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Abstract. In this paper, we obtain an upper bound on the order of a
blockwise-burst [11] that can be detected by a row-cyclic array code
(10] and obtain the fraction of blockwise-bursts of order exceeding the
upper bound that go undetected. We also give a decoding algorithm
for the correction of blockwise-bursts in row-cyclic array codes.

AMS Subject Classification (2000): 94B05

Keywords: Row-cyclic array codes, blockwise-burst errors

1. Introduction

Blockwise-bursts in linear array codes equipped with m-metric have
already been introduced by the author [11]. In this paper, we extend the
study of blockwise-bursts to row-cyclic array codes [10]. We first obtain an
upper bound on the order of a blockwise-burst that can be detected by a
row-cyclic array code and then obtain the ratio of blockwise-bursts of order
exceeding the upper bound that go undetected. Finally, we give a decoding
algorithm for the correction of blockwise-bursts in row-cyclic array codes.

2. Definitions and Notations

Let F;, be a finite field of ¢ elements. Let Maty, x4(Fg) denote the linear
space of all m x s matrices with entries from F,. An m-metric array code
is a subset of Mat,xs(F;) and a linear m-metric array code is an Fj-linear
subspace of Mat,xs(F;). Note that the space Maty,xs(F,) is identifiable
with the space F"*. Every matrix in Mat,xs(Fy) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
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and so on. Similarly, every vector in F{"* can be represented as an m x s
matrix in Mat,,xs(F,) by separating the co-ordinates of the vector into m
groups of s-coordinates. The m-metric on Mat,x(F,) is defined as follows
[13]:

Definition 2.1. Let Y’ € Matx,(F;) with Y = (y1,¥2,: -+, ys). Define row
weight (or p-weight) of Y as

max {i|y; #0} Y #0
wt,(Y) =
0 if Y=0.

Extending the definitions of wt, to the class of m x s matrices as

wto(A) = 3 _wty(Ry)

i=1
Ry
where A = R2 € Mat,xs(Fy) and R; denotes the i** row of A. Then
R

wt, satisfies 0 < wt,(A) < n(=ms) V A € Matnxs(Fy) and determines a
metric on Maty,xs(Fy) known as m-metric (or p-metric).

Now we define blockwise-burst in linear array codes [11]:

Definition 2.2. A blockwise-burst of order pr(orpxr) (1<p<m 1<
7 < s) in the space Mat,xs(Fg) is an m x s matrix A such that all the
nonzero entries of matrix A are confined to a p x r submatrix B of it where
each of the p rows of B forms a burst of length r in classical sense [12].

Definition 2.3. A blockwise-burst of order prorless (1<p<m 1<
T < 5) in the space Matn,xs(F;) is a blockwise-burst of order ed (or ¢ x d)
wherel1 Sc<p<mandl<d<r<s Wenow give the definition of

row-cyclic array codes [10].

Definition 2.4. An [m x s, k] linear array codes C C Mat,,xs(F,) is said
to be row-cyclic if

aix a2 - Gy
a2y Qg2 -+ Qg

eC
Gm1 Qm2 ‘" Qmg
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ais a1 Q412 -+-0G15-1

as G21 Q22 ¢ 025-1
= . . . . eC
Qms Qml Gm2 *°°Qmgs—1

i.e. the array obtained by shifting the columns of a code array cyclically

by one position of the right and the last column occupying the first place

is also a code array. In fact, a row-cyclic array code C of order m x s turns
m

out to be C = @Ci where each C; is a classical cyclic code of length s.

i=1

Also, every matrix/array in Matmxs(Fy) can be identified with an m-tuple
in A'™ where A™ is the direct product of algebra A, taken m times and
A, is the algebra of all polynomials over F; modulo the polynomial z° — 1
and this identification is given by

8 : Matmxs(F,) — A™

Ry
Rl 9'R2

0(A) =4 : = , = (¢'Ry,0'Ry,---,0'Ry) (1)
Rm o,

where R;(i = 1 to m) denotes the i** row of A and ¢’ : F§ — A, is given

by
0'(ag,a1,+,a5-1) = Gg + 01T + -+ + as_12° .

An equivalent definition of row-cyclic array code is given by [10]:

Definition 2.5. An m x s linear array codes C C Mat,xs(Fy) is said to

c=Pa
i=1

where each C; is an [s, k;, d;] classical cyclic code equipped with m-metric.
m

be row-cyclic if

The parameters of row-cyclic array code C are given by [mxs, S ki,'mi{l di].
1=
=1

If gi(z) is the generator polynomial of classical cyclic code C;, then the m-
tuple (gi(z)---,gm(z)) is called the generator m-tuple of row cyclic code

C.
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3. Detection of Blockwise-Bursts in Row-
Cyclic Array Codes

In this section, we first obtain an upper bound on the order of blockwise-
bursts that can be detected in a row-cyclic array code and then obtain the
ratio of blockwise-bursts (of order exceeding the upper bound) that can go
undetected. The upper bound on the order of blockwise-bursts that can be
detected in a row-cyclic array codes is obtained in the following theorem:

Theorem 3.1 Let C = @C be an [m x s, Zk,, mm d;] row-cyclic array

code. Then no code array isa bloclcwzse—burst of order m X r or less where
m

m
r= malx{s — k;}. Therefore, every [m x s, E kiﬂ.ni{l di] row-cyclic array
i= =
i=1
code detects any blockwise-burst of order m x m'g.lx{s — ki} or less.
i=

Proof. Consider a blockwise-burst A of order m x r or less where r =
m'g.lx{s — k;}. We can write A as
=

where B is a p x t submatrix of A(1 < p <m,1<t<r) given by

by, by 1 (J:)
bi, by () . . .

B = . = . (under the identification )
by, by, ()

where each by; is a 1 xt row vector having first and last (if t > 2) component
nonzero. Let (g1(z),: -,gm(z)) be the generator m-tuple of row-cyclic
array code C. Then deg(gi(z)) = s — ki (¢ = 1,2,---,m). Now, the
blockwise-burst A will be detected if g;(x) does not divide b;(z) for some ¢

where
1€ {11,12,“',1,,} and {11,12,-",1,,} C {1,2,-~,m}.

Now, from the theory of classical codes, we know that every component code
C; detects every classical burst of length s — k; or less, or in other words
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gi(z) does not divide b;(z) where b;(z) is a burst of length s — k; or less

(¢ =1 to m). Thus we get the blockwise-burst A of order m x m"ﬁlx{s —k;}
i=

or less will be detected by the row-cyclic array code. ]

Now we obtain the ratio of blockwise bursts of order m x r where
> m’gulx{s — k;} that go undetected in a row-cyclic array code.
1=

Theorem 3.2. Let N = {1,2,---,m}. LetC = @Ci be a row-cyclic array

code over F; where each C; is a [, ki, di] cla;;ilcal cyclic code equipped

with m-metric and having generator polynomial g;(z). Then the ratio of

blockwise-bursts of order m x r (where r > lgli&lx{s— k;}) that go undetected

in a row-cyclic array code is given by
[l(a=r+2)=mot > ki

( q) iEN/J
G- D"
where J is a subset of N such that

@)

ieJ=>r—1=s-k

and
igJ=>r—-1>8—k

Proof. Consider a blockwise-burst A of order m xr where r > mTa.lx{s— ki}.

We can write A as

A=(0 B 0)
where B is an m x r submatrix of A and is given by
bl bl ((IJ)
be ba(x) o em
= . = ) (under the identification 6),
bm bm(z)

where each b; is a classical burst of length . We observe that the blockwise-
burst A will go undetected if g;(z)|b:(z)V i = 1 to m. Without any loss
of generality, we may assume that ged(z?,b;(z)) = 1V j and deg b;(z) =
r —1Vi =1 to m. Now g;(z)|b:(z) iff

bi(z) = gi(z)qi(z) for some g¢;(x).
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Since deg bi(z) = r — 1 and deg gi(z) = s — k; implies that deg ¢i(z) =
(r—1)—(s—k;)VieN.

There are two cases to consider:

Case 1. When i € J.

In this case, r — 1 = s — k;. Therefore deg ¢;(z) = (r—-1)—(s—k;) =0
which implies that the possibilities for g;(z) = ¢ — 1. Thus possibilities for
gi(z) for all i € J taken together is equal to(g — 1)I1.

Case 2. When: ¢ J.

In this case r — 1 > s — k;. Therefore deg gi(z) > 0. The number of
possibilities for g;(z) = (g — 1)2g(r—V—(s=ki)-1,

Thus, total number of possibilities for g;(z) for all ¢ ¢ J taken together is
given by
(m=lIDr=2-0}+ D ks
(q _ 1)2(m—|J|) x (q) iEN/J .
Combining the two cases, we get the number of blockwise-bursts of order
m x r where r > mzéx{s — k;i} (with a fixed starting position) that go
undetected is given l;;l

(m=lTDr=2=s)+ Y ki
(g = 1)VI(g — 1)2m=1D)(q) ieN/J
Also, total number of blockwise-bursts of order m x 7 where r > m"élx{s—ki}
1=
(with a fixed starting position) that is given by

(g - 1)*™(g)™"?.

Therefore, the ratio of blockwise-bursts of order m x r(r > m?.lx{s —k:})
that go undetected is given by -

(m—{J|)(r—2-35)+ Z ks
(g = DMYl(g — 1)2m—1/(q) fenys
(q — 1)2mqm(r—2)

|Jl(s—r+2)-ms+ Z ki
(q) iEN/J

@D
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Example 3.1. Let C be the binary [2 x 3, 3] row-cyclic array code of order
2 x 3 generated by (g1(z),92(z)) = (1+z+2%,1+z). Then C=C1 6 C;
where C; and C; are classical cyclic codes of length 3 generated by 1+z+z2
and 1+ z respectively.

Herek; =1, kp=2and s=3.

Therefore, s — ky = 2, s —ky = 1 and T:aix{s — k;} = 2. We consider
blockwise-bursts of order 2 x 3, i.e. let r = 3. Then r > I}'l__?ilx{s — ki}.
Alsor—-1=2=s—-kjandr—-1=2>s- k.

= J={1}c{1,2} =N and N/J = {2}.

The ratio computed in (2) for the code considered in this example becomes
22+2-6 =22 = 1/4.

The ratio is justified by the fact that there are 4 blockwise-bursts of order
2 x 3 in Matgy3 over F3 given by

1 01 1 01 111 11
1 01 /°\111/'\1 01)'\11

and out of these 4 blockwise-bursts, only one blockwise-burst viz. ( i (1) } )

is undetected by the row-cyclic array code C.

4. Decoding Algorithm for Blockwise-Burst Error Cor-
rection

Let C = @C be a g-ary [m X s, Zk.,mm d;] row-cyclic array code
i=1

ha,vmg generator m-~tuple of polynomlals 1(gl (z), g2(z),

-,gm(z)) and correcting all blockwise-burst errors of order mr(l < r <
s). Let w(z) = (wi1(z), w2(z), -, wm(z)) be a received array with an
error pattern (ej(z),e2(z),---,em(x)) that is a blockwise-burst of order
mr(l < r < s). The goal is to determine (e;(z), e2(z),- -+, em(x)).
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Algorithm.
Step 1. Compute the syndrome m-tuple (S}l)(z), SJ(-"’) (z),---,
e ,SJ(-m)(a:)) for § =0,1,2,--- where for all i =i to m, SJ(-i)(:v) is given by

5$¥(z) = syndrome of z7w;(z).

Step 2. Find the nonnegative integer  such that syndrome for z!w;(z)(1 <
i £ m) is a classical burst of length r.

Step 3. Compute the remainder m-tuple e = (e1(z), - - -, em(z)) where for
all i =i to m, e;(z) is given by

ei(z) = x"'S,(i) (z)(mod (z° —1)).

Step 4. Decode (w1(z),- -, wm(x)) to (w1(z) —e1(z),"**, Wm(T) — em(z)).

Proof of Algorithm. First of all, we show the existence of nonnega-
tive integer ! is step 2. By the assumption, there exists an error pattern
(ex(z), -+, em(z)) such that each e;(z)(1 < i < m) has a cyclic run of zeros
of length s — r starting from the same position. (A cyclic run of zeros of
length p in an s-tuple is a succession of p cyclically consecutive zero com-
ponents). Thus there exists a nonnegative integer ! such that shifting the
error pattern e = (ey(x), - - - ,em(2)) cyclically through ! columns will bring
all the nonzero components to the first  columns of e. The cyclic shift
of error e;(z)(1 € ¢ < m) through [ positions is in fact the remainder of
zlw;(z)(mod (z° — 1)) divided by gi(x).

Also, foralli=1tom

5z) = (z'wi(z)(mod (z* ~ 1))(mod gi(a))
= (z'wi(z)(mod gi(z)).

Therefore, each S,(i)(x)(l < i £ m) is a classical burst of length ». Now,
for all i =1 to m, the word

ti(z) = (2°~'S () (mod (2° — 1)))

is a cyclic shift of (S,(i), 0) through s — ! positions, where S,(i) is a vector in
F;""' corresponding to the polynomial S,(’). It is clear that each ¢;(z) is a
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classical burst of order r. Also, for all ¢ =1 to m, we have

2 (wi(z) —ti(z)) = '(wilz) —2~'SP(2))
= zlw(z) - a:"S,(i) (z)
58(z) - 2289 (z)
(1-2°)8(z)
= 0(mod (g(2))). €)

Now, from equation (3), since g;(z) and z! are coprime to each other, we

get
gi(z)|(wi(z) — ti(z)) Vi=1,2,--,m

= w;(z) — ti(z) €C; i=1tom.

Also w;(z) — ei(z) € C; Vi =1 tom implies e;(z) and t;(z) belong to
the same coset (modg;(z)). Since both e;(z) and ¢;(z) are classical burst of
length r and each C; is r-burst error correcting classical cyclic code (since

m
C= @C,- corrects all blockwise bursts of order m x r), we get

i=1
e:(2) = ti(z) = (z*7' S ()(mod (z* - 1)))
(]

Example 4.1. Consider the binary row-cyclic array code C' = ®?=IC',~
where C; and C, are [7,4,4] classical cyclic codes in F, equipped with m-
metric and generated by g1(z) = 1+ 22+ 23 and go(z) = 1 + = + 23
respectively. Then parameters of row cyclic code C are [2 X 7,4 +4,4]. The
row-cyclic array code C corrects all blockwise-bursts of order 2 x 2 (taken
cyclically) as seen from the following table which shows that syndrome 2-
tuple of all blockwise-bursts of order 2 x 2 (taken cyclically) are all distinct.
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Table 4.1

Blockwise-bursts of order 2 x 2 Syndrome 2-tuple
in Matgy7(F3)

(100008 | o
(0110000) ou, o
(011 009) |
(0001100) o1, 109
(000110) | onm
(0000011) an, o)
(1030001) 1, oon

The syndrome 2-tuple S = (S, Sz) for a blockwise-burst
b= ( by ) of order 2 x 2 for the code C have been found by using the

b2
relation S = bHT where H is the parity check matrix of the code C and is
given by
_(H 0
i-(% &)
where
1001110
H=]010011.1
0011101
and
1 001011
H={0101110
0010111

Now, consider the received array

(w Y _({1 011100
w"(wz)_(o 01000 o)eMatzm(Fz)-
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Under the identification 8 : Mat,, xs(F2) e—— Agm) ,w can be identified as

(1+xz+a:3+:z4) (wl(x))
w= 2 = .
T we(z)
Compute the syndrome SJ(-i) (z) of zIw;(x)(1 < i < 2) until SJ(-i) is a classical
burst of length 2.
Table 4.2
i 8@ |87
0| 1+z+z? z?

1 14z 1+x

Therefore, | = 1.
Decode w;(z) = (1011100) to w;(z) — t1(z) where

ti(z) =ei(z) = z°~'SM(z)(mod (z° — 1))
= 2" 18{)(z)(mod (27 - 1))
= 251 + z)(mod (z7 - 1))
= z%+2"(mod (27 — 1))
= 2841
Thus w, (z) is decoded to
wy(z) —ti(z) =1+ 22 + 2° + 2% — 2% — 1 = 2% + 2% + z* + 2% = 0011101

Similarly decode ws(z) = 0010000 = z? to ws(z) — t2(z) where

ta(e) = e2(a) = 2*7'S{?(z)(mod (=° - 1))
= :z:6.5'£2)(a:)(mod (7 -1))
28(1 + z)(mod (z7 — 1))
= z6+41.
Therfore, wo(z) is decoded to

wa(z) — tao(x) = 22 — 2® — 1 = 1+ 22 4 2® = 1010001.
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Hence

1 1100
0 0 00O
1 1 01
1 0 01/"
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w = wy 01
T\ wg 01

00
10

O =

is decoded to (
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