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Abstract: The maximum number of non-isomorphic one-edge extensions M(t, n, f) of a graph
of size 7, order n, and vertex degree bounded by f for 3 < f < n — 2 is considered. An upper
bound for M(z, n, f) is obtained and for the case f=n ~ 2 the exact value is given. Tables for all

values of Mt,n,f) are provided forupton=12, | n(f -1)/2]<ts|nf/2], and 3s fsn-2.
It is also noted how the general results are related to the transition digraph for the Random
f-Graph Process, a Markov process pertaining to graphs with vertex degree bounded by f.
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1. Introduction

A graph with no vertex of degree greater than fis called an f-graph. For each f such
that 3 < f< n - 2, we consider the problem of determining M(¢, n, f), the maximum
number of non-isomorphic one-edge f-graph extensions of an f-graph among all
f-graphs of size t and order n.

The number of distinct edges that can be considered for extending an f-graph G with
one edge is equal to(g ) -t , the number of edges in G° the complement of G. If G is

an identity graph (i.e., G has only one automorphism), then in most cases all of its
possible one-edge extensions are non-isomorphic graphs. However, some of these
extensions can be isomorphic or can be (f+ 1)-graphs.

For example, the identity 3-graph of order 6 and size 6, a triangle with a pendant
edge attached at one vertex and a pendant path of order 3 attached at another vertex,
has all of its (g)-6 9 one-edge extensions non-isomorphic but four of them are

4-graphs. Whereas the identity 4-graph of order 6 and size 7, shown in Figure 1.1,
can have at most 8 non-isomorphic one-edge extensions. One of them is a 5-graph
and in the set of seven 4-graph extensions two graphs are isomorphic.

ARS COMBINATORIA 115(2014), pp. 101-114



We denote by d*(G) , the number of non-isomorphic one-edge f-graph extensions of
a given f-graph G. As noted above, d*(G) cannot exceed the number of edges in

the complement of G, that is, d*(G) < (;)- t.

The problem of determining M(z, n, f) for the cases f= 2 and f = n — 1 has been
studied in [1] and (2], respectively. In [3] some preliminary observations concerning
M(t, n, f) were announced.

Here we consider the cases 3 < f < n — 2 for a specific interval of ¢ (see Section 2).
An admissible edge for an f-graph G is an edge whose addition to G will not intro-
duce a vertex of degree greater than f. Let B(t, n, f) denote the maximum number of
admissible edges possible among all f-graphs of size t and order n. Then, M(t, n, f)
<B(t,n,f).
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Figure 1.1. The 4-graph Gwithn=6and t=7;
(a) six distinct 4-graph extensions of G; (b) one 5-graph extension of G

In Section 2 we obtain lemmas related to B(t, n, f) and bounds for the number of
vertices of degree f in an fgraph. The exact value of M(t, n, f) when f=n -2 is
given in Section 3. The main Theorem for B(¢, n, f) as a bound for M(¢, n, f) is de-
rived in Section 4. In Section 5 open problems are posed and our motivation is given
for the study of graphs with bounded degree.
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2. The number of admissible edges and bounds for the number of
vertices of degree f

We call a vertex in an f-graph orexic, if its degree is strictly less than f. We make the
following observations.

(a) If 0 <t < | n(f -1)/2], there exist f-graphs of order n and size ¢ such that every

vertex is orexic. In this case B(t, n,f) = (;)—t .

(b)If t = nf/2], then B(t,n,f) =0=M(t,n,f)and
(c) If £ > nf /2], there are no f-graphs.

Thus, here we focus on the t-interval | n(f -1)/2] <t < |nf/2].

The value of B(t, n, f) is given in Lemma 2.1.

Lemma 2.1. Let G denote the set of f-graphs of order » and size t < [ nf/2]. For

a G EG let w(G) denote the number of orexic vertices in G and W(G) denote the
subgraph of G induced by the orexic vertices in G. Then

B(t,n,f) = maxoea{( »o ) 1 E(W(G)) |} :

Proof. Let G be an f-graph of order n, size ¢, and having w = w(G) orexic vertices.
The vertices of an admissible edge must both be orexic prior to its insertion in G.

There are(;" ) pairs of orexic vertices in G. However, some of these pairs may al-

ready be edges in G and consequently are not available for addition. These are pre-
cisely the edges in W(G). Thus, the number of admissible edges for a given G is

("';G))- 1 E(W(G))!. The maximum of this expression over all G €Gis the value of
B(t,n,f).m
For fsuch that 3 <f<n—2, Lemmas 2.2 and 2.3 below, are used to prove Theorem 4.1.

Lemma 2.2. Let G(w) denote the set of f-graphs of order n, size ¢, and having w
orexic vertices. Then,

maxaec(w){(;’ )-1EW) n} = (¥)- mingegum{lEWN).

Proof. Since w is fixed, IE(W)| is the only variable part in the elements of the set
{(;” )— 1 E(W) 1} . Therefore, the maximum of {( ;’ )— | E(W) l} for G €G(w) is equal to

(;v)' min ge Gum{lE(W)i}. =
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Lemma 2.3 specifies bounds for the number of vertices of degree f in an f-graph of
order n and size r and is crucial for proving Theorems 3.1,4.1, and 4.2.

Lemma 2.3. If G is an f-graph of order n, size t=|n(f-1)/2] + j with 0 < j <
Lnf12]) = |n(f -1/2] , and having x vertices of degree f, then

2j<x< )\_2/_“{';(&-' when n(f- 1) is even and

2-l<x< [L*f"‘f'-'lj when n(f— 1) is odd.

Proof. Let n(f— 1) be even. Then,
20=2n(f- 12 +))= 3 degv) <xf+(n-x)(f-1)
inl

so that
n(f-1D+2ji<xf+(n-x)f-1)=xf+n{f-1)-x(f-1)

which when simplified yields 2j < x. An upper bound for x is obtained as follows.

X< ) deg(v) =2(n(f- D2 + ) =n(f-1) +2j
iwl
so that
xg HEMLD,
!

Let n(f - 1) be odd. Then,
2t=2(n(f- 1)/2- 12+ )= D deg(v,) <xf+(n-x)(f-1)

iml
so that
nf-1)-1+2j<xf+(n-X)f-D=xf+n{f-1)-x(f-1)

which when simplified yields 2j - 1 < x.
Next note, xf < Zdeg(v,) =2(n(f- 1)2-12+j)=n(f-1) + 2j— 1, so that
i=]

x521—1+n(f-1). .
/
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3. The value of M(t,n,f) when f=n-2

The following theorem determines the exact value of M(t, n, n - 2).

Theorem 3.1. Let ¢, n, f, and j be integers such that n = 5, f = n — 2 and
t=n(f- 1)/2 + j, where 1 < j < | n/2]. Then

n-2-2j when lsstnIZJ—Z
M{t,nn-2)= 1 when  j=|n/2|-1
0 when  j=|n/2]

Proof. We consider three cases.

() 1<jsg|nli2]-2

For each j we construct the complement H of an (n - 2)-graph G with 4*(G) =
M(t,n,n - 2)=n-2-2j. The graph H is a forest having order n and j components.
The sizes of H and G, respectively, are equal to n — j and (g ) ~(n-j)= -'M+ J.
Note that if f=n - 2, then n(f - 1) is always even. Thus, from Lemma 2.3, the num-
ber x of vertices of degree fin G of order n and size ¢ = n(f - 1)/2 + j must satisfy

Y<x<|[@j+n(f-1)/f].

It will be shown that for a given j it is sufficient to consider only x = 2j and
x=2j+ 1 to obtain M(t,n, n —2).

First consider x = 2j + 1. We define a class F(n, j) of graphs. Each graph H in F(n, j)
is a forest that consists of a tree T and j — 1 copies of K,.

Thus, T is of order n — 2j + 2 and is constructed from the path P of order n — 2j + 1
by adding a pendant vertex at distance one from an endvertex of P.

Each vertex of degree n — 2 in G corresponds to a vertex of degree 1 in H. The num-
ber of these vertices in His2(j— 1) +3=2j+1=x.

An edge in H is admissible, if it is not incident to a vertex of degree 1. The number
of remaining edges in H is (j ~ 1) + 3 = j + 2. Therefore, the number of admissible
edges in H is equal to (n - j) — (j + 2) = n — 2 — 2. The deletion of an edge in H cor-
responds to the insertion of an edge in G. Since there are no equivalent admissible
edges in H, this leads to n — 2 — 2 non-isomorphic one-edge extensions of G.

Next consider the case x = 2j. Let K be a graph of order n > 5 and size n — j with x
vertices of degree 1, r vertices of degree 2, and s vertices of degree at least 3. Then,
n=x+r+sand 2(n- j)=1lx+ 2r +3s. Since x = 2/, we have

2(n-j)=2j+2r+3ssothat n22j+r+(3/2)s=x+r+(3/2)s.

105



Combining this withn=x+r+swe get x+r+szx+r+(3/2)s or 0= s/2.
Thus, the number s of vertices of degree at least 3 must be 0. Therefore, K must be
the union of paths and cycles.

If K is the complement of G, then any two edges deleted from a cycle in X when
added to G yield isomorphic one-edge extended graphs. Thus, d*(K¢) is less than
the number of admissible edges. If X is a union of paths (only paths of order at least

4 contribute admissible edges), then it has at most the maximum of 0 or n — j - 2j
admissible edges. The latter value occurs when all j paths have order at least 4.
Thus,

d*(K°) s max{0,n~3;}.
Forj>2,wehaven-3j=n-j-2j<n-2-2j.

If j= 1, thatis, K is a single pathand n > 5, then K has n - | — 2 = n - 3 admissible
edges, which is greater than n — 2 - 2(1) = n — 4. However, for n > 5, all paths con-
tain equivalent admissible edges. Thus, d*(G) s n-4=n-2-2(1).

It is easy to show that if x > 2 + 1, then the number of admissible edges in a com-
plement of G is not greater than n — 2j — 1 but at least two of these edges are equiva-

lent. Thus, d*(G)sn-2-2j.

(i) j=|n/2]-1

There exist (n — 2)-graphs G with exactly two nonadjacent vertices that have degree
strictly less than n — 2. Thus, here M(t, n, n — 2) = 1. When n is even, let G be the
complement of a forest consisting of Py, a path of order 4, and (n — 4)/2 copies of a K.
Here the only admissible edge is contained in P4. When n is odd, let G be the com-
plement of a graph from F(n, j), a forest containing a tree of order 5 and (n — 5)/2
copies of a K;. This forest has exactly one admissible edge.

(iii)j=|n/2]

When 2 is even, G is regular and the complement of G is isomorphic to n/2 copies of
a K,. When n is odd, G is almost-regular (i.e., G has n - 1 vertices of degree n - 2
and one vertex of degree n — 3) and the complement of G is a forest consisting of P,
and (n - 3)/2 copies of a K;. In both cases G is unique and d*(G)=0. m

4. An upper bound for M(¢, n, f)

The following theorem provides a bound B(t, n, f, x) for d*(G) for any f-graph G of
size t, order n, and having x vertices of degree f. The theorem also provides the
bound B(t, n, f) for M(t, n, f). Note, that for an f-graph of a given size and order to
be realizable the number of vertices of degree f is restricted by the bounds given in
Lemma 2.3.
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Theorem 4.1. Let B(¢, n, f, x) denote the maximum number of admissible edges pos-
sible among all f-graphs having size ¢, order n, x vertices of degree f , and conse-
quently w = n — x orexic vertices. Further let 3 <f< n—-2and |a(f-1/2]<t <

Lnf72]. Then
(‘2”)-:+xf ifwa f andw(f -1)> xf
O Benfo= (‘2’) ifx=f-landw(f -1)s xf

(;")-t+xw+|_x(f-w)12_] ifx<f-landw< f

(II) B('rnvf) = mggx;b{B("n'f'x)}’

where r= |[n(f-1/2]+jwithO<j< [af /2] — [n(f-D/2],

a=2j, b= [2%-—1)" when n(f- 1) is even, and

a=2-1,b= [15%'”—'”J when n(f— 1) is odd.

Proof. (1). Graphs are constructed to show that the stated expressions for B(t, n, f, x)
and B(t, n, f) are the maximums for the parameters ¢, n, f, and x. The proof is di-
vided into three mutually exclusive and all encompassing cases:

(i) w>fand w(f~ 1) > xf, (ii) x> f~ 1 and w(f- 1) < xf, and (jii) x < f- 1 and w <.

In particular, the graphs constructed will have x vertices of degree f, w = n — x orexic
vertices and the maximum number of admissible edges for these values of x and w.

In each case we start with »n vertices, color x vertices black and w = n - x vertices
white. After the construction the black vertices will have degree fand the white ver-
tices will be orexic.

@w>fandw(f-1)>xf

Label the black vertices b; with 1s s < x and the white vertices r, with 1 s us w.
Join each black vertex b; to f distinct white vertices as follows

bsis joined to r,, where v = ((s— 1)f + k- 1) (mod w) + 1, l <k <f.

Since the number of edges going from the black vertices to the white vertices is xf
and the maximum number of edges that can be placed on the white vertices is
w(f - 1), the condition w(f — 1) > xf and the construction restricts the degree of any
white vertex to be no greater than f— 1.
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Next insert ¢ — xf edges on the white vertices so that each white vertex has degree no
greater than f - 1. This is possible since ¢ — xf < w(f - 1) is always true.

The result is an f~graph of order n, size ¢, having x independent vertices of degree f
and w orexic vertices.

Since the number of black-vertex to white-vertex edges (black-white edges) is maxi-
mized, the total number of black to black edges (black edges) and white to white
edges (white edges) is minimized. To see that the number of white edges, ¢ - xf, is
minimum, assume there is a black edge. Then, the total of black edges and black-
white edges would be less than xf. Thus, more than ¢ — xf edges would have to be
white edges to reach size t. Therefore, by Lemma 2.2, (2"’ ) -t + xf is the maximum

number of admissible edges for the values t, n, f, and x, in this case.
(iYx>f-land w(f-1)<xf

Label the black vertices b, with 1s s < x and the white vertices r, with 1s u < w. Join
each white vertex r, to f— 1 distinct black vertices by using an assignment scheme
analogous to that in Case (i). Specifically, join each white vertex to f - 1 distinct
black vertices as follows

r,is joined to b,, where v = ((u - 1)(f= 1)+ k-1 (modx) + 1, 1 <k<f-1.

Similarly to Case (i), here the condition w(f - 1) < xf assures that the construction
can be carried out so that the degree of any black vertex will not exceed f.

If t - w(f— 1) > 0, insert  — w(f — 1) black edges so that each black vertex has degree
at most f. This is possible because ¢ — w(f - 1) < xfis always true. This graph now
has ¢ edges. If not all black vertices have degree f at this point or if £ — w(f- 1) <0,
then it is necessary to delete some black-white edges and introduce black edges so
that there are x vertices of degree f. This construction produces an f-graph of order n,
size ¢, having w independent orexic (white) vertices and x (black) vertices of degree f.
Thus, W, the subgraph induced by the w orexic vertices satisfies IE(W)l = 0 and by

Lemma 2.2, the number of admissible edges ( ;’ ) for this constructed graph is maxi-

mum and d'(G) < (;’)for all G in this case.

(iiyx<f-landw<f

Here neither of the constructions given in Cases (i) and (ii) is possible. In particular,
the maximum number of black-white edges is bounded by xw, the size of a complete
bipartite graph K . Thus, here start with a X, ,,, with the black and the white verti-
ces defining the vertex bipartition, so as to join the black and white vertices with
a maximum number of edges.
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Since the x black vertices of K, , have degree w < f, insert an (f — w)-regular graph
of order x on the black vertices to obtain x vertices of degree f. This can be done
provided x(f - w) is even. If x(f - w) is odd, insert an (f— w)-almost-regular graph of
order x on the black vertices to obtain x — 1 vertices of degree f and one vertex of
degree f— 1 (a k-almost-regular graph has one vertex of degree k — 1 and the re-
maining vertices of degree k). Follow this by reassigning a black-white edge with a
black vertex of degree f to be a black edge that makes the black vertex of degree f— 1
obtain degree f, thereby obtaining x vertices of degree f. In both cases the construc-

tions yield x vertices of degree f, w orexic vertices, and xw+ |_x( f-w)/ 2J edges.

In order to obtain an f-graph of size ¢, insert # — xw — |_x( f-w/ 2J edges on the

w white independent vertices maintaining vertex degree less than f. Since the num-
ber of black-white and black edges is maximized, it follows that the size of W,

namely, t - xw — | x(f —w)/2 ] is minimum.

Therefore, by Lemma 2.2, the number of admissible edges for the constructed
graph,(g')-t +xw+| x(f -w)/2] is maximum in this case.

In each of the cases, (i), (ii), and (iii), the number of admissible edges determined is
the value of B(t, n, f, x).

(I). By Lemma 2.3 the number of vertices of degree f lies between a and b.
Thus, B(t,n, f) = max,_ ,{B(t,n, f,x)}.
This completes the proof of Theorem 4.1. m

In Figure 4.1 examples of constructions defined in Theorem 4.1 are shown.
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Figure 4.1. Examples of constructions
(n=6,t=7,f=3,x=2, (ii)n=6,1=7,f=3,x=3,and
(liyn=8,1=20,f=6,x =4 forx(f- w) evenand n =8, 1= 20, f=6, x = 3 for x(f — w) odd

The following example provides small order graphs that illustrate Theorem 4.1.
Example. In Figure 4.2 we show all the 3-graphs of order 6 and size 7. Partitioning

these graphs in accordance with x, their number of vertices of degree f= 3 and let-
ting b = b(G) denote the number of admissible edges in graph G we have

x=4:Gy,G,,Gs b=1,1,0 d=1,1,0
x=13: Gy, Gs, G, Gr b=3,2,2,3 d=3,1,2,2
x =2: Gg, Gy, Gyo, G11 b=4,4,5,4 dr=3,2,2,1.

Thus, forx =4, 3, and 2, B(7,6,3,4) =1, B(7,6,3,3) =3, and B(7,6,3,2) =5.
These numbers are as predicted by Theorem 4.1(I) and max{1, 3 , 5} =5 is as pre-

dicted by Theorem 4.1(II). Further note, from ¢ = I_n( f=D/ 2_] + j, we obtain j = 1

and that B(7, 6, 3) =5 is realized by Gyowith x = 2j =2 and M(7, 6, 3) = 3 is realized
by two graphs, Gg(with x = 2j = 2) and G, (withx=2j+ 1 =3).
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[ OO0
Gu:b=1,d"=1 Gaxb=1,d"=1 Gy b=0,d"=0
x=3
Gy b=3,d'=3 Gs b=2,d"=2 Ggb=2,d"=1 G:b=3,d"=2
x=2
Ggab=4,d'=3 Gy b=4,d"=2 Gy b=5,d"=2 Gu:b=4,d"=1

Figure 4.2. All 3-graphs with n = 6 and ¢ =7 (j = 1) partitioned into x-classes, x = 4,3, and 2

In Table A (see Appendix), the values of B(t, n, f) (from Theorem 4.1) and
M(z, n, f) (from an exact algorithm) for 6 <n < 12 are given.

For the size range |_n( f-0/2 _] <t< I_nf / 2_| , Theorem 4.1(I) provides an upper

bound, B(t, n, f, x), for d*(G) for an f-graph G of order n and size ¢ when x, the num-
ber of vertices of degree f is given and realizable for the specified ¢. If x is not
given, the following Theorem 4.2 provides an upper bound for B(z, n, f) and conse-
quently for M(z, n, f) for the stated range of ¢, independent of the number of vertices
of degree f.

Theorem 4.2, Let n, f, and ¢ be integers such that n > 5,3 < f<n-2,and ¢t =
Ln(f-1/2] +jwith0O<j<|nfr2] - n(f-1)/2].Then

-2j
(n ) "J when n(f -1) is even

B(t,n,f)s=
(n -2j+ l] .
otherwise

2

Proof. First note that for any givenf, n, ¢, and x, withw = n - x,
t-xf>0andr—xw- | x(f-w)/2] >0

so that each of the bounds given in Theorem 4.1(I) is bounded by ( v2v ) . Second, for
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any given j, Lemma 2.3 yields, x > 2j when n(f- 1) is even and x > 2j — 1, otherwise.

Therefore, when n(f — 1) is even we have (;’)e(";x)s("'zzj); and when
. wl_([n-x n-2j+1

n(f-1)is odd (2) ( 2 )s( 2 ).l

For the case f= n - 2, we have the following theorem.

Theorem 43. If f=n-2, then the maximum outdegree of f-graphs of size
t=n(f— 1)/2 +j with 1 s j =|n/2}is given by

B(t,n, f) when B(¢,n, f)=0orl
M.n.f) -{ B(t,n, f)-2,otherwise.
Proof.
(i) B(t,n,f)=0o0r1
M(t,n,f)= B(t,n,f) is a direct consequence of Theorem 3.1.

(ii) B(t,n, f) > 1

If f=n -2, then n(f - 1) is even and by Lemma 2.3, x = 2. Consider the comple-
ment of the union of j copies of a K, and an (n — 2j)-cycle. For these graphs the
number of admissible edges is equal to n — 2j. There are no other graphs with the
number of admissible edges greater than n — 2j. Thus, from Theorem 3.1, M(¢t, n, f) =

n-2-4=B@,n,f)-2.m

S. Concluding remarks

We have studied M(t, n, f), the maximum number of non-isomorphic one-edge
J-graph extensions of an f~graph G among all f-graphs of size ¢ and order n. For the
case f=n - 2 an exact solution is given in Theorem 3.1. B(z, n, f), an upper bound
for M(t, n, f) is given in Theorem 4.1. In general, B(t, n, f) is not equal M(r, n, f).
This is due to the fact that equivalent admissible edges may yield isomorphic one-
edge extensions of a given graph. Even using the fact that almost all graphs are iden-
tity graphs does not completely resolve the problem because there are identity
graphs that have pairs of admissible edges that give rise to isomorphic one-edge
extensions (see Figure 1.1).

We propose the following open problems.
1. For what values of ¢, n, and f with I_n(f - l)/2_| <t< |_nf/2J and3<f<n-3

isM(t,n,f)=B(t,n,f)?
In particular, are there any infinite classes, for which this occurs?
2. Determine M(t, n, f) for f=n - i with i > 2.
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The work in this paper relates to the study of digraphs whose vertices are f-graphs in
the following way. Let D(n, f) denote the digraph whose node set consists of all
unlabeled f-graphs of order n. An arc (G, H) in D(n, f) exists if and only if a graph
isomorphic to H can be obtained from G by the insertion of an edge. D(n, f) is the
underlying digraph of the transition digraph of the Random fGraph Process and
M(t, n, f) is the maximum outdegree of a node in D(n, f) [4][5]. A probabilistic
study of M(z, n, f) remains open.

Graphs whose vertices are graphs with bounded degree and their adjacency relation,
one-edge transitions between f-graphs, are of interest in many contexts. For exam-
ple, in chemistry and physics, f-graphs can be thought of as molecules or system of
molecules (polymers) and the insertion or deletion of an edge can be interpreted as
the creation or breaking of a bond between atoms or a link between molecules. Since
the valence of an atom is bounded, the bounded degree condition is obvious in ap-
plications in chemistry. For other applications other conditions naturally bound ver-
tex degrees. Examples of both deterministic and probabilistic applications of graphs
with bounded degree can be found in Chapter 9 of [5] and in [6].
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Appendix

Table A. B(t, n f) and M(¢, n f),

n=6|B6.f)| | Mt.6,.f)
j | f=3]4 f=314
1 5 |4 3 |2
2 1 1 1 1
3 0 |0 0 |o
n=7| B(7.f) M@, 7,f)
j =3]14]|5 =314]5
1 8 |85 5 1613
2 3 {6]1 2 ]4]1
3 0 J1]0 0 J1]0
4 - Jof- - 10] -
n=8 B(1,8.f) M1, 8,.f)
j |f=31415|6] [f=3]4]5]6
1 12 |10[8}6 9 [9]71}4
2 6 [6[16[4 5 |15]4](2
3 1 1j1]1 1 j1{1}]1
4 0 jo0]o]oO 0 |0jO0]O
n=9 B(t.9.f Mt,9.f)
j 1f=314]15]16|7||f=3{4[5]6/[7
1 17 [18]12]11]7 13 {18]1211]5
2 10 {12})10]1 9|5 9 (12171713
3 3 1631613 3 |6[3[4]1
4 0 |]1]0]1]0 0 J]1]0(1]0
S - 101 -]0]- - 101 -10]-
n=10 B(1,10,1) M(t, 10, /)
j 1f=314[15]61718]| |f3[4]5]6]7]8
1 23 120])17114]11]8 19 120]17)14]11]6
2 15 [14]13§12]19 |6 14 113]12110] 7 |4
3 6 [6]16[6]614 6 16615142
4 1 1111101 L 111 ]141
5 0 |0jojofo]o 0 jojojojo]o
n=11 B(t,11,f) M@, 11,1)
j =3[/4]5]16]718]9)]|f=3]4]5]6]7]81]9
1 30 |32§23|23[16]14(9 25 |32]23]23|16]14]7
2 20 |22117]17(14[12(7 19 (22| 17}17|12}11]5
3 10 |15[10]15]101 915 10 |14]10f12| 8 | 7 |3
4 3 16[3]6[3]6]3 3 1613[6[314]1
5 0 |1]Jojl1jof1l}jo 0 J1jo0j1(0]1]joO
6 - 10l -]0]-JO]}- - Jol-fo0|-{0{-
=12 B(1, 12, f) M, 12,1)
j =31415[617[8)191]10] [f=3]4[5]6 819110
1 38 134]30)26]22]|18]14]10 32 ]34]30]26)22]18]|14] 8
2 26 (2412220181612 8 25 124122|19117[15]11]6
3 15 |15115[15]15]12]9 ] 6 15 |15114113112]10}7 | 4
4 6 |616[6]|]6l616]4 6 [6[6]6[]6]6][]4a]2
5 1 1 {11 ]1[1]1¢{1 1 11111 frft
6 0 J]oJjofofofofoO¢foO 0 jojojojojof{ofo
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