On potentially $K_6 - 3K_2$ -graphic sequences*

Gang Chen[†]

Department of Information, School of Mathematics and Computer Science, Ningxia University, Yinchuan, Ningxia 750021, China.

Abstract: Let $K_m - H$ be the graph obtained from the complete graph on m vertices K_m by removing the edges set E(H) of H, where H is a subgraph of K_m . In this paper, we characterize the potentially $K_6 - 3K_2$ -graphic sequences, where pK_2 is the matching consisted of p edges. **Keywords:** graph; degree sequence; potentially $K_6 - 3K_2$ -graphic sequences

Mathematics Subject Classification (2000): 05C07

1. Introduction

The set of all sequences $\pi = (d_1, d_2, \dots, d_n)$ of non-negative, nonincreasing integers with $d_1 \leq n-1$ is denoted by NS_n . If each term of a sequence $\pi \in NS_n$ is nonzero, then π is said to be positive. A sequence $\pi \in NS_n$ is called to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is refereed to as a realization of π . The set of all graphic sequences in NS_n is denote by GS_n . For a $\pi = (d_1, d_2, \dots, d_n) \in NS_n$, define $\sigma(\pi) = d_1 + d_2 + \dots + d_n$. In a degree sequence, r^t means r repeats t times, that is, in the realization of the sequence there are t vertices of degree r. For a given graph H, a graphic sequence π is potentially H-graphic if there exists a realization of π containing H as a subgraph. Let G-H denote the graph obtained from G by removing the edges set E(H), where H is a subgraph of G. Let K_k , C_k , P_k and $K_{r,s}$ denote a complete graph on k vertices, a cycle on k vertices, a path on k+1 vertices, and the $r \times s$ complete bipartite graph, respectively. Given any two graphs G and H, $G \cup H$ is the disjoin union of G and H. If G = H, we abbreviate $G \cup H$ as 2G.

^{*}Support by NSF of Ningxia University(NO: ZR200827)

[†]Corresponding author, E-mail: chen_g@nxu.edu.cn

[4] considered the following variation of the classical Gould et al. Turán-type extremal problems: determine the smallest even integer $\sigma(H, n)$ such that every n-term graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ with $\sigma(\pi) \geq$ $\sigma(H,n)$ has a realization G containing H as a subgraph. If $H=K_{r+1}$, this problem was considered by Erdős et al. [3] where they showed that $\sigma(K_3,n)=2n$ for $n\geq 6$ and conjectured that $\sigma(K_{r+1},n)=(r-1)(2n-1)$ r) + 2 for sufficiently large n. Gould et al. [4] and Li and Song [18] proved independently that the conjecture holds for r=3 and $n\geq 8$. Recently, Li et al. [19,20] showed that the conjecture is true for r=4 and $n\geq 10$ and for $r \geq 5$ and $n \geq {r \choose 2} + 3$. Li and Yin [21] further determined $\sigma(K_{r+1}, n)$ for $r \geq 6$ and $n \geq 2r+3$. The problem about determining $\sigma(K_{r+1},n)$ was completely solved. Yin, Li and Mao [27] determined $\sigma(K_{r+1}-K_2,n)$ for $r\geq 3$ and $r+1 \le n \le 2r$ and $\sigma(K_5 - K_2, n)$ for $n \ge 5$, and Yin and Li [25] further determined $\sigma(K_{r+1}-K_2,n)$ for $r\geq 2$ and $n\geq 3r^2-r-1$. Yin [29] determined $\sigma(K_{r+1}-K_3,n)$ for $r\geq 3$ and $n\geq 3r+5$. Lai [13-15] determined $\sigma(K_5-C_4,n), \, \sigma(K_5-P_3,n), \, \sigma(K_5-P_4,n) \text{ and } \sigma(K_5-K_3,n) \text{ for } n \geq 5.$ Lai and Hu [16] determined $\sigma(K_{r+1}-H,n)$ for $n \geq 4r+10, r \geq 3, r+1 \geq k \geq 4$ and H be a graph on k vertices which containing a tree on 4 vertices but not contain a cycle on 3 vertices and $\sigma(K_{r+1}-P_2,n)$ for $n\geq 4r+8$, $r \geq 3$. Lai and Yan [17] determined the values of $\sigma(K_{r+1} - U, n)$ for $n \geq 5r + 18$, $r + 1 \geq k \geq 7$, $j \geq 6$, where U is a graph on k vertices and j edges which contains a graph $K_3 \cup P_3$ but not contains a cycle on 4 vertices and not contains $K_4 - P_2$.

In the research of degree sequence, another important question is to characterize the potentially H-graphic sequences without zero terms. Luo [23] characterized the potentially K_3 -graphic sequences. Luo and Warner [24] characterized then potentially K_4 -graphic sequences. Elaine and Niu [1] characterized the potentially $K_4 - K_2$ -graphic sequences. In [23], Luo characterized the potentially K_4-2K_2 -graphic sequences, where pK_2 is the matching consisted of p edges. Yin and Luo [28] characterized the potentially K_5 -graphic sequences. Yin and Yin [31] characterized the potentially $K_5 - K_2$ -graphic sequences. Luo [23] also characterized the potentially $K_5 - C_5$ -graphic sequences. Hu and Lai [5,6] characterized the potentially $K_5 - C_4$, $K_5 - P_4$ and $K_5 - E_3$ -graphic sequences, where E_3 denotes graphs with 5 vertices and 3 edges. Hu and Lai [7] characterized the potentially $K_5 - P_3$, $K_5 - A_3$, $K_5 - K_3$ and $K_5 - K_{1,3}$ -graphic sequences, where A_3 is $P_2 \cup K_2$. Moreover, they also characterized the potentially $K_5 - 2K_2$ -graphic sequences. In [31], Yin et al. also characterized the potentially K_6 -graphic. For $K_6 - H$, Hu and Lai [8] characterized the potentially $K_6 - 2K_3$ and $K_6 - C_6$ -graphic sequences. Latterly, Yin [30] characterized the potentially $K_6 - K_3$ -graphic sequences. The purpose of this paper is to characterize $K_6 - 3K_2$ -graphic sequences. As an application of this characterization, it is straightforward to find the values of $\sigma(K_6 - 3K_2, n)$.

2. Preparations

Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n, 1 \leq k \leq n$. Denote

$$\pi_k'' = \begin{cases} (d_1 - 1, \dots, d_{k-1} - 1, d_{k+1} - 1, \dots, d_{d_k+1} - 1, d_{d_k+2}, \dots, d_n), \\ if \ d_k \ge k, \\ (d_1 - 1, \dots, d_{d_k} - 1, d_{d_k+1}, \dots, d_{k-1}, d_{k+1}, \dots, d_n), \\ if \ d_k < k, \end{cases}$$

and $\pi_k'=(d_1',d_2',\ldots,d_{n-1}'),$ where $d_1'\geq d_2'\geq\cdots\geq d_{n-1}'$ is a rearrangement of the n-1 terms of π''_k . Then π'_k is called the residual sequence obtained by laying off d_k from π . It is easy to see that if π'_k is graphic then so is π , since a realization G of π can be obtained from a realization G' of π'_k by adding a new vertex of degree d_1 to G' and joining it to the vertices whose degrees are reduced by one in going from π to π'_k . In fact more is true:

Theorem 2.1 [9] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ and $1 \leq k \leq n$. Then π is graphic if and only if π'_k is graphic.

Theorem 2.2 [2] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ with even $\sigma(\pi)$. Then π is graphic if and only if for any t, $1 \le t \le n-1$,

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{j=t+1}^{n} \min\{d_j, t\}.$$

Theorem 2.3 [4] If $\pi = (d_1, d_2, \dots, d_n)$ is a graphic sequence with a realization G containing H as a subgraph, then there exists a realization G'of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Theorem 2.4 [22] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$. If $\sigma(\pi)$ is even and $d_1 - d_n \leq 1$, then π is graphic.

Theorem 2.5 [7] Let $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ be a positive sequence with $n \geq 5$. Then π is potentially $K_5 - 2K_2$ -graphic if and only if the following conditions hold:

- (1) $d_1 \geq 4$ and $d_5 \geq 3$.
- (2)

$$\pi \neq \left\{ \begin{array}{ll} (n-i,n-j,3^{n-i-j-2k},2^{2k},1^{i+j-2}), & if \ n-i-j \ is \ even, \\ (n-i,n-j,3^{n-i-j-2k-1},2^{2k+1},1^{i+j-2}), & if \ n-i-j \ is \ odd, \end{array} \right.$$

where $1 \le j \le 5$ and $0 \le k \le \lfloor \frac{n-i-j-4}{2} \rfloor$. (3) $\pi \ne (4^2, 3^4), (4, 3^4, 2), (5, 4, 3^5), (5, 3^5, 2), (4^7), (4^3, 3^4), (4^2, 3^4, 2),$ $(4,3^6), (4,3^5,1), (4,3^4,2^2), (5,3^7), (5,3^6,1), (4^8), (4^2,3^6), (4^2,3^5,1), (4,3^6,2),$ $(4,3^5,2,1), (4,3^7,1), (4,3^6,1^2), (n-1,3^5,1^{n-6})$ and $(n-1,3^6,1^{n-7})$.

Lemma 2.6 [30] Let $\pi = (4^x, 3^y, 2^z, 1^m)$ with even $\sigma(\pi)$, x + y + y + y + y + y + y = 0 $z+m=n\geq 5$ and $x\geq 1$. Then $\pi\in GS_n$ if and only if $\pi\not\in A$, where $A = \{(4,3^2,1^2), (4,3,1^3), (4^2,2,1^2), (4^2,3,2,1), (4^3,1^2), (4^3,2^2), (4^3,3,1), (4^4,2), (4^2,3,1^3), (4^2,1^4), (4^3,2,1^2), (4^4,1^2), (4^3,1^4)\}.$

Lemma 2.7 [30] Let $\pi = (3^x, 2^y, 1^z)$, where $x + y + z \ge 1$ and $\sigma(\pi)$ is even. Then $\pi \in GS_n$ if and only if $\pi \notin S$, where $S = \{(2), (2^2), (3, 1), (3^2), (3, 2, 1), (3^2, 2), (3^3, 1), (3^2, 1^2)\}.$

The set of all sequences $\pi = (4^x, 3^y, 2^z, 1^m)$ is denoted by B, where $\sigma(\pi)$ is even, $x \ge 1$ and $x + y + z + m \le 4$. Then

 $B = \{(4), (4, 2), (4^2), (4, 1^2), (4, 3, 1), (4, 3^2), (4, 2^2), (4^2, 2), (4^3), (4, 2, 1^2), (4, 2^3), (4, 3, 2, 1), (4, 3^2, 2), (4^2, 1^2), (4^2, 2^2), (4^2, 3, 1), (4^2, 3^2), (4^3, 2), (4^4)\}.$ Obviously, if $\pi = (d_1, d_2, \ldots, d_n)$ satisfies $\sigma(\pi)$ is even, $4 \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$ and $\pi \notin A \cup B \cup S$, then π must be graphic.

Lemma 2.8 Let $\pi = (d_1, d_2, 3^{n-2})$ be non-negative integer sequence with $n \geq 5$ and $n-2 \geq d_1 \geq d_2$. If $\pi \neq (1, 0, 3^3)$ and $\sigma(\pi)$ is even, then π is graphic.

Proof. If $d_2 \geq 3$, by Theorem 2.2, then $\pi \in GS_n$. Assume $d_2 \leq 2$. Consider the residual sequence $\pi'_1 = (3^{n-2-d_1}, 2^{d_1}, d_2)$ of π by laying off d_1 , where $n-2 \geq d_1$ and $2 \geq d_2 \geq 0$. Since $n \geq 5$, $\sigma(\pi'_1)$ is even and $\pi \neq (1,0,3^3)$, π'_1 is not one of following sequences:

 $(2), (2^2), (3,1), (3^2), (3,2,1), (3^2,2), (3^3,1), (3^2,1^2).$

By Theorem 2.4 and Lemma 2.7, π'_1 is graphic, so is π . \Box

3. Main result

Theorem 3.1 Let $n \ge 6$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence. Then π is potentially $K_6 - 3K_2$ -graphic if and only if π satisfies the following conditions:

- (1) $d_6 \geq 4$.
- (2) $d_1 = n 1$ implies $d_2 \ge 5$, and the residual positive sequence obtained by laying off d_1 from π is not one of the following sequences:

$$(4^2, 3^4), (4, 3^4, 2), (5, 4, 3^5), (5, 3^5, 2), (4^7), (4^3, 3^4), (4^2, 3^4, 2), (4, 3^6),$$

$$(4, 3^5, 1), (4, 3^4, 2^2), (5, 3^7), (5, 3^6, 1), (4^8), (4^2, 3^6), (4^2, 3^5, 1), (4, 3^6, 2),$$

- $(4,3^5,2,1),(4,3^7,1),(4,3^6,1^2).$
- (3) $d_3 = n 1$ implies $d_4 \ge 5$.

(4) If
$$\pi = (d_1, d_2, d_3, 4^i, 3^j, 2^k, 1^{n-i-j-k-3})$$
 with $i \ge 3$, then

$$d_1 + d_2 + d_3 < n + 2(i + j) + k + 3.$$

- (5) If $d_1=4$, i.e., $\pi=(4^6,d_7,\ldots,d_n)$, then sequence $(d_7,\ldots,d_n)\not\in A\cup B\cup S$.
 - (6) π is not one of the following sequences:

$$(n-i, n-j, 4^5, 2^{n-i-j-5}, 1^{i+j-2}), (n-i, n-j, 4^6, 2^{n-i-j-6}, 1^{i+j-2});$$

$$(n-2,4^{5},3,1^{n-7}),(n-2,5,4^{5},1^{n-7}),(n-3,4^{6},1^{n-7}),(n-2,4^{7},1^{n-8}),\\ (n-2,4^{6},2,1^{n-8}),(n-2,4^{5},3^{2},1^{n-8}),(n-3,4^{6},3,1^{n-8}),(n-3,5,4^{6},1^{n-8}),\\ (n-2,5,4^{5},3,1^{n-8}),(n-2,5^{2},4^{5},1^{n-8}),(n-2,6,4^{6},1^{n-8}),(n-4,4^{7},1^{n-8}),\\ (n-2,4^{7},3,1^{n-9}),(n-2,4^{6},3,2,1^{n-9}),(n-3,4^{7},2,1^{n-9}),(n-3,4^{8},1^{n-9}),\\ (n-2,5,4^{7},1^{n-9}),(n-2,5,4^{6},2,1^{n-9}),(n-2,4^{8},2,1^{n-10}),(n-2,4^{7},2^{2},1^{n-10});\\ n=8:(5,4^{5},3,2),(5^{2},4^{5},2),(5^{2},4^{4},3^{2}),(5^{3},4^{4},3),(5^{4},4^{4}),(5^{8}),(6,5,4^{5},1),\\ (6^{2},4^{5},2);\\ n=9:(5,4^{7},3),(5,4^{6},3,2),(5,4^{6},2,1),(5,4^{5},3^{3}),(5,4^{5},3^{2},1),(5^{2},4^{7}),(5^{2},4^{6},2),(5^{2},4^{5},3^{2}),(5^{2},4^{5},3,1),(5^{3},4^{5},3),(5^{3},4^{5},1),(5^{4},4^{5}),(5^{8},4),(6,4^{6},3^{2}),\\ (6,5,4^{6},3),(6,5^{2},4^{6}),(6,5^{8}),(6^{2},4^{7});\\ n=10:(5,4^{8},3),(5,4^{8},1),(5,4^{7},3,2),(5,4^{7},2,1),(5,4^{6},3^{2},1),(5,4^{6},3,1^{2}),\\ (5^{2},4^{8}),(5^{2},4^{7},2),(5^{2},4^{6},3,1),(5^{2},4^{6},1^{2}),(5^{2},4^{5},3,2,1),(5^{3},4^{6},1),(5^{10}),\\ \end{cases}$$

 $(5^9,1), (6,4^9), (6,4^8,2), (6,4^7,3,1).$ **Proof.** Suppose that π is potentially K_6-3K_2 -graphic. Let G be a realization of π which contains K_6-3K_2 and $d(v_i)=d_i$ for $v_i\in V(G),$ $i=1,2,\ldots,n$. (1) is obvious. If $d_1=n-1$, then $G-v_1$ contains K_5-2K_2 as a subgraph. Thus, $G-v_1$ contains at least one vertex with degree at least 4, and the positive degree sequence of $G-v_1$ is not one of the following sequences:

$$(4^2,3^4),(4,3^4,2),(5,4,3^5),(5,3^5,2),(4^7),(4^3,3^4),(4^2,3^4,2),(4,3^6),\\(4,3^5,1),(4,3^4,2^2),(5,3^7),(5,3^6,1),(4^8),(4^2,3^6),(4^2,3^5,1),(4,3^6,2),\\(4,3^5,2,1),(4,3^7,1),(4,3^6,1^2).$$

By Theorem 2.1 and Theorem 2.5, (2) holds. If $d_3 = n - 1$, then $G - v_1 - v_2 - v_3$ contains $K_{1,2}$ as a subgraph. Thus, $G - v_1 - v_2 - v_3$ contains at least one vertex with degree at least 2. Therefore, $d_3 = n - 1$ implies that $d_4 \ge 5$. Hence, (3) holds.

If $\pi=(d_1,d_2,d_3,4^i,3^j,2^k,1^{n-i-j-k-3})$ is potentially K_6-3K_2 -graphic, then according to Theorem 2.3, there exists a realization G of π containing K_6-3K_2 as subgraph so that the vertices of K_6-3K_2 have the largest degree of π . Therefore, the sequence $\pi_1=(d_1-4,d_2-4,d_3-4,0^3,4^{i-3},3^j,2^k,1^{n-i-j-k-3})$ obtained from $G-(K_6-3K_2)$ must be graphic. Then, there exist at most two vertices in $\{v_1,\ v_2,\ v_3\}$ which are adjacent in $G-(K_6-3K_2)$. Thus, $d_1-4+d_2-4+d_3-4\leq 2+3(i-3)+3j+2k+n-i-j-k-3$. If $d_1+d_2+d_3=n+2(i+j)+k+3$, then $n+2(i+j)+k+3-12\leq 2+3(i-3)+3j+2k+n-i-j-k-3$, i.e., $0\leq -1$, a contradiction. Hence, (4) holds.

Let $\pi=(4^6,d_7,\ldots,d_n)$ be potentially K_6-3K_2 -graphic and G be a realization of π with $K_6-3K_2\subseteq G$. Then $G-(K_6-3K_2)$ is a realization of the sequence $\pi_2=(d_7,\ldots,d_n)$. So π_2 is graphic and $\pi_2\not\in A\cup B\cup S$. Hence, (5) holds.

Assume $\pi=(n-i,n-j,4^5,2^{n-i-j-5},1^{i+j-2})$ is potentially K_6-3K_2 -graphic. Let G be a realization of π . If $v_1v_2\not\in E(G)$, then $d_1+d_2\leq 2\times 5+2(n-i-j-5)+i+j-2$, i.e., $n-i+n-j\leq 2n-i-j-2$, a contradiction. Assume $v_1v_2\in E(G)$. By Theorem 2.3, sequence $\pi_3=(n-i-4,n-j-4,0^4,4^1,2^{n-i-j-5},1^{i+j-2})$ obtained from $G-(K_6-3K_2)$ must be graphic. If $n-j-4\leq 1$, then n-i-j-5<0, a contradiction. Suppose $n-j-4\geq 2$. By Theorem 2.2, then $(n-i-4)+(n-j-4)+4\leq 3\times 2+2(n-i-j-5)+i+j-2$, i.e., $-4\leq -6$, a contradiction. Therefore $\pi=(n-i,n-j,4^5,2^{n-i-j-5},1^{i+j-2})$ is not potentially K_6-3K_2 -graphic. If $\pi=(n-i,n-j,4^6,2^{n-i-j-6},1^{i+j-2})$, then we can prove π is not potentially K_6-3K_2 -graphic similarly.

Assume $\pi = (n-2, 4^8, 2, 1^{n-10})$ is potentially $K_6 - 3K_2$ -graphic. By Theorem 2.3, then $\pi_4 = (n-2-4, 0^5, 4^3, 2, 1^{n-10})$ is graphic. But $(3^3, 1)$, the residual sequence by laying off the term n-6 from π_4 , is not graphic, a contradiction. Hence, $\pi = (n-2, 4^8, 2, 1^{n-10})$ is not potentially $K_6 - 3K_2$ -graphic. We can similarly show that the following sequences are not potentially $K_6 - 3K_2$ -graphic:

$$\begin{array}{l} (n-2,4^{7},3,1^{n-9}), (n-2,4^{7},2^{2},1^{n-10}), (n-2,4^{7},1^{n-8}), (n-2,4^{6},3,2,1^{n-9}) \\ (n-2,4^{6},2,1^{n-8}), (n-2,4^{5},3,1^{n-7}), (n-2,4^{5},3^{2},1^{n-8}), (n-3,4^{6},1^{n-7}), \\ (n-3,4^{6},3,1^{n-8}), (n-3,4^{7},2,1^{n-9}), (n-3,4^{8},1^{n-9}), (n-4,4^{7},1^{n-8}). \end{array}$$

Assume $\pi=(n-3,5,4^6,1^{n-8})$ is potentially K_6-3K_2 -graphic. Let G be a realization of π . According to Theorem 2.3, there exists a realization G of π containing K_6-3K_2 as subgraph so that the vertices of K_6-3K_2 have the largest degree of π . Thus, $G-v_1$ contain K_5-2K_2 . If $v_1v_2\not\in E(G)$, then $\pi_5=(5,4,3^5,0^{n-8})$ or $\pi_6=(5,3^6,1,0^{n-9})$ is degree sequence of $G-v_1$. By Theorem 2.5, π_5 and π_6 are not potentially K_5-2K_2 -graphic, a contradiction. If $v_1v_2\in E(G)$, then $\pi_7=(4,3^6,1^2,0^{n-10})$ or $\pi_8=(4^2,3^5,1,0^{n-9})$ or $\pi_9=(4^3,3^4,0^{n-8})$ is degree sequence of $G-v_1$. By Theorem 2.5, π_7 , π_8 and π_9 are not potentially K_5-2K_2 -graphic, a contradiction. Thus, $\pi=(n-3,5,4^6,1^{n-8})$ is not potentially K_6-3K_2 -graphic. If π is one of following sequences:

$$(n-2,5^2,4^5,1^{n-8}),(n-2,6,4^6,1^{n-8}),(n-2,5,4^5,3,1^{n-8}),$$

 $(n-2,5,4^7,1^{n-9}),(n-2,5,4^6,2,1^{n-9}),(n-2,5,4^5,1^{n-7}),$

then we can similarly prove that π is not potentially $K_6 - 3K_2$ -graphic as above. Now it is easy to check that the others sequences in (6) are not potentially $K_6 - 3K_2$ -graphic. Hence, (6) holds.

Next, we will prove the sufficient conditions. Suppose the graphic positive sequence $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ satisfies the conditions (1)-(6).

If $d_1=n-1$, then the residual sequence $\pi_1'=(d_1',d_2',\ldots,d_{n-1}')$ obtained by laying off d_1 from π such that $d_1'=d_2-1\geq 4$, $d_5'=d_6-1\geq 3$. Since π satisfies conditions (2),(4) and (6), π_1' is potentially K_5-2K_2 -graphic by Theorem 2.5. So π is potentially K_6-3K_2 -graphic by Theorem 2.1. Suppose $d_1\leq n-2$.

Our proof is by induction on n. If n=6, then $\pi=(4^6)$. It is easy to see that the sequence is the degree sequence of K_6-3K_2 . Now suppose that the sufficiency holds for $n-1(n\geq 7)$. We will prove that π is potentially K_6-3K_2 -graphic in terms of the following cases:

Case 1. $d_n \geq 5$. Consider the residual sequence $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$. If $d_n \geq 6$, then the residual positive sequence π'_n satisfies $d'_{n-1} \geq 5$. Since $\pi'_n \neq (5^{10}), (5^8), (6, 5^8)$, it is easy to check that π'_n satisfies (1), (2), (3) and (6). Then by the induction hypothesis, π'_n is potentially $K_6 - 3K_2$ -graphic. Hence, by Theorem 2.1, π is potentially $K_6 - 3K_2$ -graphic.

Suppose $d_n = 5$. Then π'_n satisfies $d'_2 \geq 5$, $d'_{n-1} \geq 4$. Obviously, π'_n satisfies (1). If π'_n satisfies (2),(3),(4) and (6), then by the induction hypothesis, π'_n is potentially $K_6 - 3K_2$ -graphic, and hence so is π .

If $d_1'=n-2$, by $d_1 \leq n-2$, then $d_6=d_1=n-2$. Clearly, π_n' satisfies (2) and (3).

Assume π'_n does not satisfy (4). Since $d'_{n-1} \geq 4$, $\pi'_n = (d'_1, d'_2, d'_3, 4^{n-4})$ where $d'_1 + d'_2 + d'_3 = (n-1) + 2(n-4) + 3 = 3(n-2)$. By $d'_1 \leq n-2$, $d'_1 = d'_3 = n-2$. If $n \geq 10$, by $d_n = 5$, then it is impossible. If $n \leq 9$, then π'_n is just $(6^3, 4^4)$, a contradiction. Hence, π'_n satisfies (4).

If π'_n does not satisfy (6), by $\pi \neq (6,5^8)$, (5⁸), then π'_n is one of the following sequences:

$$(5^8), (5^8, 4), (6, 5^8), (5^{10}).$$

Then π is one of the following sequences:

$$(6^5, 5^4), (6^4, 5^6), (6^6, 5^4), (7, 6^4, 5^5), (6^5, 5^6).$$

It is easy to check that all of those are potentially $K_6 - 3K_2$ -graphic.

Case 2. $d_n=4$. Consider the residual sequence $\pi'_n=(d'_1,d'_2,\ldots,d'_{n-1})$, where $d'_{n-5}\geq 4$ and $d'_{n-1}\geq 3$. If π'_n satisfies (1)-(6), then by the induction hypothesis, π'_n is potentially K_6-3K_2 -graphic, and hence so is π .

If π'_n does not satisfy (1), i.e., $d'_6 \leq 3$, then $d_4 = 4$. Since $d'_{n-5} \geq 4$, we have $7 \leq n \leq 10$. If n = 7, then $\pi = (d_1, d_2, d_3, 4^4)$, where $4 \leq d_3 \leq d_2 \leq d_1 \leq 5$. Since $\sigma(\pi)$ is even, $\pi = (5^2, 4^5)$ or $\pi = (4^7)$, which is impossible by (5) and (6). If n = 8, then $\pi = (d_1, d_2, 4^6)$, where $4 \leq d_2 \leq d_1 \leq 6$. Hence, π is one of following sequences:

 $(4^8), (5^2, 4^6), (6, 4^7), (6^2, 4^6),$

which is also impossible by (5) and (6). If n = 9, then $\pi = (d_1, 4^8)$, where

 $4 \le d_1 \le 7$ and d_1 is even. Hence, $\pi = (4^9)$ or $\pi = (6, 4^8)$, which is impossible by (5) and (6). If n = 10, then $\pi = (4^{10})$, a contradiction. Thus, π'_n satisfies (1).

If $d_1' = n - 2$, by $d_1 \le n - 2$, then $d_5 = d_1 = n - 2$. Clearly, π'_n satisfies (2) and (3).

If π'_n does not satisfy (4), by $d'_{n-5} \geq 4$ and $d'_{n-1} \geq 3$, then $\pi'_n = (d'_1, d'_2, d'_3, 4^i, 3^{n-i-4})$, where $i \geq n-8$ and $d'_1 + d'_2 + d'_3 = 3(n-2)$. Then $d'_1 = d'_2 = d'_3 = n-2$. By $d_n = 4$ and Theorem 2.1, then $\pi = ((n-1)^3, 5, 4^{n-4})$ or $\pi = ((n-1)^3, 4^{n-3})$, a contradiction. Hence, π'_n satisfies (4).

If π'_n does not satisfy (5), by $\pi \neq (5^4, 4^4)$, $(5^4, 4^5)$, $(5^2, 4^7)$, $(5^2, 4^8)$, then π'_n is one of the following sequences: (4^9) , (4^{10}) , $(4^8, 3^2)$. Thus, π is one of the following sequences: $(5^4, 4^6)$, $(5^4, 4^7)$, $(5^2, 4^9)$. It is easy to check that three of above sequences are potentially $K_6 - 3K_2$ -graphic.

If π'_n does not satisfy (6), by $d'_{n-1} \geq 3$ and $\pi \neq (6, 5^2, 4^5)$, $(6, 5^2, 4^6)$, $(6^2, 4^7)$, $(5^8, 4)$, $(7, 5, 4^7)$, $(6, 4^9)$, then π'_n is one of the following sequences: n-1=7: $(5^2, 4^5)$;

 $n-1=8: (\hat{6}, 4^7), (\hat{5}^2, 4^6), (6, 5, 4^5, 3), (6, 5^2, 4^5), (6^2, 4^6), (5^3, 4^4, 3), (5^4, 4^4), (5^8);$

 $\begin{array}{l} n-1=9:(7,4^7,3),(6,4^8),(7,5,4^7),(5,4^7,3),(5^2,4^7),(5^2,4^5,3^2),(5^3,4^5,3),\\ (5^4,4^5),(5^8,4),(6,4^6,3^2),(6,5,4^6,3),(6,5^2,4^6),(6,5^8),(6^2,4^7);\\ n-1=10:(5,4^8,3),(5^2,4^8),(5^{10}),(6,4^9). \end{array}$

Hence π is one of the following sequences:

 $n = 8: (6^2, 5^2, 4^4), (6, 5^4, 4^3);$

 $\begin{array}{l} n=9:(7,5^3,4^5), (6^2,5^2,4^5), (6,5^4,4^4), (5^6,4^3), (7,6,5,4^6), (7,6^2,5,4^5), \\ (7^2,5^2,4^5), (6^3,4^6), (6^4,4^5), (6^2,5^4,4^3), (6,5^6,4^2), (6^3,5^2,4^4), (6^4,5^4,4); \\ n=10:(8,5^2,4^7), (7,5^3,4^6), (8,6,5^2,4^6), (8,5^4,4^4,3), (6,5^2,4^7), (6^2,5^2,4^6), \\ (6,5^4,4^5), (5^6,4^4), (6^2,4^8), (6^3,4^7), (6^4,4^6), (6^3,5^2,4^4,5), (6^2,5^4,4^4), \\ (6,5^6,4^3), (5^8,4^2), (6^4,5^4,4^2), (6^3,5^6,4), (7,5,4^8), (7,6,5,4^7), (7,6^2,5,4^6); \\ 5,4^6), (7,6,5^3,4^5), (7,5^5,4^4), (7,6^3,5^5,4), (6^5,5^4,4), (7^2,5^2,4^6); \\ n=11:(6,5^2,4^8), (6^2,5^2,4^7), (6,5^4,4^6), (5^6,4^5), (6^4,5^6,4), (7,5^3,4^7). \end{array}$

It is easy to check that all of those are potentially K_6-3K_2 -graphic.

Case 3. $d_n=3$. Consider the residual sequence $\pi'_n=(d'_1,d'_2,\ldots,d'_{n-1})$, where $d'_3\geq 4$ and $d'_{n-1}\geq 3$. If π'_n satisfies (1)-(6), then by the induction hypothesis, π'_n is potentially K_6-3K_2 -graphic, and hence so is π .

If π'_n does not satisfy (1), i.e., $d'_6 \leq 3$, then $d_3 = 4$. Since $d'_3 \geq 4$, we have $d_9 = 3$ or $7 \leq n \leq 8$. If n = 7, then $\pi = (d_1, d_2, 4^4, 3)$, where $4 \leq d_2 \leq d_1 \leq 5$. Since $\sigma(\pi)$ is even, $\pi = (5, 4^5, 3)$, which is impossible by (6). If n = 8, then $\pi = (d_1, d_2, 4^4, d_7, 3)$, where $3 \leq d_7 \leq d_2 \leq d_1 \leq 6$. Hence, π is one of following sequences:

$$(5^2, 4^4, 3^2), (4^6, 3^2), (5, 4^6, 3), (6, 4^5, 3^2), (6^2, 4^4, 3^2).$$

It is easy to see that $\pi = (6^2, 4^4, 3^2)$ is potentially $K_6 - 3K_2$ -graphic and others are in contradiction with (5) and (6). Suppose $n \ge 9$. If $d_2 = 4$, by

 $d_9=3$, then $\pi=(d_1,4,4^4,d_7,d_8,3^{n-8})$, where $4\geq d_7\geq d_8\geq 3$. Consider the sequence $\rho_1=(d_1-4,d_7,d_8,3^{n-8})$. Clearly, $\sigma(\rho_1)=\sigma(\pi)-24$ is even. Let $\rho_1'=(s_1,s_2,\ldots,s_{n-6})$ be the residual sequence of ρ_1 by laying off d_1-4 . Clearly, $h\geq s_1\geq s_2\geq \cdots \geq s_{n-6}\geq h-1$, where $h\in \{3,4\}$. By $\pi\neq (4^7,3^2), (4^8,3^2), (5,4^5,3^3), (6,4^6,3^2)$, then ρ_1' is not one of the following sequence:

 $(4,3^2), (3^2,2), (4^2,3^2).$

By Theorem 2.4, ρ'_1 is graphic. Hence, by Theorem 2.1, ρ_1 is graphic. Let G_1^* be a realization of ρ_1 such that $d_{G_1^*}(v_1) = d_1 - 4$, $d_{G_1^*}(v_7) = d_7$, $d_{G_1^*}(v_8) = d_8$ and $d_{G_1^*}(v_i) = 3$ where $i = 9, 10, \ldots, n$. In G_1^* , we add new vertices v_2, v_3, \ldots, v_6 , and new edges

 $v_1v_3, v_1v_4, v_1v_5, v_1v_6, v_2v_3, v_2v_4, v_2v_5, v_2v_6, v_3v_5, v_3v_6, v_4v_5, v_4v_6,$

and denote

$$G = G_1^* + \{v_2, v_3, \dots, v_6\} +$$

 $\{v_1v_3, v_1v_4, v_1v_5, v_1v_6, v_2v_3, v_2v_4, v_2v_5, v_2v_6, v_3v_5, v_3v_6, v_4v_5, v_4v_6\}.$

It is easy to see that G is a realization of π and $K_6-3K_2\subseteq G[\{v_1,v_2,\ldots,v_6\}]$. Thus, π is potentially K_6-3K_2 -graphic. If $d_2\geq 5$, then $d_7=3$, i.e., $\pi=(d_1,d_2,4^4,3^{n-6})$. Consider the sequence $\rho_2=(d_1-4,d_2-4,3^{n-6})$, where $n-6\geq d_1-4\geq d_2-4\geq 0$. Since $\pi\neq (5,4^5,3^3)$ and Lemma 2.8, ρ_2 is graphic. Let G_2^* be a realization of ρ_2 such that $d_{G_2^*}(v_1)=d_1-4$, $d_{G_2^*}(v_2)=d_2-4$, and $d_{G_2^*}(v_i)=3$, $i=7,8,\ldots,n$. In G_2^* , we add new vertices v_3,v_4,v_5,v_6 , and new edges

 $v_1v_3, v_1v_4, v_1v_5, v_1v_6, v_2v_3, v_2v_4, v_2v_5, v_2v_6, v_3v_5, v_3v_6, v_4v_5, v_4v_6, \\$

and denote

$$G = G_2^* + \{v_3, \dots, v_6\} +$$

 $\{v_1v_3,v_1v_4,v_1v_5,v_1v_6,v_2v_3,v_2v_4,v_2v_5,v_2v_6,v_3v_5,v_3v_6,v_4v_5,v_4v_6\}.$

It is easy to see that G is a realization of π and $K_6-3K_2 \subseteq G[\{v_1, v_2, \dots, v_6\}]$. Thus, π is potentially K_6-3K_2 -graphic.

If $d_1'=n-2$, by $d_1 \leq n-2$, then $d_4=d_1=n-2$. Clearly, π_n' satisfies (2) and (3).

If π'_n does not satisfy (4), by $d'_{n-1} \geq 3$, then $\pi'_n = (d'_1, d'_2, d'_3, 4^i, 3^{n-i-4})$, where $d'_3 \leq d'_2 \leq d'_1 \leq n-2$ and $d'_1 + d'_2 + d'_3 = 3(n-2)$. Then $d'_1 = d'_2 = d'_3 = n-2$. If $n-2 \geq 6$, then $\pi = ((n-1)^3, 4^i, 3^{n-i-3})$, a contradiction. If n-2=5, then $\pi'_n = (5^3, 3^3)$ or $\pi'_n = (5^3, 4^2, 3)$. Thus π is one of the following sequence: $(6^3, 3^4)$, $(6^3, 4^2, 3^2)$, $(6^2, 5^2, 4, 3^2)$, $(6, 5^4, 3^2)$, a contradiction. Hence, π'_n satisfies (4).

If π'_n does not satisfy (5), by $\pi \neq (5, 4^7, 3), (5^2, 4^5, 3^2), (5^3, 4^4, 3), (5^3, 4^5, 3), (5, 4^8, 3)$, then π'_n is one of the following sequences:

$$(4^6, 3^2), (4^7, 3^2), (4^9), (4^8, 3^2), (4^{10}).$$

So π is one of the following sequences:

$$(5^3, 4^3, 3^3), (5^2, 4^6, 3^2), (5^3, 4^4, 3^3), (5^3, 4^6, 3), (5, 4^9, 3), (5^2, 4^7, 3^2), (5^3, 4^5, 3^3), (5^3, 4^7, 3).$$

It is easy to check that the eight sequences above are all potentially $K_6 - 3K_2$ -graphic.

If π'_n does not satisfy (6), by $d'_{n-1} \geq 3$ and $\pi \neq (6, 5, 4^5, 3)$, $(6, 5, 4^6, 3)$, $(7, 4^7, 3)$, then π'_n is one of the following sequences:

 $n-1=7: (5,4^5,3), (5^2,4^5);$

$$n-1 = 8: (6,4^7), (5,4^6,3), (5^2,4^6), (6,5,4^5,3), (6,5^2,4^5), (6^2,4^6), (5^2,4^4,3^2), (5^3,4^4,3), (5^4,4^4), (5^8);$$

$$n-1 = 9: (7,4^7,3), (6,4^8), (7,5,4^7), (5,4^7,3), (5,4^5,3^3), (5^2,4^7), (5^2,4^5,3^2), (5^3,4^5,3), (5^4,4^5), (5^8,4), (6,4^6,3^2), (6,5,4^6,3), (6,5^2,4^6), (6,5^8), (6^2,4^7);$$

n-1=10: $(5,4^8,3), (5^2,4^8), (5^{10}), (6,4^9);$

Then π is one of the following sequences:

$$n = 8: (5^4, 4^2, 3^2), (6, 5^2, 4^3, 3^2), (6^2, 5, 4^4, 3), (6, 5^3, 4^3, 3), (5^5, 4^2, 3);$$

$$n = 9: (7, 5^2, 4^5, 3), (7, 5^2, 4^3, 3^3), (7, 5, 4^5, 3^2), (7, 4^7, 3), (6, 5^2, 4^4, 3^2), (6, 5, 4^6, 3), (5^4, 4^3, 3^2), (6^2, 5, 4^5, 3), (6, 5^3, 4^4, 3), (5^5, 4^3, 3), (7, 6, 5, 4^4, 3^3), (7, 5^3, 4^3, 3^2), (7, 6, 4^6, 3), (7, 6^2, 4^5, 3), (7, 5^4, 4^3, 3), (7, 6, 5^2, 4^4, 3), (7^2, 5, 4^5, 3), (6^2, 5, 4^3, 3^3), (5^5, 4^3, 3^3), (6^2, 4^5, 3^2), (6, 5^3, 4^2, 3^3), (6^3, 4^4, 3^2), (6^2, 5^2, 4^3, 3^2), (6, 5^4, 4^2, 3^2), (5^6, 4, 3^2), (6^3, 5, 4^4, 3), (6^2, 5^3, 4^3, 3), (6, 5^5, 4^2, 3), (5^7, 4, 3), (6^3, 5^5, 3);$$

 $n = 10: (8,5^2,4^5,3^2), (8,5,4^7,3), (7,5^2,4^6,3), (8,6,5,4^6,3), (8,5^3,4^5,3), \\ (6,5^2,4^5,3^2), (6,5,4^7,3), (5^4,4^4,3^2), (6,5^2,4^3,3^4), (6,5,4^5,3^3), \\ (6,4^7,3^2), (5^4,4^2,3^4), (6^2,5,4^6,3), (6,5^3,4^5,3), (5^5,4^4,3), \\ (6^2,5,4^4,3^3), (6,5^3,4^3,3^3), (5^5,4^2,3^3), (6^2,4^6,3^2), (6^3,4^5,3^2), \\ (6^2,5^2,4^4,3^2), (6,5^4,4^3,3^2), (5^6,4^2,3^2), (6^3,5,4^5,3), (6^2,5^3,4^4,3), \\ (6,5^5,4^3,3), (5^7,4^2,3), (6^3,5^5,4,3), (6^2,5^7,3), (7,5^2,4^4,3^3), (7,4^8,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^3,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^2,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6,5,4^5,3^2), (7,5^2,4^4,3^2), (7,6^4,4^7,3), (7,6^2,4^6,3), \\ (7,5,4^6,3^2), (7,6^2,4^5,3^2), (7,6^2,4^6,3^2), (7$

 $(7,5^2,5^2,4^4,3),(7,6,5^2,4^5,3),(7,6^2,5^6,3),(6^4,5^5,3),(7^2,5,4^6,3);$ $n=11:(6,5^2,4^6,3^2),(5^4,4^5,3^2),(6,5,4^7,4,3),(6^2,5,4^7,3),(6,5^3,4^6,3),$ $(5^2,5^3,4^5,3),(6^3,5^7,3),(7,5^2,4^7,3).$

It is easy to check that all of those are potentially $K_6 - 3K_2$ -graphic.

Case 4. $d_n=2$ Consider the residual sequence $\pi'_n=(d'_1,d'_2,\ldots,d'_{n-1})$, where $d'_4\geq 4$ and $d'_{n-1}\geq 2$. If π'_n satisfies (1)-(6), then by the induction hypothesis, π'_n is potentially K_6-3K_2 -graphic, and hence so is π .

If π'_n does not satisfy (1), then $d_2 = 4$. Let $\pi = (d_1, 4^5, d_7, d_8, \dots, d_n)$, where $n - 2 \ge d_1 \ge 4 \ge d_7 \ge d_8 \ge \dots \ge d_n = 2$. If $d_1 = 4$, then $d_8 \le 3$.

If $d_1 \geq 5$, then $d_7 \leq 3$. Consider the sequence $\rho_3 = (d_1 - 4, d_7, \dots, d_n)$. Clearly, $\sigma(\rho_3) = \sigma(\pi) - 24$ is even. Let $\rho_3' = (s_1, s_2, \dots, s_{n-6})$ be the residual sequence of ρ_3 by laying off $d_1 - 4$. If $d_1 = 4$, then $4 \geq s_1$ and $3 \geq s_2 \geq \dots \geq s_{n-6} \geq 2$; If $d_1 \geq 5$, then $h \geq s_1 \geq s_2 \geq \dots \geq s_{n-6} \geq h-1$, where $h \in \{2,3\}$. Since π is not one of the following sequences:

$$(4^6, 2), (4^6, 2^2), (4^6, 3^2, 2), (4^6, 4, 2),$$

 $(4^6, 4, 2^2), (4^6, 4, 2^3), (4^6, 4, 3^2, 2), (5, 4^6, 3, 2).$

 ρ_3' is not one of the following sequences:

$$(2), (2^2), (3^2, 2), (4, 2), (4, 2^2), (4, 2^3), (4, 3^2, 2).$$

By $\rho_3' \notin A \cup B \cup S$ and Theorem 2.1, ρ_3 is graphic. Let G_3^* be a realization of ρ_3 such that $d_{G_3^*}(v_1) = d_1 - 4$, $d_{G_3^*}(v_i) = d_i$, where $i = 7, 8, \ldots, n$. In G_3^* , we add new vertices v_2, v_3, \ldots, v_6 , and new edges

 $v_1v_3, v_1v_4, v_1v_5, v_1v_6, v_2v_3, v_2v_4, v_2v_5, v_2v_6v_3v_5, v_3v_6, v_4v_5, v_4v_6, \\$

and denote

$$G = G_3^* + \{v_2, v_3, \dots, v_6\} +$$

 $\{v_1v_3, v_1v_4, v_1v_5, v_1v_6, v_2v_3, v_2v_4, v_2v_5, v_2v_6v_3v_5, v_3v_6, v_4v_5, v_4v_6\}.$

It is easy to see that G is a realization of π and $K_6-3K_2\subseteq G[\{v_1,v_2,\ldots,v_6\}]$. Thus, π is potentially K_6-3K_2 -graphic.

If $d_1'=n-2$, by $d_1 \leq n-2$, then $d_1=d_3=n-2$. If $d_1'=n-2$ and $d_2'=4$, by $d_6 \geq 4$, then n=7 and $\pi_n'=(5,4^5)$, a contradiction. If π_n' does not satisfy (2), then π_n' is just $(6,5^2,4^4)$. Then π is one of the following sequence: $(7,6,5,4^4,2),(7,5^3,4^3,2),(6^3,4^4,2)$. It is easy to check that π is potentially K_6-3K_2 -graphic.

If $d'_1 = d'_3 = n - 2$, by $d_1 \le n - 2$, then $d_1 = d_2 = \cdots = d_5 = n - 2$. If $n \ge 8$, then $d'_4 \ge 5$. If n = 7, by $d_6 \ge 4$, then $\pi = (5^5, 5, 2)$. It is easy to see that $\pi'_n = (5^4, 4^2)$ satisfies (3). Therefore, π'_n satisfies (3).

If π'_n does not satisfy (4), then $\pi'_n = (d'_1, d'_2, d'_3, 4^i, 3^j, 2^{n-1-i-j-3})$, where $i \ge 1$ and $d'_1 + d'_2 + d'_3 = (n-1) + 2(i+j) + (n-1-i-j-3) + 3 = 2(n-1) + (i+j)$.

If $d_2' \ge 6$, then $\pi = (d_1, d_2, d_3, 4^i, 3^j, 2^{n-i-j-3})$, where $d_1 + d_2 + d_3 = d_1' + d_2' + d_3' + 2 = n + 2(i+j) + (n-i-j-3) + 3$, a contradiction.

If $d_2' = 5$, then $\pi_n' = (d_1', 5, d_3', 4^i, 3^j, 2^{n-4-i-j})$, where $4 \le d_3' \le d_1' \le n-2$ and $d_1' + 5 + d_3' = 2(n-1) + i + j$. Then $d_1' + d_3' = 2n + i + j - 7 \le (n-2) + 5$, i.e., $n \le 10 - i - j$. Since $i \ge 1$ and $j \ge 0$, $n \le 9$. If n = 9, then i = 1 and j = 0. Then $d_1' + d_3' = 2n + i + j - 7$ is even. It is easy to see that $\sigma(\pi_n')$ is odd, a contradiction. If n = 8, then i = 1, j = 1 or i = 2, j = 0. $\sigma(\pi_n')$

is odd for n=8 and i=j=1, a contradiction. If n=8 and i=2, j=0, by $d_1' \le n-2$, then $\pi_n' = (6,5^2,4^2,2^2)$. Hence π is one of the following sequences:

$$(7, 6, 5, 4^2, 2^3), (6^3, 4^2, 2^2), (7, 5^3, 4, 2^3),$$

which is a contradiction. If n=7, by even $\sigma(\pi'_n)$, then i=2, j=1, i.e., $\pi'_n=(5^3,4^2,3)$. Then π is one of the following sequences:

$$(6^2, 5, 4^2, 3, 2), (5^5, 3, 2), (6, 5^3, 4, 3, 2),$$

a contradiction.

If $d_2' = 4$, then $d_1' + 8 = 2(n-1) + i + j$. By $d_1' \le n-2$, $n \le 8 - i - j$. Since $n \ge 7$ and $i \ge 1$, n = 7, i = 1, j = 0. Thus, $\pi'_n = (5, 4^3, 2^2)$, a contradiction. Therefore, π'_n satisfies (4).

If π'_n does not satisfy (5), by $\pi \neq (4^8, 2), (5, 4^6, 3, 2), (4^8, 2^2), (5^2, 4^5, 2), (5^2, 4^6, 2), (4^9, 2), (5, 4^7, 3, 2), (5^2, 4^7, 2), (4^9, 2^2), (4^{10}, 2), (5^2, 4^8, 2), then <math>\pi'_n$ is one of the following sequences:

$$(4^6,2), (4^6,2^2), (4^6,3^2), (4^6,3^2,2), (4^9,2^2), (4^{10},2), (4^7,2), (4^7,3^2),$$

 $(4^7,2^2), (4^8,2), (4^7,2^3), (4^7,3^2,2), (4^8,2^2), (4^8,3^2), (4^9,2).$

Then π is one of the following sequences:

$$(5^2,4^4,2^2),(5^2,4^4,2^3),(5^2,4^4,3^2,2),(5,4^6,3,2^2),(5^2,4^4,3^2,2^2),(5^2,4^7,2^3),\\ (5^2,4^8,2^2),(5^2,4^5,2^2),(5^2,4^5,3^2,2),(5^2,4^5,2^3),(5^2,4^6,2^2),(5^2,4^5,2^4),\\ (5,4^7,3,2^2),(5^2,4^5,3^2,2^2),(5^2,4^6,2^2,2),(5,4^8,3,2),(5^2,4^6,3^2,2),(5^2,4^7,2^2).$$

It is easy to check that the above sequences are potentially K_6-3K_2 -graphic.

If π'_n does not satisfy (6), by $d'_{n-1} \geq 2$ and $\pi \neq (6^2, 4^5, 2), (6, 4^6, 2), (6, 4^7, 2)$ $(6, 4^6, 2^2), (7, 5, 4^6, 2), (7, 4^6, 3, 2), (6, 4^8, 2), (8, 4^8, 2), (8, 4^7, 2^2),$ then π'_n is one of the following sequences:

$$n-1=7$$
: $(5,4^5,3),(5^2,4^5)$;

$$n-1 = 8: (6, 4^6, 2), (6, 4^5, 3^2), (5, 4^6, 3), (5^2, 4^6), (6, 5, 4^5, 3), (6, 5^2, 4^5), (6^2, 4^6), (5, 4^5, 3), (5, 4^5, 2), (5^2, 4^4, 3^2), (5^3, 4^4, 3), (5^4, 4^4), (5^8), (6^2, 4^5, 2);$$

$$n-1 = 9: (7,4^7,3), (7,4^6,3,2), (6,4^7,2), (6,4^8), (7,5,4^7), (7,5,4^6,2), (5,4^7,3), (5,4^6,3,2), (5,4^5,3^3), (5^2,4^7), (5^2,4^6,2), (5^2,4^5,3^2), (5^3,4^5,3), (5^4,4^5), (5^8,4), (6,4^6,3^2), (6,5,4^6,3), (6,5^2,4^6), (6,5^8), (6^2,4^7):$$

$$(5^{4}, 4^{5}), (5^{8}, 4), (6, 4^{6}, 3^{2}), (6, 5, 4^{6}, 3), (6, 5^{2}, 4^{6}), (6, 5^{8}), (6^{2}, 4^{7});$$

$$n - 1 = 10: (8, 4^{8}, 2), (8, 4^{7}, 2^{2}), (5, 4^{8}, 3), (5, 4^{7}, 3, 2), (5^{2}, 4^{8}), (5^{2}, 4^{7}, 2),$$

$$(5^{10}), (6, 4^{9}), (6, 4^{8}, 2).$$

Then π is one of the following sequences:

$$n = 8$$
: $(6, 5, 4^4, 3, 2)$, $(5^3, 4^3, 3, 2)$, $(6, 5^2, 4^4, 2)$, $(5^4, 4^3, 2)$;
 $n = 9$: $(7, 5, 4^5, 2^2)$, $(7, 5, 4^4, 3^2, 2)$, $(6, 5, 4^5, 3, 2)$, $(5^3, 4^4, 3, 2)$, $(6^2, 4^6, 2)$,

 $(6,5^2,4^5,2), (7,6,4^5,3,2), (7,5^2,4^4,3,2), (7,6,5,4^5,2), (6^3,4^5,2), \\ (7,5^3,4^4,2), (7^2,4^6,2), (6,5,4^4,3,2^2), (5^3,4^3,3,2^2), (6^2,4^5,2^2), \\ (6,5^2,4^4,2^2), (5^4,4^3,2^2), (6^2,4^4,3^2,2), (6,5^2,4^3,3^2,2), (5^4,4^2,3^2,2), \\ (6^2,5,4^4,3,2), (6,5^3,4^3,3,2), (5^5,4^2,3,2), (6^2,5^2,4^4,2), (6,5^4,4^3,2), \\ (5^6,4^2,2), (6^2,5^6,2), (7^2,4^5,2^2);$

 $n=10: \ (8,5,4^6,3,2), \ (8,5,4^5,3,2^2), \ (7,5,4^6,2^2), \ (7,5,4^7,2), \ (8,6,4^7,2), \\ (8,5^2,4^6,2), \ (8,6,4^6,2^2), \ (8,5^2,4^5,2^2), \ (6,5,4^6,3,2), \ (5^3,4^5,3,2), \\ (6,5,4^5,3,2^2), \ (5^3,4^4,3,2^2), \ (6,4^7,2^2), \ (6,5,4^4,3^3,2), \ (5^3,4^3,3^3,2), \\ (6,4^6,3^2,2), \ (6^2,4^7,2), \ (6,5^2,4^6,2), \ (5^4,4^5,2), \ (6^2,4^6,2^2), \ (6,5^2,4^5,2^2), \ (6^2,4^4,2^2), \ (6^2,4^5,3^2,2), \ (6,5^2,4^4,3^2,2), \ (5^4,4^3,3^2,2), \ (6^2,5^4,4^3,3^2), \ (6^2,5^6,4,2), \ (6^5,5^4,3^3,3^2), \ (6^2,5^6,4,2), \ (6,5^8,2), \ (7,5,4^5,3^2,2), \ (7,4^7,3,2), \ (7,6,4^6,3,2), \ (7,5^2,4^5,2), \ (7^2,4^7,2);$

 $n=11: \begin{array}{ll} (9,5,4^7,2^2), \ (9,5,4^6,2^3), \ (6,5,4^7,3,2), \ (6,4^9,2), \ (5^3,4^6,3,2), \\ (6,5,4^6,3,2^2), \ (6,4^8,2^2), (5^3,4^5,3,2^2), \ (6^2,4^8,2), (6,5^2,4^7,2), \\ (5^4,4^6,2), \ (6^2,4^7,2^2), (6,5^2,4^6,2^2), \ (5^4,4^5,2^2), (6^2,5^8,2), \\ (7,5,4^8,2), \ (7,5,4^7,2^2). \end{array}$

It is easy to check that all of those are potentially $K_6 - 3K_2$ -graphic.

Case 5. $d_n = 1$.

Consider the residual sequence $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$, where $d'_5 \geq 4$ and $d'_{n-1} \geq 1$. If π'_n satisfies (1)-(6), then by the induction hypothesis, π'_n is potentially $K_6 - 3K_2$ -graphic, and hence so is π .

If π'_n does not satisfy (1), i.e., $d'_6 \leq 3$, then $d_1 = 4$ and $d_7 \leq 3$. Then $\pi = (4^6, d_7, d_8, \ldots, d_n)$, where $3 \geq d_7 \geq d_8 \geq \cdots \geq d_n = 1$. Consider the sequence $\rho_4 = (d_7, \ldots, d_n)$. Clearly, $\sigma(\rho_4) = \sigma(\pi) - 24$ is even. Since π is not one of the following sequences:

$$(4^6, 3, 1), (4^6, 3, 2, 1), (4^6, 3^3, 1), (4^6, 3^2, 1^2),$$

 $\rho_4 \neq (3,1), (3,2,1), (3^3,1), (3^2,1^2).$ By Lemma 2.7, ρ_4 is graphic. Let G_4^* be a realization of ρ_4 . Denote

$$G = G_4^* \cup (K_6 - 3K_2).$$

It is easy to see that G is a realization of π and K_6-3K_2 is subgraph of G. Thus, π is potentially K_6-3K_2 -graphic.

If $d_1' = n - 2$, by $d_1 \le n - 2$, then $d_2 = n - 2$. If $d_2' \le 4$, then n = 7 and $d_3 \le 4$, i.e., $\pi = (5, 5, 4^4, 1)$, a contradiction. Suppose that $n \ge 8$ or $d_3 \ge 5$. If π'_n does not satisfy (2), then π'_n is one of the following sequences:

$$(6, 5^2, 4^4), (6, 5, 4^4, 3), (7, 6, 5, 4^5), (7, 6, 4^5, 3).$$

By (2), $\pi \neq (7, 5^2, 4^4, 1), (7, 5, 4^4, 3, 1), (8, 6, 5, 4^5, 1), (8, 6, 4^5, 3, 1)$, thereby π is one of the following sequences:

$$(6^2, 5, 4^4, 1), (6^2, 4^4, 3, 1), (7^2, 5, 4^5, 1), (7^2, 4^5, 3, 1).$$

It is easy to see that all of those are potentially $K_6 - 3K_2$ -graphic.

If π'_n does not satisfy (3), then $d'_3 = n - 2$ and $d'_4 \le 4$. By $d_1 = d_4 = n - 2$, $n - 3 \le d'_4 \le 4$ and $n \le 7$, then $\pi = (5^4, 4^2, 1)$, a contradiction. Hence, π'_n satisfies (3).

If π'_n does not satisfy (4), then $\pi'_n = (d'_1, d'_2, d'_3, 4^i, 3^j, 2^k, 1^{n-1-i-j-k-3})$, where $i \ge 2$ and $d'_1 + d'_2 + d'_3 = (n-1) + 2(i+j) + k + 3$.

If $d_1' \geq 6$, then $\pi = (d_1, d_2, d_3, 4^i, 3^j, 2^k, 1^{n-i-j-k-3})$, where $d_1 + d_2 + d_3 = d_1' + d_2' + d_3' + 1 = n + 2(i+j) + k + 3$, a contradiction. If $d_1' = 4$, then $\pi_n' = (4^3, 4^i, 3^j, 2^k, 1^{n-1-i-j-k-3})$, where $i \geq 2, j \geq 0$ and $k \geq 0$. Then 12 = n - 1 + 2(i+j) + k + 3, i.e., n = 10 - 2(i+j) - k. Since $n \geq 7$, it is impossible. If $d_1' = 5$, then $\pi_n' = (5, d_2', d_3', 4^i, 3^j, 2^k, 1^{n-1-i-j-k-3})$, where $4 \leq d_3' \leq d_2' \leq n - 2$ and $5 + d_2' + d_3' = n - 1 + 2(i+j) + k + 3$. Then $d_2' + d_3' = n + 2(i+j) + k - 3 \leq 10$, i.e., $n \leq 13 - 2(i+j) - k$. If i = 2, by $n \geq 7$, $j \geq 0$ and $k \geq 0$, then j = k = 0, $n \leq 9$ or j = 0, k = 1, $n \leq 8$ or j = 1, k = 0, n = 7. Then π_n' is one of the following sequence:

$$(5^3, 4^2, 1^3), (5^2, 4^3, 1^2), (5, 4^4, 1), (5^3, 4^2, 2, 1), (5^2, 4^3, 2), (5^3, 4^2, 3).$$

Thus, π is one of the following sequences:

$$\begin{array}{l} (6,5^2,4^2,1^4), (5^4,4,1^4), (6,5,4^3,1^3), (5^3,4^2,1^3), \\ (6,4^4,1^2), (5^2,4^3,1^2), (6,5^2,4^2,2,1^2), (5^4,4,2,1^2), \\ (6,5,4^3,2,1), (5^3,4^2,2,1), (6,5^2,4^2,3,1)(5^4,4,3,1), \end{array}$$

which is a contradiction. If $i \ge 3$, by $n \ge 7$, then i = 3, j = k = 0, n = 7. Thus, $\pi'_n = (5^3, 4^3)$, a contradiction. Therefore, π'_n satisfies (4).

If π'_n does not satisfy (5), by $\pi \neq (4^7, 1^2)$, $(5, 4^5, 3^2, 1)$, $(4^7, 3, 1)$, $(4^7, 2, 1^2)$, $(4^7, 3, 2, 1)$, $(4^7, 3^2, 1^2)$, $(4^7, 3, 1^3)$, $(4^8, 3, 1^3)$, $(4^8, 1^4)$, $(4^9, 2, 1^2)$, $(5, 4^8, 2, 1^3)$, $(4^{10}, 1^2)$, $(4^9, 1^4)$, $(5, 4^6, 1)$, $(5, 4^6, 2, 1)$, $(5, 4^7, 1)$, $(5, 4^6, 3, 1^2)$, $(4^8, 1^2)$, $(5, 4^6, 3^2, 1)$, $(4^8, 3, 2, 1)$, $(5, 4^7, 1^3)$, $(5, 4^7, 3, 1^2)$, $(4^9, 1^2)$, $(4^9, 3, 1)$, $(5, 4^8, 2, 1)$, $(5, 4^9, 1)$, then the sequence π'_n is one of the following sequences: $(4^6, 2)$, $(4^6, 2^2)$, $(4^6, 3, 1)$, $(4^6, 3, 2, 1)$, $(4^6, 3^2, 2)$, $(4^6, 3^3, 1)$, $(4^6, 3^2, 1^2)$, $(4^7, 3^2, 1)$

 $(4^{0},2), (4^{0},2^{2}), (4^{3},3,1), (4^{3},3,2,1), (4^{3},3^{2},2), (4^{3},3^{3},1), (4^{3},3^{2},1^{2}), (4^{7},3^{2},1^{2}), (4^{7},3,1^{3}), (4^{8},2,1^{2}), (4^{8},3,2,1), (4^{9},1^{2}), (4^{9},2^{2}), (4^{9},3,1), (4^{10},2), (4^{8},3,1^{3}), (4^{8},1^{4}), (4^{9},2,1^{2}), (4^{10},1^{2}), (4^{9},1^{4}), (4^{7},1^{2}), (4^{7},3^{2}), (4^{7},2^{2}), (4^{8},2), (4^{9}), (4^{7},2,1^{2}), (4^{7},2^{3}), (4^{7},3,2,1), (4^{7},3^{2},2), (4^{8},3^{2}), (4^{8},3^{2}), (4^{9},2), (4^{10}).$

Then π is one of the following sequences:

 $(5,4^5,2,1),(5,4^5,2^2,1),(5,4^5,3,1^2),(5,4^5,3,2,1^2),(5,4^5,3^2,2,1),(5,4^5,3^3,1^2)\\(5,4^5,3^2,1^3),(4^7,3,1^3),(5,4^6,3^2,1^3),(5,4^6,3,1^4),(4^8,1^4),(5,4^7,2,1^3),(5,4^7,3,2,1^2),(5,4^8,1^3),(5,4^8,2^2,1),(5,4^8,3,1^2),(5,4^9,2,1),(5,4^7,3,1^4),(4^9,1^4),\\(5,4^7,1^5),(5,4^8,2,1^3),(5,4^9,1^3),(5,4^8,1^5),(5,4^6,1^3),(4^8,3,1),(5,4^6,2^2,1),\\(5,4^7,2,1),(5,4^8,1),(5,4^6,2,1^3),(5,4^6,2^3,1),(5,4^6,3,2,1^2),(4^8,2,1^2),(5,4^6,3^2,1^2),$

 $3^2, 2, 1), (4^8, 3, 2, 1), (5, 4^7, 2^2, 1), (5, 4^7, 3^2, 1)(4^9, 3, 1).$

It is easy to check that the above sequences are potentially $K_6 - 3K_2$ -graphic.

Suppose that π'_n does not satisfy (6).

Assume $\pi'_n = (n-1-i, n-1-j, 4^5, 2^{n-1-i-j-5}, 1^{i+j-2})$. If $n-1-i \geq 6$, then $\pi = (n-i, n-(j+1), 4^5, 2^{n-i-(j+1)-5}, 1^{i+(j+1)-2})$ or $\pi = (n-(i+1), n-j, 4^5, 2^{n-(i+1)-j-5}, 1^{(i+1)+j-2})$, a contradiction. If $n-1-i \leq 5$, then n-1-i-j-5 < 0, a contradiction. Thus, $\pi'_n \neq (n-1-i, n-1-j, 4^5, 2^{n-1-i-j-5}, 1^{i+j-2})$. Similarly, $\pi'_n \neq (n-1-i, n-1-j, 4^6, 2^{n-1-i-j-6}, 1^{i+j-2})$.

If $\pi'_n = (n-3, 4^8, 2, 1^{n-11})$, then $\pi = (n-2, 4^8, 2, 1^{n-10})$, a contradiction. Hence, we can prove π'_n is not one of the following sequences similarly:

$$(n-3,4^7,3,1^{n-10}),(n-3,4^7,2^2,1^{n-11}),(n-3,4^7,1^{n-9}),(n-3,4^6,3,2,1^{n-10}),\\(n-3,4^6,2,1^{n-9}),(n-3,4^5,3^2,1^{n-9}),(n-4,4^7,2,1^{n-10}),(n-4,4^8,1^{n-10}),\\(n-3,5,4^7,1^{n-10}),(n-3,5,4^6,2,1^{n-10}).$$

Assume $\pi'_n=(n-4,5,4^6,1^{n-1-8})$. If $n\geq 10$, then $\pi=(n-3,5,4^6,1^{n-8})$, a contradiction. If $n\leq 9$, i.e., $\pi'_n=(5^2,4^6)$, then $\pi=(5^3,4^5,1)$ or $\pi=(6,5,4^6,1)$, a contradiction. Hence, we can show π'_n is not one of the following sequences similarly:

$$(n-4,4^6,3,1^{n-9}),(n-5,4^7,1^{n-9}),(n-3,6,4^6,1^{n-1-8}).$$

If $\pi'_n = (n-3, 5, 4^5, 1^{n-8})$, then $\pi = (n-2, 5, 4^5, 1^{n-7})$ for $n \geq 9$ or $\pi = (5^3, 4^4, 1)$ for n = 8. By (6), $\pi = (n-2, 5, 4^5, 1^{n-7})$, which is a contradiction. It is easy to check $\pi = (5^3, 4^4, 1)$ is potentially $K_6 - 3K_2$ -graphic. Similarly, if π'_n is one of the following sequences:

$$(n-2,5,4^5,1^{n-7}), (n-3,4^5,3,1^{n-8}), (n-4,4^6,1^{n-8}),$$

 $(n-3,5^2,4^5,1^{n-1-8}), (n-3,5,4^5,3,1^{n-1-8}),$

then π is potentially $K_6 - 3K_2$ -graphic, where π satisfies (6).

Then π'_n is one of the following sequences:

$$n-1 = 8: (5,4^5,3,2)(5^2,4^5,2), (5^2,4^4,3^2), (5^3,4^4,3), (5^4,4^4), (5^8), (6^2,4^5,2);$$

$$n-1 = 9: (5,4^7,3), (5,4^6,3,2), (5,4^6,2,1), (5,4^5,3^3), (5,4^5,3^2,1), (5^2,4^7),$$

$$(5^2,4^6,2), (5^2,4^5,3^2), (5^2,4^5,3,1), (5^3,4^5,3), (5^3,4^5,1), (5^4,4^5),$$

$$(5^8,4), (6,4^6,3^2), (6,5,4^6,3), (6,5^2,4^6), (6,5^8), (6^2,4^7)$$

$$n-1 = 10: (5,4^8,3), (5,4^8,1), (5,4^7,3,2), (5,4^7,2,1), (5,4^6,3^2,1), (5,4^6,3,1^2), (5^2,4^8), (5^2,4^7,2), (5^2,4^6,3,1), (5^2,4^6,1^2), (5^2,4^5,3,2,1), (5^3,4^6,1), (5^{10}), (5^9,1), (6,4^9), (6,4^8,2), (6,4^7,3,1).$$

Since $\pi \neq (6, 5, 4^5, 1), (6, 5, 4^7, 1), (5^3, 4^6, 1), (5^9, 1), (6, 4^8, 1^2), (5^2, 4^7, 1^2), \pi$ is one of the following sequences:

$$n = 9: (6, 4^{5}, 3, 2, 1), (5^{\overline{2}}, 4^{4}, 3, 2, 1), (6, 5, 4^{5}, 2, 1), (5^{3}, 4^{4}, 2, 1), (6, 5, 4^{4}, 3^{2}, 1), (5^{3}, 4^{3}, 3^{2}, 1), (6, 5^{2}, 4^{4}, 3, 1), (5^{4}, 4^{3}, 3, 1), (6, 5^{3}, 4^{4}, 1), (5^{5}, 4^{3}, 1), (6, 5^{7}, 1), (6^{2}, 4^{5}, 1^{2}), (7, 6, 4^{5}, 2, 1);$$

 $n=10: (6,4^7,3,1), (5^2,4^6,3,1), (6,4^6,3,2,1), (5^2,4^5,3,2,1), (6,4^6,2,1^2),\\ (5^2,4^5,2,1^2), (6,4^5,3^3,1), (5^2,4^4,3^3,1), (6,4^5,3^2,1^2), (5^2,4^4,3^2,1^2),\\ (6,5,4^6,2,1), (5^3,4^5,2,1), (6,5,4^5,3^2,1), (5^3,4^4,3^2,1), (6,5,4^5,3,1^2),\\ (5^3,4^4,3,1^2), (6,5^2,4^5,3,1), (5^4,4^4,3,1), (6,5^2,4^5,1^2), (5^4,4^4,1^2),\\ (6,5^3,4^5,1), (5^5,4^4,1), (6,5^7,4,1), (7,4^6,3^2,1), (7,5,4^6,3,1),\\ (6^2,4^6,3,1), (7,5^2,4^6,1), (6^2,5,4^6,1), (7,5^8,1), (6^2,5^7,1), (7,6,4^7,1),\\ (6^3,4^6,3,1), (6^3,4^5,1), (6^3,4^5,1), (6^3,5^3,4^5,1), (6^$

 $n=11: (6,4^8,3,1), (5^2,4^7,3,1), (6,4^7,3,2,1), (5^2,4^6,3,2,1), (6,4^7,2,1^2),\\ (5^2,4^6,2,1^2), (6,4^6,3^2,1^2), (5^2,4^5,3^2,1^2), (6,4^6,3,1^3), (5^2,4^5,3,1^3)\\ (6,5,4^8,1), (5^3,4^7,1), (6,5,4^7,2,1), (5^3,4^6,2,1), (6,5,4^6,3,1^2), (5^3,4^5,3,1^2), (6,5,4^6,1^3), (5^3,4^5,1^3), (6,5,4^5,3,2,1^2), (5^3,4^4,3,2,1^2),\\ (6,5^2,4^6,1^2), (5^4,4^5,1^2), (6,5^9,1), (6,5^8,1^2), (7,4^9,1), (7,4^8,2,1),\\ (7,4^7,3,1^2).$

It is easy to check that the above sequences are potentially K_6-3K_2 -graphic. \Box

4. Application

In the remaining of this section, we will use the above theorem to find exact values of $\sigma(K_6 - 3K_2, n)$. Note that the value of $\sigma(K_6 - 3K_2, n)$ was determined by Yin and Li in [26] so another proof is given here.

Theorem 4.1 [26] Let $n \geq 6$. Then

$$\sigma(K_6 - 3K_2, n) = \begin{cases} 2\lfloor \frac{7n - 13}{2} \rfloor, & if \ n \neq 8; \\ 44, & if \ n = 8. \end{cases}$$

Proof. For n=8, since $\pi=(7,5^7)$ is not potentially K_6-3K_2 -graphic, $\sigma(K_6-3K_2,n)\geq 7+5\times 7+2=44$. In order to prove $\sigma(K_6-3K_2,8)\leq 44$, it is enough to prove that if $\pi=(d_1,d_2,\ldots,d_8)\in GS_8$ with $\sigma(\pi)\geq 44$, then π is potentially K_6-3K_2 -graphic. If $d_4=4$, then $\sigma(\pi)\leq 7\times 3+4\times 5<44$, a contradiction. Thus, $d_4\geq 5$. If $d_6=3$, then $d_4\leq 6$ and $\sigma(\pi)\leq 7\times 3+6\times 2+3\times 3=42<44$, a contradiction. Thus, $d_6\geq 4$. It is easy to check that $\pi\neq (5^4,4^4),(5^8)$. According to Theorem 3.1, $\pi\in GS_8$ with $\sigma(\pi)\geq 44$ is potentially K_6-3K_2 -graphic.

Suppose $n \neq 8$. First, we prove that $\sigma(K_6 - 3K_2, n) \geq 2\lfloor \frac{7n-13}{2} \rfloor$. For n is odd, consider $\pi = ((n-1)^3, 4^{n-3})$. It is easy to see that $K_3 + \frac{n-3}{2}K_2$ is unique realization of π . So π is graphic. By Theorem 3.1, π is not potentially $K_6 - 3K_2$ -graphic. Thus, $\sigma(K_6 - 3K_2, n) \geq \sigma(\pi) + 2 = 7n - 13$, where n is odd. If n is even, then it is easy to see that $\pi = ((n-1)^3, 4^{n-4}, 3)$

is not potentially $K_6 - 3K_2$ -graphic. Thus, $\sigma(K_6 - 3K_2, n) \ge \sigma(\pi) + 2 = 7n - 14$, where n is even.

Next, in order to prove $\sigma(K_6-3K_2,n)\leq 2\lfloor\frac{7n-13}{2}\rfloor$, it is enough to prove that if $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ with $\sigma(\pi)\geq 2\lfloor\frac{7n-13}{2}\rfloor$, then π is potentially K_6-3K_2 -graphic.

We claim that $d_6 \geq 4$. By way of contradiction, we assume that $d_6 \leq 3$. By Theorem 2.2, then $\sum_{i=1}^5 d_i \leq 20 + \sum_{j=6}^n \min\{5, d_j\} = 20 + 3(n-5)$. Thus, $\sigma(\pi) = \sum_{i=1}^5 d_i + \sum_{j=6}^n d_j \leq 20 + 3(n-5) + 3(n-5) < 7n-14$, a contradiction.

Clearly, $\sigma(K_6 - 3K_2, n) \ge 2\lfloor \frac{7n-13}{2} \rfloor$ implies $d_4 \ge 5$. It is easy to check that π is not one of the following sequences:

$$(n-1,5^3,4^4,1^{n-8}),(n-1,5^8,1^{n-9}),(5^4,4^5),(5^8,4),(6,5^8),(5^{10}),(5^9,1).$$

Thus, π is potentially $K_6 - 3K_2$ -graphic by Theorem 3.1. \square

Acknowledgements

The authors are grateful to the referees for their valuable suggestions.

References

- [1] E. Elaine and J.B. Niu, On potentially $(K_4 e)$ -graphic sequences, Australasian Journal of Combinatorics, 29 (2004), 59-65.
- [2] P. Erdős and T.Gallai, Graphs with given degree of vertices, *Math. Lapok*, 11 (1960), 264-274.
- [3] P. Erdős, M.S. Jacobson and J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, Vol.I, John Wiley & Sons, New York, 1991, 439-449.
- [4] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphic degree sequences, in Combinatorics, Graph Theory, and Algorithms, Alavi, Lick & Wchwenk eds., New Issues Press, Kalamazoo Michigan, Vol.I, 1999, 451-460.
- [5] L.L. Hu and C.H. Lai, On potentially $K_5 C_4$ -graphic sequences, accepted by Ars Combinatoria.
- [6] L.L. Hu, C.H. Lai and P.Wang, On potentially $K_5 H$ -graphic sequences, accepted by Czechoslovak Mathematical Journal.
- [7] L.L. Hu and C.H. Lai, On potentially $K_5 E_3$ -graphic sequences, accepted by Ars Combinatoria.
- [8] L.L. Hu and C.H. Lai, On potentially 3-regular graph graphic sequences, accepted by Utilitas Mathematica.

- [9] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, *Discrete Math.*, 6 (1973), 79-88.
- [10] C.H. Lai, A note on potentially K_4-e graphic sequences, Australasian J. Combin., 24 (2001), 123-127.
- [11] C.H. Lai, Potentially C_k-graphic degree sequences, J. Zhangzhou Normal Univ., 11 (1997), 27-31.
- [12] C.H. Lai, The smallest degree sum that yields potentially C_k -graphic degree sequences, J. Combin. Math. Combin. Computing, 49 (2004), 57-64.
- [13] C.H. Lai, An extremal problem on potentially $K_m C_4$ -graphic sequences, Journal of Combinatorial Mathematics and Combinatorial Computing, 61(2007), 59-63.
- [14] C.H. Lai, An extremal problem on potentially $K_m P_k$ -graphic sequences, accepted by International Journal of Pure and Applied Mathematics.
- [15] C.H. Lai, An extremal problem on potentially $K_{p,1,1}$ -graphic sequences, Discrete Mathematics and Theoretical Computer Science, 7(2005),75-81.
- [16] C.H. Lai and L.L. Hu, An extremal problem on potentially $K_{r+1} H_r$ graphic sequences, accepted by Ars Combinatoria.
- [17] C.H. Lai and G.Y. Yan, On potentially $K_{r+1}-U$ -graphical sequences, accepted by Utilitas Mathematica.
- [18] J.S. Li and Z.X. Song, An extremal problem on the potentially P_k -graphic sequence, *Discrete Math.*, **212** (2000), 223-231.
- [19] J.S. Li and Z.X. Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory, 29 (1998), 63-72.
- [20] J.S. Li, Z.X. Song, The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Sci. China Ser.A, 41 (1998), 510-520.
- [21] J.S. Li and J.H. Yin, The threshold for the Erdős, Jacobson and Lehel conjecture to be true, Acta Math. Sin. Eng. Ser., 22 (2006), 1133-1138.
- [22] J.S. Li and J.H. Yin, A variation of an extremal theorem due to Woodall, Southeast Asian Bulletin of Mathematics, 25 (2001):427-434.
- [23] R. Luo, On potentially C_k -graphic sequences, Ars Combinatorics, 64(2002), 301-318.
- [24] R. Luo and M. Warner, On potentially K_k -graphic sequences, Ars Combin., 75(2005), 233-239.
- [25] J.H. Yin and J.S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, *Discrete Math.*, 301 (2005), 218-227.

- [26] J.H. Yin and J.S. Li, Potentially $K_{r_1,r_2,...,r_l,r,s}$ -graphic sequences, *Discrete Math.*, (2006),doi:10.1016/j.disc.20006.07.037.
- [27] J.H. Yin, J.S. Li and R. Mao, An extremal problem on the potentially $K_{r+1} e$ -graphic sequences, $Ars\ Combinatoria$, 74(2005), 151-159.
- [28] J.H. Yin and R. Luo, Some new conditions for a graphic sequence to have a realization with prescribed clique size, submitted.
- [29] M.X. Yin, The smallest degree sum that yields potentially $K_{r+1} K_3$ -graphic sequences, $Acta\ Math.\ Appl.\ Sin.\ Engl.\ Ser., 22(2006), 451-456.$
- [30] M.X. Yin, A characterization on potentially $K_6 E(K_3)$ -graphic sequences, submitted.
- [31] M.X. Yin and J.H. Yin, On potentially H-graphic sequences, Czechoslovak Mathematical Journal, 57(2007),705-724.