us take the facet ideal Ir(As(Gr1)) C S of uni-
cyclic graph with G(Iz(As(Gn,1))) = {&11,%12,-..,%1m,} and
denote F; = supp(Zy;) for all ¢ € {1,...,m;}. It is clear from
the construction that

Fj\ F; ={zu}  forany j<i.

Also
Fy \ F;, = {:L‘h'} for all k<.

From Lemma 13, it is clear that there exist {(= %), hence proved.

Definition 15 For a monomial ideal I with the minimal gen-
erating set G(I) = {uy,us, ..., Um}. We define

Ly = (uy,...,uk—1) : ux for each k <m,
and 7 to be the cardinality of the minimal set of generators of

Ly.
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Theorem 16 For the facet ideal Jz(A,(Gr,1)) C S of the span-
ning simplicial complex of uni-cyclic graph, we have
projdim(Ix(As(Gr,))) = 1 and

Bi(Ix(As(Gr,))) =my forall i < 1.

Proof. For the minimal generating set G(Ir(As(Gn,1))) =
{Z11, %12, - - - £1m, }, We have

Lk = (5}11, e ,jlk—l) . -'i'lk = Y1k forall % < ma

Therefore, Ix(A,(G,,1)) has linear quotient in one degree and
r. = 1 for each kK < m;. The result immediately follows from
[7, Corrolary 8.2.2], which says that for any graded ideal I with
linear quotients generated in one degree we have;

mi
B:(I) =Y (:k) and projdim([) = max{ry,rs,...,m,}.
k=1
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