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Abstract

In this paper we study defensive alliances in some specific regular
graphs, the circulant graphs, i.e. Cayley graphs on a cyclic group.
The critical defensive alliances of a circulant graph of degree at most
6 are completely determined. For the general case, we give tight
lower and upper bounds on the alliance number of a circulant graph
with d generators.
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1 Introduction

Informally, an alliance is a perfect example of the well known slogan “United
we stand, divided we fall.” An alliance in a graph is a set of vertices with
the property that the set is protected from attacks by other vertices (in the
case of defensive alliances), or, for offensive alliances, is able to collaborate
to attack other vertices.

Alliances were introduced in [14]. A defensive alliance is a set of ver-
tices with the property that each vertex has at least as many neighbors in
the alliance (including itself) as neighbors not belonging to the alliance. A
defensive alliance is strong if each vertex has more neighbors in the alliance
than not in it, and it is critical if it does not include other defensive al-
liances. An offensive alliance [7] is a set of vertices such that each vertex
has at least as many neighbors on its boundary in the alliance as neighbors
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not belonging to the alliance (including itself). Strong and critical offensive
alliances are defined similarly to strong and critical defensive alliances.

An alliance is called global if it is also a dominating set. Global defensive
alliances and global offensive alliances were first studied in [12] and (23]
respectively.

The concept of alliance is relatively new, but it is related to some other
well known concepts and problems. Moreover it has given rise to new
concepts and problems that are worth studying in different contexts. In
complex networks, the definition of web community, as in [10], coincides
with the definition of offensive alliance. Some works relate alliances to
community detection and partitioning [10, 13]. Other related concepts are
modules {18]; and in distributed computing, coalitions and monopolies [11,
17, 21]. From an algorithmic point of view, the clustering coefficient is
defined in terms of small alliances in {5}, and a study of algorithms for
global alliances is given in [28]. Some of the work related to alliances in
the context of graph theory include [9, 26], where the concept of k-alliance
is defined and studied, and [22, 25], in which the authors focus on the
spectral properties of alliances. Questions about complexity and alliances
are studied in [8].

We focus on the study of critical defensive alliances in regular graphs.
In a d-regular graph, a defensive alliance is a set of vertices that induces a
subgraph with minimum degree at least I_gj and maximum degree at most
d. As the description of graphs that induce critical defensive alliances in
d-regular graphs is known for d < 5 (see [14, 24]), the authors of this paper
solved, in [3], the problem of which graphs of cardinality ¥ < 8 induce a
critical defensive alliance in 6-regular graphs. Even in these restricted cases,
there is no easy description of such alliances. Because of the complexity
of the problem, in this paper we restrict the question to a family of very
symmetric graphs, the well known circulant graphs.

Circulant digraphs were first defined as graphs whose adjacency matrix
is a circulant matrix [6]. Circulant digraphs are, in fact, Cayley graphs on
the cyclic group Z,. If the set of generators is closed under inversion, then
the digraph is symmetric and it can be seen as a graph.

The regularity and the underlying algebraic structure of Cayley graphs
and, particularly, circulant (di)graphs make them good candidates for in-
terconnecting nodes of a network [15]. A problem that has been widely
studied is the isomorphism of circulant graphs. The Addm conjecture, pro-
posed in 1967 in [1], gave rise to a large amount of literature. Alspach [2]
gave a good overview of the state of the problem about ten years ago. The
problem was recently closed in [20]. Other problems on circulant graphs un-
der study include automorphism groups of circulant graphs [19], spanning
trees [4], arboricity [27], and extremal problems [16].

The paper is organized as follows. Basic definitions and properties are

116



given in Section 2. In Section 3 we enumerate specific results about de-
fensive alliances in regular graphs. More of these results appear in [3] and
will be used in Section 4. The main results of this paper on alliances in
circulant (undirected) graphs are given in Section 4. Finally, in Section 5,
we finish with some conclusions and open problems.

2 Definition and basic properties

First, we introduce some notation and basic definitions. Given a graph
G = (V, E) we denote by n and m its order and size respectively. The open
neighborhood of a vertex v € V is the set N(v) := {u € V': u ~ v}, and the
closed neighborhood of v is the set N[v] := N(v) U {v}. The degree of v is
d(v) := |[N(v)|. The boundary of § is the set 9(S) = UyesN(v) — S and we
denote by (S) the subgraph of G induced by S.

Given a non-empty set of vertices S, the neighborhood of v in S is
Ns(v) := {u € 8: ,u ~v} = N(v) N S. Denoting by S the complement in
V of S, we have N(v) = Ng(v) U Ngz(v). We denote by (S) the subgraph
of G induced by S.

2.1 Alliances
The following definitions are taken from [14].

Definition 2.1 (Defensive alliance) A non-empty set S C V is a de-
fensive alliance of G if, for every v € S,

[Ns[v]] 2 |Ng(v)] - (1)

We say that the alliance is strong if, for every v € S, the inequality is
strict.

The inequality (1) is called the (defensive) boundary condition.

Definition 2.2 (Offensive alliance) A non-empty set S C V is an of-
fensive alliance of G if, for every v € 8(S),

|Ns(v)| 2 |N5[v]]. (2)

We say that the alliance is strong if, for every v € 8(S), the inequality is
strict.

The inequality (2) is called the (offensive) boundary condition.
An alliance (of any type) is said to be global if it is also a dominating
set of the graph. (Recall that S is a dominating set if every vertex of G
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is in § or has a neighbor in §, that is, N[S] = V.) An alliance (of either
type) is said to be critical if none of its proper subsets is an alliance of the
same type. A dual (or powerful) alliance is a set that is both a defensive
and an offensive alliance.

In the remainder of the paper we will focus on defensive alliances. Note
that the whole graph G is a defensive alliance in G. Moreover if S is a
critical (strong) defensive alliance in G, then (S) is connected.

2.2 Alliance numbers

From the definition of alliance, some problems naturally arise. The first
problem studied is to find the minimum cardinality of a defensive alliance
of a given graph G. The problem we are interested in is which subsets of V,
or the induced subgraphs of G, are critical defensive alliances and, among
them, which are the minimal defensive alliances.

For a graph G, we can consider the following classes;

¢ A(G), the class of critical defensive alliances.
o A(G), the class of critical strong defensive alliances.

Associated with these classes, the following invariants are defined:
o The defensive alliance number of G,
a(G) := min{|S|: S € A(G)}.
The upper defensive alliance number of G,
A(G) := max{|S]: S € A(G)}.
¢ The strong defensive alliance number of G,
&(G) := min{|S|: S € A(G)}.
The upper strong defensive alliance number of G,
A(G) := max{|S]: S € A(G)}.

For the defensive alliance number of a graph, called alliance number
from here on, it is easy to find tight lower bounds in terms of the minimum
degree of the graph, as well as tight upper bounds in terms of the order:

[%’J +1< a(G) < [g] ) 3)
"ég] +1< 46 <|3]+1 (4)

118



The alliance number of a graph G is also related to its girth g(G), i.e.,
the length of the shortest cycle of the graph (if any): If é¢ > 4, then

9(G) < a(G).

The classes of critical offensive alliances and critical strong offensive
alliances, with their corresponding alliance numbers, can be defined anal-
ogously. Also, we can define the classes and alliance numbers for global

alliances of any type.
It is worth mentioning that the decision problems associated with the

different variations of alliances are all NP-complete (see {8] and the refer-
ences therein). Therefore it makes sense to study both the properties of
the different types of alliance numbers and the alliance number of restricted

classes of graphs.

3 Defensive alliances in regular graphs

The alliance numbers of d-regular graphs are known only for d < 5 (see [14,
24]). In this section we enumerate these results and also give the principal
results of [3] that will be used in the following section.

We denote by g(G) the girth of G and by lc(G) the maximum length of
an induced cycle in G. If G is d-regular, then it is known that:

e d=1=a(G) = A(G) =1, &(G) = A(G) = 2;

e d=2= a(G) = A(G) = &(G) = A(G) = 2;

e d=3= a(G) = A(G) =2, 4(G) = g(G), and A(G) = lc(G);

o d=4= a(G) = &(G) = g(G), A(G) = A(G) = I¢(G); and

o d=5= a(G) = g(G), A(G) =c(G).

If G = (V, E) is a graph, we say that a vertex v € S C V is defended
in S if and only if it satisfies the boundary condition with respect to S.
Similarly, if v satisfies the strong boundary condition with respect to S
we say that v is strongly defended in S. Let G = (V,E) be a graph,

and v € § C V. The following properties are direct consequences of the
definition of alliance and strong alliance.

Property 3.1 If d(v) = 2k, v is defended in S if and only if ds(v) 2>
k. Moreover the strong boundary condition is equivalent to the boundary
condition, i.e., v is defended in S if and only if it is strongly defended in
S.

Property 3.2 Ifd(v) = 2k+1, v s defended in S if and only if ds(v) > k;
v is strongly defended in S if and only if ds(v) > k + 1.
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Property 3.3 If G is d-regular, then S is an alliance in G if and only if
S induces a subgraph of minimum degree ds > }_-g-]; S is a strong alliance
in G if and only if it induces a subgraph of minimum degree 65 > [g] .

In fact, the known results for regular graphs of degree d < 5 allow us
to completely characterize critical alliances for these graphs:

o If G is 1-regular, the critical alliances are exactly the singletons.

o The strong critical alliances in a 1l-regular or 2-regular graph and
the critical alliances in a 2-regular or 3-regular graph are exactly the
edges.

o The strong critical alliances in a 3-regular or 4-regular graph and
the critical alliances in a 4-regular or 5-regular graph are exactly the
induced cycles.

o The strong critical alliances in a 4-regular or 5-regular graph and the
critical alliances in a 5-regular or 6-regular graph are studied by the
authors of the present paper in [3].

In this section we give some definitions and results that appear in [3]
and which we will use to prove the main results of this paper

Definition 3.4 (Induced alliance set) The (k,d)-induced alliance set
is the set of graphs H of order k, minimum degree g > [g] , and mazimum
degree Ay < d, with no proper subgraph of minimum degree greater than
|$]. We denote this set by Stk,d)-

Similarly, the (k,d)-induced strong alliance set is the set of graphs H
of order k, minimum degree §y > | %], and mazimum degree Ay < d, with
no proper subgraph of minimum degree greater than [%] We denote this

set by S( k,d)-

For instance, S(2,2) = S(2,3) = {K2}, and S(x 2) = Si,3) = @, if k > 3;
Ss.4) = S(s,5 = {Cs}, and S 4) = Srsy = {Ck}, if k > 6.

The following result is a consequence of the definitions of defensive
alliance and (k, d)-induced alliance set, or (k, d)-ias for short.

Proposition 3.5 If G is d-regular, then S is a critical alliance of G of
cardinality k if and only if (S) € Sk,q)-

Notice that Proposition 3.5 says that alliances in regular graphs are
defined by induced subgraphs of given minimum degree. The family of
graphs that can be induced by a critical alliance can be described by its
degree sequence.
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(3,3,3,3,3,3) gE C30K: %}(w
(4,4,3,3,3,3) ; ;(03‘31{2)*- %I{asﬂs Ci+K2

(5,3,3,3,3,3)

Ws

Figure 1: The (6, 6)-induced alliance set, with associated degree sequences.

Definition 3.6 (admissible sequence) A sequence s = (di,ds,...,dx)
is a (k,d)-admissible sequence, or an admissible sequence, if there is a
graph Gg in S g) with degree sequence s.

All results in defensive alliances of d-regular graphs are based on deter-
mining all (k, d)-admissible sequences and then describing the correspond-
ing (k, d)-induced alliance sets.

For a 6-regular graph G and a critical alliance of G, S, the cardinality
of S determines the degree sequence associated to (S}, as a graph.

o If |S| = 4 then (S) = K, and its associated degree sequence is
(3, 3,3,3). That is, 8(4’6) = {K4}

e If |S| = 5 then (S) = W, and its associated degree sequence is
(4,3,3,3, 3). That is, 8(5,6) = {W4}

Proposition 3.7 The (6,6)-ias are:

S(6,6) = {C30K3, K33, (C30K32) +e, K33 +e, Cy + Kz, Ws}

This set contains exactly the siz graphs in Figure 1.
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(4,3,3,3,3,3,3)] (4443333} (5433333) (63,3333,3)

Figure 2: The (7,6)-induced alliance set, with associated degree sequence.
The arrows indicate the subgraph relation.

Proposition 3.8 The set S(7,6) of the (7,6)-ias contains ezactly the 15
graphs in Figure 2.

Corollary 3.9 Let G = (V, E) be a 6-regular graph.
¢ a(G) = 4 & K, is an induced subgraph of G;
e a(G) =5 & W, is an induced subgraph of G and Ky is not; and

¢ a(G) = 6 & some graph in S ) is an induced subgraph of G, and
neither K4 nor Wy are.
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e a(G) = T & some graph in S(76) is an induced subgraph of G, and
neither K4 nor Wy, nor any of the graphs in S6y are.

The number of graphs in S(,, ) increases with the cardinality, m. A
similar but longer chain of reasoning gives the following claim.

Claim 3.10 The set Sz 6) of the (8,6)-ias contains exactly the 65 graphs
in Figure 3.

We can easily extend the previous results to 7-regular graphs. The
set of (8,7)-ias, S(g,7), contains exactly the graphs in S(g ), plus W7. To
summarize, we have

Se7) =Se6) Sa.n =516 Se1=35seU{W}
(See Figures 1, 2 and 3.)

3.1 Strong defensive alliances in regular graphs

Defensive alliances and strong defensive alliances coincide if G is d-regular,
with d even. For d odd, a defensive alliance is a set of vertices that induces
a subgraph with minimum degree at least 4—2‘—-1- and maximum degree at
most d, while a strong defensive alliance is a set of vertices that induces a
subgraph with minimum degree at least ﬁzi and maximum degree at most

d. (See Property 3.3.)

5-regular graphs. We have that S(m,s), defined in Definition 3.4, is the
set of graphs of minimum degree at least 3 and maximum degree at most
5. Thus if m < 6, Sin,5) = Sim,6). For m = 7,8, we have to remove
from Sim ) the graphs with maximum degree 6. To be precise, 3(7'5) =
Ser.6) \ {Ws} and 5'(8’5) contains the 59 graphs in S ) (see Figure 3).

6-regular graphs. We have that 6:'(,,,,6) = S(m,6)-

7-regular graphs. A graphisin 3(m,7) if it has minimum degree 4 and
maximum degree at most 7, and it contains no subgraph isomorphic to a
graph in 8¢ 7), for any 4 < m' <m.

In this case, we cannot derive any result about the (m, 7)-induced strong
alliance set from the (m, 7)-induced alliance set.
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(4,4,3,3,3,3,3,3)

- ATATA A
AN W N WD

(4.4,4,4.83,3,3,3)

A A K K X KX Y
4G = I K I 1K

(5,4,4,3,3,.3,3,9)

VR OAAAE
DARBBOOE

(5,5,3,8,8,3,3

< POXEE
SOXXXY[E

Figure 3: The (8,6)- and the (8, 7)-induced alliance set, with associated
degree sequence. The first 65 graphs are the graphs in S(g6), which are
also in S(g 7). The set S(g 7) \ S(s,6) contains only the graph W5.
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4 Defensive alliances in circulant graphs

In this section we give the main results of this paper. As we have seen,
the study of defensive alliances in regular graphs becomes more and more
complex as the degree increases. Therefore it makes sense to restrict the
study of alliances to more symmetric graphs.

In this paper we begin our study of defensive alliances on a family of
highly symmetric graphs, the well known (undirected) circulant graphs.
Circulant graphs are Cayley graphs on the cyclic group Z,. Since we are
studying undirected graphs, the set of generators must be closed under
additive inversion. An undirected circulant graph can be defined as follows.

Definition 4.1 (Circulant graph of order n with generators

€1,C2y...yca) The circulant graph of order n with generators ¢y, ¢z,...,¢c4
is the graph G = Cp(c1,¢2,...,cq) with vertex set Z, and adjacencies de-
fined by

v~vEg

for everyv € Zy, andi=1,...,d.

Remark. The usual notation for a symmetric or undirected circulant
graph with generators ¢, ¢z, ..., cq is Cn(cy, £co,. .., +cq). Since we are
only dealing with undirected graphs, we use the simpler notation
Ch(c1,€2,...,cq), assuming that both ¢; and —¢; are in the set of gen-

erators.
According to this notation, a permutation of the set of generators, which

gives an isomorphic circulant graph, is given by a permutation of the set
{c1,¢2,...,¢4}, but also by the change of the signs of an arbitrary subset

of {61,62, ey cd}.

4.1 Properties of circulant graphs
We first recall some well known properties of circulant graphs.

e The circulant graph Cy(ci,c2,...,¢q) is connected if and only if
ged(ey, co,...,c4,m) = 1.
If ged(ey,...,cq,n) = m then Cp(c1,c2,...,cq) is isomorphic to m
copies of the connected circulant graph Ca (2, 2,..., ).
Thus we can restrict our study to the case of connected circulant
graphs and therefore we always assume the connectedness condition

ged(eq,y ... cq,n) = 1.
o If 3 ¢ {c1,...,ca}, then Cy(c1,...,ca) is 2d-regular.
If 2 € {e1,¢2,...,ca}, then Cy(cy,...,cq) is (2d — 1)-regular.
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0—2—03
.............

e(zz)

Figure 4: The circulant graph C12(1, 4) with its lattice representation. The
vertices of the sublattice £~1(0) are solid grey.

o If A € Z}, then Cy(c,ca,.. ,cd) Ca(A-c1,A - c2,..., A cq). This
kind of isomorphism is called Addm-isomorphism [1] In particular,
if one of the generators of a circulant graph, say ¢, is invertible, then
we can always assume that it is equal to 1. Indeed,

7 /
Crn(c1,c2,...,cq) 2 Cr(l,c5,...,c)),
where ¢, = ¢;! - ¢;, fori =2,...,cq.

o Every circulant graph is vertex-symmetric. For every v € Z,, the
mapping fy: Zn — Zy, defined by f,(u) = u + v is an automorphism
of Cn(c1,¢2,...,cq), which applies the edge {u,u + ¢} to the edge
{u+v,u+v+c}, for any u € Z,, and c in the set of generators.

o A circulant graph C,(c1,c2,...,cq) contains triangles if, for some 1,
J and k pairwise distinct, ¢; - ¢; £ ex =0, or 2¢; £ ¢; =0, or 3¢; =0,
with the additions and products modulo n.

Lattice representation. Let C,(ci,...,cq) be a circulant graph, and
consider the infinite integer lattice Z¢, with the usual adjacencies
(1) ey Tiyo oy Za) ~ (21, xi £ 1,00 ,20), fori=1,...,d.

The vertices of this lattice can be labeled in Z, by

lzy,...,zq) =T 1 +Z2-c2+ -+Tqg-¢q4 (modn).

Note that for every v € Z,, the set £~1(v) is an infinite set of vertices of
Z4. 1t can be easily seen that since the map ¢ is linear, £-1(v) is a sub-
lattice of Z%. If v,w € Z,, the lattices £~}(v) and £~!(w) are isomorphic.
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This surjective map provides a useful geometric representation of circulant
graphs which, in fact, can be easily generalized to Cayley graphs on Abelian
groups. See Figure 4 for an example of a circulant graph and its lattice
representation.

4.2 Alliances in circulant graphs

Using the geometric representation of a circulant graph G = Cp(ecy,...,cq),
we can give a first bound on its alliance number.

Proposition 4.2 Let G = Cy(cy,...,cq), a circulant graph with d gener-
ators.

1. Iféc = 2d, ie., 3 ¢ {c1,...,Ca}, then the alliance number of G
satisfies d +1 < a(G) < 2%

2 Ifig=2d-1,14e, § € {c1,...,¢a}, then the alliance number of G
satisfies d < a(G) < 241,

Proof. Assume that % ¢ {c,...,ca}. Since d¢ = 2d, we know that
a(G) >2d+1.

To show that a(G) < 2¢, we show that the set S = £({0,1}9) is a
defensive alliance of G of cardinality |S| < 2¢. Indeed, every vertex in S
has at least d neighbors in §. Moreover, S contains 2¢ d-tuples. However,
since the labeling £ is not injective, some of the d-tuples might be assigned
by £ to the same vertex. Thus |S| < 2¢.

In the second case, that is if § ¢ {c1,...,cq}, We can assume, w.l.o.g.,
that 2 = cg. Then the set S = £({0,1}%~! x {0}), i.e., the d-tuples with
coordinates in {0,1} with 0 in the last one, is a defensive alliance of G of
cardinality |S| < 2¢-1. As in the previous case, every vertex in S has at
least d — 1 neighbors in S, and S contains 24-! d-tuples. Again, some of
the d-tuples might be assigned by £ to the same vertex. Thus |S| < 291,
|

For d = 3 and % ¢ {a,b,c}, we have that G = Cy(a,b,c) is 6-regular
and its alliance number satisfies

4<a(G) L8

We have characterized all the alliances of cardinality at most 8 of 6-regular
graphs. In what follows, we study the alliances in circulant graphs, up to
3 generators.
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4.2.1 Alliances in circulant graphs of small degrees

For the sake of completeness we give a short review of circulant graphs with
1 and 2 generators.

o G = Cr(c1) = C, is the n-cycle. In this case, the alliance numbers
are a(G) = (G) = 2. The critical alliances are the edges.

o G = Cp(c1,c2) is a 3-regular graph if and only if n = 2m and ¢c; = m.
In this case, G = Cy,(1,m) or G & C5,,(2, m). The alliance numbers
are a¢(G) = 2 and &(G) = ¢(G). G contains triangles (and thus
4(G) = 3) if and only if n = 4, which implies G & K, and if n = 6
and G & Cg(2, 3). In the remaining cases, 4(G) = g(G) = 4.

The critical alliances are the edges, and the strong critical alliances
are the induced cycles.

¢ G = Cy(c1,c2), with ¢ # 3, is a 4-regular graph. Therefore a(G) =
a(G) = g(G). In this case, G contains triangles if and only if c; =
2c1, that is, G = C,(1,2), or n = 3m and ¢; = +m, that is, G
Csm(1,m) or G = Can(3,m).

If G = Ca(1,2), G = C3m(1,m), or G = C3,(3,m), then a(G) =
&(G) = 3. Otherwise o(G) = &(G) = 4.

Circulant graphs of degree 5. Let G = Cop(a,b,m) be a circulant
graph of degree 5. Note that since § = 5, 2m > 6. But if 2m = 6 we have
that G = K and then Equations (3) and (4) imply that a(Ks) = 3 and
d(Kg) = 4. Thus we can assume that 2m > 8.

The known bounds give a(G) = ¢g(G) < 4.

¢ G contains triangles (and thus ¢(G) = a(G) = 3) if and only if a+b =
m, or m = 2m' is even and b = £m’/, or m = 3m’ and b = +2m’.
The connectedness condition, ged(a, b, m, 2m) = 1, implies that these
three cases correspond to G = Cyn(1,2,m), G = Cyp (1, m',2m/')
and G = Cgm/(1,2m’, 3m’) respectively.

e Otherwise, g(G) = a(G) = 4.

4.2.2 Alliances in circulant graphs of degree 6

Let us concentrate now on circulant graphs with 3 generators, Cp(a, b, ¢),
with § ¢ {a,b,c}. Note that since § = 6, n > 7. But if n = 7 then
Chn(a,b,¢) = K7 and Equations (3) and (4) imply that a(K7) = 4(K7) = 4.
Thus we can assume that n > 8.
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Recall that 4 < a(G) < 8 (see Proposition 4.2), and also that G contains
triangles if and only if, up to a permutation of the generators,

a+b+c=0(mod n), 2a + b= 0(mod n), or 3c = 0(mod =n).

In the previous section we found that Siy6 = {Ka}, Ss6) = {Wa},
Ss.6) = {C30K2, K3 3,(C30K2) + e, Kaz + e, Cy + K2, Ws}, and S(z7,6)
contains exactly the 15 graphs in Figure 2. To apply these results to 6-
regular circulant graphs, it should be noted that every graph in S ) con-
tains triangles, while the only triangle-free graph in S(g¢) is K3,3.

In the remainder of the section, we give a classification of 6-regular
circulant graphs according to their alliance number, showing which alliance
is a minimal alliance in these graphs. In summary, we show that either
G = Cp(a,b,c) contains triangles and then a(G) ranges from 4 to 7, or G
is triangle-free. In this latter case, either G contains K33 and a(G) = 6,
or a(G) = 8 and the minimal alliance is the cube Q3. Before giving the
complete classification theorem we prove some technical lemmas.

In all of the following lemmas we use the vertex-symmetry of circulant
graphs, and also that a circulant graph is isomorphic to any circulant graph
obtained by a permutation of its generators.

Lemma 4.3 If G = Cyr(a,b,c) is 6-regular then a(G) = 4 if and only if
G 2 Cn(1,2,3).

Proof. Assume that G = C,(a,b,c) contains a subgraph isomorphic to
K. Because of the vertex-symmetry of G, we can fix 0 to be any of the
vertices of this induced K4. Now the set of vertices that induce K} is, up
to a permutation of generators, either {0,a,b, —a} or {0,a,b,c}.

o If ({0,a,b, —a}) = Ky, then all the integers +2a, (b — a),x(b + a)
are generators of G.
Let us first study which of the generators equals 2a. The case 2¢ = a
is impossible. The case 2a = —b is, up to a permutation of the gener-
ators, the same as 2a = b. The case 2a = —c is, up to a permutation
of the generators, the same as 2a = ¢. Thus 2a € {—a, b, c}.

« 2a = —a gives 3a = 0; that is n = 3m and a = m. Now, b—a
can only be equal to —bor ¢. If b—a = —b then n = 6m’,
a = 2m’, b = m/, which implies a + b = 3m’ = +¢. But then the
connectedness condition is not fulfilled. If, otherwise, b —a = ¢,
then b+ a = —b, which implies 20 = —a = 2a. In both cases we
get a contradiction.

+ 2a = b gives b — a = a and then a + b = 3a = *c¢, which implies
G = Cyu(a,2a,3a) = Cn(1,2,3).
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e 2a = c implies that b — a = —b, that is, 2b = a, and thus
a+b = 3b. This implies b, 2b, 3b, and 4b are all generators of G
and this is a contradiction if n > 7.

o If ({0,a,b,c}) = K4, then all the integers £(a —b), £(b—c), £(c—a)
are generators of G.

Let us first study which of the generators equals ¢ ~ a. The cases
c—a = cand c—a = —a are both impossible. Thus, c—a € {a, £b, c}.

« c—~a = a gives ¢ = 2a. Now, ¢—b can only be equal to —a or —c.
If ¢ — b= —a we get 3a = b, which implies G = Cy(a, 2a,3a) &
Cn(1,2,3). The case ¢ — b = —c implies 2c = 4a = b and then
b—a = 3a. So a, 2a, 3a, and 4a are all generators of G and this
is a contradiction if n > 7.

ec—a=bgivesa+b=cand b— c=a. Now, a — b can only be
equal to —a or b. Both cases imply G = C,(1,2, 3).

« ¢c—a = —bimplies that a —b = c and c¢— b can only be equal to b
or —c. As in the previous case, both cases imply G = Cy(1, 2, 3).

e ¢—a = —c gives 2¢ = a. Now, ¢ — b can only be equal to —a
or b. If c— b = —a then 3¢ = b, which implies G = (2¢, 3¢, c) &
Cn(1,2,3). If, otherwise, c ~ b = b, we get 2b = ¢ and thus
a = 4b. This implies b, 2b, 3b, and 4b are all generators of G and
this is a contradiction if n > 7.

All possible cases give G = Cy(1, 2, 3).
|

Lemma 4.4 If G = Cyn(a,b,¢c) is 6-regular, then a(G) = 5 if and only if
G = Cam(a,m —a,m) or G = Cr(1,2,4).

Proof. Assume that G = C,(a,b,c) contains an induced subgraph iso-

morphic to Wy, and G does not contain any subgraph isomorphic to Kjy.
By symmetry, we can assume w.l.o.g. that either ({0, +a, +b}) = W, or

({0, +a,b,c}) = Wy. That is, either ({+a,=+b}) & Cy or {{xa,b,c}) = Cy.
For each case there are two possibilities:

o ({0,+a,+b}) = W, and (a,b, —a, —b,a) is an induced 4-cycle.

This implies that +(b — a) and +(b + a) are generators of G. It is
easy to see that in this case, b — a € {a, —b, ¢} and in all three of the
cases, G = C(1, 2, 3), which satisfies a(G) = 4.
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o ({0,%a,+b}) = Wy and (a, b, —b, —a, a) is an induced 4-cycle.
This implies that +(b — a), +2a, and +2b are generators of G. It is
easy to see that in this case, 2a € {—a, b, c}. By easy computations,
we obtain:

e 20 = —a implies n = 9m and a = 3m, b = m, ¢ = 2m, which
gives that either G = Cy(1, 2, 3), which satisfies a(G) =4, or G
is disconnected.

« 2a = b implies G & C,(1,2,4).

« 2a = —b implies G = Cp(1,2, 3), which satisfies a(G) = 4.

« 20 = c is only possible if b — a = —b, and this implies G
Cn(1,2,4).

Summarizing, G = C,(1,2,4).

o ({0,%a,b,c}) = W, and (a,b, —a,c,a) is an induced 4-cycle.

This implies that +(b — a), £(b + a), £(c — a), and x(c + @) are
generators of G. It is easy to see that in this case, b—a € {a, —b, £c}.
Reasoning and computing as in the previous case we obtain:

o

(1) b—a = a implies 2a = b and b+ a = 3q;
(2) b—a = —bimplies 2b = a and b+ a = 3b;
(3) b — @ = c gives that b+ a can only be equal to —b and thus

3b =c; and
(4) b— a = —c gives that b + a can only be equal to —b and thus
3b=-c
Any of these four cases implies that G = C,(1,2,3), which satisfies
a(G) = 4.

e ({0,%a,b,c}) = Wy and (a,b, ¢, —a,a) is an induced 4-cycle.
This implies that +(b — @), +2a, and +(c + a) are generators of G.
It is easy to see that in this case, 2a € {—a, £b, £c}, and we obtain:
(1) 2a = —a and b — ¢ = *a implies G = C3,,(a, m — a, m);
(2) 2a = —a and b — ¢ = —b implies G = C,(1, 2,4);
(3) 2a =b and b— c= —b implies G = C,(1,2,4); and
(4) 2a = —c and b — ¢ = cimplies G = C,(1,2,4).

All the remaining cases either give impossible values for the genera-
tors or imply that G = C,(1, 2, 3), which satisfies a(G) = 4.

This completes the proof. |
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The following two lemmas characterize the critical defensive alliances
for a circulant graph G of degree 6 not containing either K4 or Wy. These
graphs satisfy 6 < a(G) < 8. Lemma 4.5 deals with graphs containing
triangles, and Lemma 4.6 deals with triangle-free graphs.

Lemma 4.5 If G = Cp(a,b,c) contains a triangle and a(G) > 5, then one
of the following conditions holds.

1. 3¢ =0(mod n). Thenn = 3m and G = Cyp(a’,b',m), with o’ + b’ #
m, but G % C,(1,2,4). In this case, C30K, is an induced subgraph
of G. Thus a(G) =6.

2. 2a+b=0(mod n). Then G = Cy(a,—2a,c), but G % C,(1,2,3) and
G 2 Cn(1,2,4). In this case, C30K, is an induced subgraph of G.

Thus a(G) = 6.
3. a+b+c = 0(modn). Then G % Cp(1,2,3) and there are two
possibilities:

o G = Cym(a,m—a,m—2a) and it has an induced Cy+ K3. Thus
a(G) = 6.

o Otherwise, none of the graphs in S ) is an induced subgraph
of G, but G contains Wg. Thus a(G) =17.

Proof. The three cases in the statement of this lemma correspond to the
three cases for which G contains triangles.

Case 1: 3¢ =0. Itisclearthatn =3mand G & Ci(a’,b',m). Moreover
if ' + b’ = m, we have G = C3n(a’,m — a’,m). Lemma 4.4 says that
both Csm(a’,m — a’,m) and Cr(1,2,4) contain W,. On the other hand,
({0,m,—m,a',m +a',—m + a'}) ¥ C30K,, if a’ + b’ # m.

Case 2: 2a+b=0. It is clear that G = Cy(a, —2a,c). Since a(G) > 5,
we know that G 2 C,(1,2,3) and G ¥ C,r(1,2,4). One can also see
that if n = 3m, Csn(a, 20, ¢) cannot be isomorphic to Csp(a’,m — o/, m).
Moreover ({0, a,2a,c,a+ c,2a + c}) = C30K,.

Case 3: e+ b+ c = 0. The condition a(G) > 5 implies that G 2
Cn(1,2,3). We have that if S = {0,*a,=+b,+c}, then (S) = Ws and
thus 6 < a(G) < 7. The adjacencies in (S) are given by ds(0) = 6, and
(a,—b,c,~a,b,—c,a) is a 6-cycle.

Now a(G) = 6 if one of the graphs in

Sie,6) = {C30K2, K33, (C30K2) + e, K33+ ¢, Cq + Ko, Ws}
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is an induced subgraph of G (see Proposition 3.7). First, we prove that
none of the graphs Ws, K33, K33 + e, C30K; or (C30K32) + e can be an
induced subgraph of G.

e If there is an induced subgraph isomorphic to W5, by symmetry we
can assume that its vertex of degree 5 is 0. Now, up to a permutation
of the generators, we can assume that W5 & ({0,a,—b,c,—a,b}),

which clearly implies that a and b are adjacent. But then K, &
{0, a,b, —c}) is an induced subgraph of G, a contradiction.

o If either K33 or K33 + e is isomorphic to an induced subgraph of
G, we can assume w.l.o.g. that this subgraph is induced by a set
{0,a,b, ¢, z,y}, where = and y are at distance 2 from 0 and are both
adjacent to a, b and ¢. If z « y, then the induced subgraph is K3 3,
and if z ~ y, then the induced subgraph is K33 + e.

Easy computations give that up to symmetries and permutations of
the generators, either s =a—-bmy=a—-corz=a—-b~y=2a.
There are three possible values for a — b:

« @ —b=c— a implies 3a = 0, which corresponds to case 1,
« a —b=c— b implies a = ¢, which is impossible, and

« @ — b = 2¢ implies 2a = c and 3a = —b, which corresponds to
G =Cy(1,2,3).

o If C30K5 is isomorphic to an induced subgraph of G, we can assume
w.lo.g. that the disjoint triangles in this graph are T} = {0,a,—c}
and T2 = {2a, ,y}, with either z ~ 0 and y ~ —¢, or £ ~ —c and
y ~ 0. One can see that, up to symmetries, z = 3a, and y = 2a — ¢
or y = 2a — b. A careful analysis shows that neither case is possible.

o If (C30K5)+ e is isomorphic to an induced subgraph of G, we can as-
sume w.1.0.g. that this subgraph is induced by a set {0, a, —b,¢c, —a,y},
with y a common neighbor of a, ¢ and —a. One can see that this im-
plies y € {2¢,c — a} N {2a,a — ¢} N {c — a,—2a,b — a}, which is
impossible.

Let us now assume that G contains an induced subgraph isomorphic
to Cy + K2. Let {0,z,y,2,t,w} be its set of vertices and z ~ y, z ~ ¢
the neighbors of 0 in this induced subgraph. We can assume w.l.o.g. that
{z,y,2,t} = {a, b, —c} or {z,y, 2,t} = {+a, £b}. In the first case, we get
w=a—b=>b-cand 3b = 0, which corresponds to Case 1. Otherwise if
w =a—b=b—a, then 2(b— a) = 0, which implies n = 2m, b =m+a and
¢ =—m— 2a. Thus G = Copn(a,m — a,m ~ 2a).

This completes the proof. ]
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Lemma 4.6 Let G = C,(a,b,c) be 6-regular and triangle-free. K33 is an
induced subgraph of G if and only if G = C,(1,3,5). In this case, a(G) = 6.
Otherwise the minimal alliance of G is the cube Q3 and thus a(G) = 8.

Proof. First, recall that the only triangle-free graph in Sy U S(s,6) U
Ste,6) U Sz,6) is K3 3. Moreover if G = Cy(a, b, ¢) is 6-regular, by Proposi-
tion 4.2, the set of vertices {0,a,b,¢c,a+b,a+c¢,b+c,a+b+c} induce an
alliance of cardinality at most 8 that, if G is triangle-free, is isomorphic to
the cube Q3. To prove the lemma, we only need to show that G, triangle-
free, contains an induced K3 3 if and only if G = C,(1, 3, 5). Notice that in
Cn(1,3,5), the set {0,1,2,3,4,5} induces a subgraph isomorphic to K3 3.

- Let us assume that G has an induced K3 3. We can assume w.l.o.g. that
K33 is induced by {0,a,b,¢,z,y}, with z and y common neighbors of a,
b and ¢, at distance 2 from 0, or {0, a,b, —a,z,y}, with £ and y common
neighbors of a, b and —a, at distance 2 from 0. But easy computations show
that only the first possibility can hold, provided z and y are conveniently
chosen. Again by symmetry, z € {2a,a+b,a — b}. For every possible value
of z, we have to see which values are possible for y and how they determine
the graph G.

o If z = 2q, since b and c are adjacent to z, we have that 2a — b and
2a - c are both in {+a,+b,+c}. In this case, 2a — b can only be
equal to —a, and +c. We can see that 2a — b = —a implies 3a = b
and 2e¢ — b = —c, which gives G = C(1,3,5). If 2a — b = —c, then
2a — ¢ can only be equal to a, which implies b = —3a, ¢ = —5a, and
again, G & C,,(1,3,5). On the other hand, for 2a — b = ¢, and thus
2a — ¢ = b, we have to distinguish cases according to the values of
y. It can be seen that y € {a £ b,a £ c}. Some of these cases are
impossible; the possible ones again give G = C,(1,3, 5).

e If x = a-+b, then we need only to consider the cases y € {a~b,a*c}.
One can see that the only valid possibilities give G = C,(1, 3, 5).

e Finally, if = a — b, then we only need to consider the case y = a —c.
This case can be reduced by symmetry to the previous cases.

Thus, we have shown that the only triangle-free circulant graph of de-
gree 6 with an induced K33 is, up to isomorphism, G = C,(1,3,5). This
completes the proof. ]

Theorem 4.7 The alliance number of G = Cpr(a, b,c), the circulant graph
of degree 6 and order n > 8 1is

o a(G) =4 G Cpn(1,2,3) or G = Cy(1,2,4).
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¢ a(G) =5& G = Cspm(a,m—a,m).

e a(G) = 6 & G contains triangles and it is isomorphic to one of
the graphs Cam(a,b,m), with a + b # m, Com(m — 2¢c,m + ¢,¢),
Cim(m,b,—m—b), Cr(1,3,4), Cn(a,—2a,c), but G is not isomorphic
to Cn(1,2,3) nor Cn(1,2,4); or G is triangle-free and is isomorphic
to Cpn(1,3,5) or Cn(1,5,7).

¢ a(G) =76 G = Cha,b,—(a+0d)), but G is not isomorphic to any
of the graphs Com(m — 2¢,m + ¢,¢), Cym(m, b,—m — b), Cr(1,3,4).

o a(G) = 8 & G is triangle-free and is not isomorphic to Cn(1,3,5)
nor to Cr(1,5,7).

Proof. Follows straightforwardly from Lemmas 4.3, 4.4, 4.5, and 4.6
above. n

5 Conclusions and open problems

In a previous paper ([3]), we studied defensive alliances of cardinality k& < 8
in regular graphs of degree 6. In this paper, using these results, we have
restricted the problem to circulant graphs.

Open problems. We leave some open problems about defensive alliances
in circulant graphs.

e We have shown that if G = Cr(a, b, ¢) is 6-regular, then 4 < a(G) < 8.
Moreover in the family of circulant graphs of degree 6, there are
graphs with alliance number ranging from 4 to 8. Is this the same for
circulant graphs of higher degree?

e On the other hand, assuming that the bounds in Proposition 4.2 are
tight, an interesting problem is: Find a lower bound for n, the order
of a circulant graph G = Cp(c1,...,cq), such that a(G) = 2¢ (or
a(G) = 2471, if 2 efer,...ca})
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