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1 Introduction

Let G be a simple graph of order n and the vertex set V(G). Let u be an
eigenvalue of G of multiplicity m. An m-subset X of V(G) is called a star
set for 1 in G if p is not an eigenvalue of G\ X. The induced subgraph
H = G\ X is said to be a star complement for p in G. Star sets exist
for any eigenvalue in a graph and they are not necessarily unique. For the
background and results on star sets and star complements, one may consult
8,9, 11, 15).

The following theorem which establishes a relation between a graph and

its substructures corresponding to an eigenvalue is the basis of the so called
star complement technique.

Theorem 1 (The Reconstruction Theorem) Let G be a graph with adja-
cency matriz
Ax Bt
(5 )

where Ax is the adjacency matriz of the subgraph induced by a subset X
of vertices. Then X is a star set for p in G if and only if u is not an
eigenvalue of C and pl — Ax = B*(ul — C)~'B.

This theorem states that the triple (4,B,C) determines Ax uniquely. In
other words, given eigenvalue y, a star complement H and H-neighborhoods
of elements of X, G is uniquely determined. Here, by the H-neighborhood
of x € X, we mean the set of all neighbors of = in V(H).

From the theorem, it is seen that for any two vertices u and v of X, we
have
po if u=w,
<bu,by, >=bL(ul —C) b, =< -1 if u~wv, (1)
0 ifumww,

where b is the column of B corresponding to a vertex z. It is well known
that if u # 0,—1, then the H-neighborhoods of vertices of X are distinct
and nonempty.

Let H be a graph of order ¢ with no eigenvalue . The star complement
technique is a method for determining all graphs G prescribing H as a

star complement for eigenvalue y. It is known that if u # —1,0, then
[V(G)| < (*1!) (see [3]) and therefore there are only finitely many such
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graphs G. Now we briefly review the star complement technique. We use
the notation of Theorem 1. Given C (the adjacency matrix of H) with no
eigenvalue p, we are interested in finding the solutions for B (note that by
Theorem 1, Ax will then be determined uniquely). Hence, first of all we
need to find (0,1) column vectors of dimension ¢ which are candidates for
columns of B. In other words, we need to find all possible extensions H +u
of H by adding a new vertex u such that H + u has p as an eigenvalue. In
order to do this, we identify all vectors b satisfying

<b,b>=y,

and let them be the vertices of the compatibility graph G(H, ). An edge
is inserted between b and b’ if and only if

<b,b' >=0,-1.

Now by Theorem 1, any clique in G(H, ) determines the vertices of a
star set X and therefore a graph G having H as a star complement for
eigenvalue pu. To describe all the graphs with H as a star complement for
W, it suffices to determine the mazimal graphs, i.e. those graphs for which
the corresponding clique in G(H, ) is maximal, since any graph with H as
a star complement for p is an induced subgraph of such a graph.

Two main problems arise in the context of star complement. One of
these is the general problem which is to find all maximal graphs having a
given graph H as a star complement for some eigenvalue. In other words,
by the notation of Theorem 1, given C, we want to find all solutions for
u, B, Ax. The other problem is the restricted problem which is about the
determination of all maximal graphs prescribing a given graph H as a star
complement for a given eigenvalue p. This means that given C and u, we
need to find all solutions for B and Ax. These problems are interesting
for some reasons as is described in the following. Sometimes there is only
a unique maximal graph and hence that graph is characterized by a means
of its star complement. Also the problems usually build unexpected links
to other areas of combinatorics such as extremal set theory and t-designs.
The general and restricted problems have been dealt with for some special
families of graphs such as complete graphs, complete bipartite graphs, stars,
paths, cycles and so on. A list of references includes [1, 2, 4, 5, 9, 10, 12,
13, 15, 18, 19)].

In this paper, we consider the restricted problem for H = K, , + tK,
and x = 1. Note that by the following lemma, in any extension G of H for
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1 =1, one is the second largest eigenvalue. For a graph G of order n we
denote the ith largest eigenvalue of G by A;(G) and we also let A\o(G) = o0
and Ap4+1(G) = —o0.

Lemma 1 Given a graph G of order n with eigenvalue p of multiplicity
m 2> 1, let H be a star complement for p in G. Let Ary1(H) < p < A (H)
for some 0 <r <n-—m. Then A\ry1(G) =+ = A ym(G) = p.

Proof. By interlacing, we have the inequalities
Artm(G) < A(H) < A (G),

Ar414m(G) < A1 (H) < A1 (G),

which yield Arym+1(G) < g < A(G). Since G has eigenvalue p of multi-
plicity m, the assertion follows. O

We determine the appropriate r, s,t and identify the maximal graphs in
one of the obtained cases as well as regular graphs which have H as a star
complement for the eigenvalue 1. Some special cases of this problem have
already been investigated: In [12] (see also [16, 18]), it is shown that the
complement of the Clebsch graph (srg(16,5,0,2)) is the unique maximal
graph which has K 5 as a star complement. For H = Kj g, it is known
that there are exactly 15 maximal graphs [18] and for H = K 19, there
is a unique maximal graph [12]. We also know that the complement of
the Schléfli graph is the unique maximal graph which admits H = Ko
as a star complement [12, 13]. Finally, for H = K; ; + 2K, the maximal
graphs are found in [10]. We note that in [12] (see also [13]) some general
observations on the general problem for H = K, , + tK; and arbitrary p
are given.

We introduce some notation which will be used throughout the paper.
We assume that H = K, , + tK, is a star complement for the eigenvalue
# = 1in G. With no loss of generality, we suppose that 1 < r < s,
(r,s) # (1,1). Let also W = {w;,ws,...,w:} denote the set of isolated
vertices in H and let U = {u1,uz,...,ur} and V = {v;,vs,...,vs} be the
two subsets of vertices of H with all edges of H between U and V. The
star set corresponding to H and u is denoted by X. Let H(a,b,c) be a
graph obtained from H by introducing a new vertex and joining it to a
vertices of U, b vertices of V' and c vertices of W. The (0,1) column vector
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b, denotes the neighborhood of v € X in H. Let H + u = H(a,b,c) and
H +v=H(e,B,7). Then it is an easy task to show that

(1 =7s) < by, by, >= (1 —7s)p +a(B + as) + b(a + Br), (2)

where p is the number of common neighbors of u and v in H (see (12, Eq.

(7.4))).

2 Extension by a vertex

The first step in the star complement technique is to find all possible ex-
tensions of a star complement by adding a new vertex. We proceed to
determine all possible graphs H + u by adding a vertex u such that H + u
has p as an eigenvalue.

Let H + u = H(a,b,c). Using (1) and (2), we find that
1—rs=(a+b+c)(l—rs)+2ab+a’s+br (3)
Assuming r = a+ z and s = b+ y, (3) is converted to
ablc—3)+(b+c—1)ay+(a+c—1)bz+(a+b+c—1)(zy—1) =0. (4)

We make use of (4) to obtain the solutions of (3). The proofs of the next
two lemmas are straightforward.

Lemma 2 Let m > n > q > 1 be integers. Then the solutions of mng =
m+n+q+2 are (m,n,q) € {(2,2,2),(3,3,1),(5,2,1)}.

Lemma 3 Let c > 3. Then the solutions of (3) are as follows.

(eI Il T - |
L R 2
L Al - A
NN NN
QU OV = | Ot
DW=
OO Do =0 =
[N TS [ Y N
WO o] =

Proof. First suppose that zy # 0. Since ¢ > 3, all sentences in the left
hand side of (4) are nonnegative and thus they all must be 0. Consequently,
we obtain that @ = b = 0 and = = y = 1, which is not acceptable. So zy = 0.
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Assume that z # 0 and y = 0. Then (4) yields ab(c—3) + (a +c— 1)bz =
a+b+c— 1. It is easily obtained that b = 1,2. If b = 2, then clearly,
z =1,c¢=3,a = 0 and we have the solution (r,s,a,b,¢c) = (1,2,0,2,3). If
b=1, then z = 1,c = 4,a = 1 and the solution (r,s,a,b,¢c) = (2,1,1,1,4)
is obtained which is not acceptable (since r < s). The case z =0 and y # 0
gives the same solutions with the roles of » and s interchanged. Therefore
in this case we have the solution (r,s,a,b,c) = (1,2,1,1,4). Finally, let
z =y = 0. Then we have ab(c— 3) = a2+ b+ c— 1 and hence by Lemma 2,
(a,b,¢) = (2,2,5),(1,3,6),(3,3,4),(1,2,8),(1,5,5), (2,5,4). O

In the next lemmas we consider the remaining cases ¢ = 0,1, 2.

Lemma 4 Let c = 0. Then the solutions of (3) are as follows.

r{5 3 3 2 2 2 1 1 1 1
s|10 11 3 5 5 13 5 9 10 10
el 5 3 1 01 2 0 1 1 1
b6 7 1 3 1 9 2 3 2 5
Proof. For ¢ =0, the equation (4) becomes
abz + aby + (@ + b— 1)(zy — 1) = 3ab + ay + bz. (5)

With no loss of generality we assume that z < y (if we find a solution
such that r > s, we should interchange the roles of r and s). Note that
y # 0. First suppose that z = 0. Then (b — 1)ay = a + b — 1 + 3ab.
Since 7 > 1, we have @ > 1. Also b > 2, since otherwise we get y = 0
or a = 0, a contradiction. We now conclude that 4a is congruent to 0
modulo b~ 1 and b—1 is congruent to 0 modulo a. Therefore, b—1 = a,2a
or 4a. First let b — 1 = a. Then ay = 5 + 3a which gives the solutions
(r,8,a,b) = (1,10,1,2),(5,10,5,6). Next let b~ 1 = 2a. Then ay = 3+ 3a
which gives the solutions (r,s,a,b) = (1,9,1,3),(3,11,3,7). Finally, let
b—1 = 4a. Then from ay = 3a + 2 we find the solutions (r,s,a,b) =
(1,10,1,5),(2,13,2,9).

Now we assume that z > 0. We claim that z > 2 is impossible. On the
contrary, suppose that > 2. From (5), it can easily been seen that ab # 0.
Since we have assumed y > z, (5) yields 3(ab—b)+3(ab—a)+9(a+b—1)+1 <
a+b+3ab which in turn gives 3ab+5a+5b < 8, a contradiction. Therefore,
z < 2. First let £ = 1. Then (5) yields (ab+b—1)(y —2) = a+1. This gives
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y > 3. Now a + 1 is congruent to 0 modulo y — 2 and y — 2 is congruent
to 0 modulo a + 1. Therefore, y — 2 = a + 1 and so @b + b = 2 which gives
the solutions (r, s, a,b) = (1,5,0,2), (2,5,1,1). Next let z = 2. From (5) we
find (ab+a)y+(2b—2)y+1 =a+ab+3b.If b =0, then (a—2)y =a—1and
we find the solution (r, s, a,b) = (5,2,3,0). If a = 0, then (26—-2)y =3b—1
and we have the solution (r, s,a,b) = (2,5,0,3). Hence, let a,b # 0. Then
we have ab+a+b < 3 and so the solution (r, s, a,b) = (3, 3,1, 1) is obtained.
0O

Lemma 5 Let ¢ = 1. Then the solutions of (3) are as follows:

(i) r,s arbitrary enda=b=0.
(i) (rs,0,0) = (2,5,2,2),(1,5,1,1).

(iii) r,s arbitrary anda=r-1,b=s-1.

Proof. With ¢ =1 the equation (4) becomes
ab(z +y) + (a + b)zy = a + b+ 2ab. (6)

If a,b = 0, then obviously z,y are arbitrary and hence (i) holds. So let
a+b#0.If z =0, then ab(y — 2) = a + b which means that & = b and so
we find the solutions (r, s, a,b) = (2,5,2,2),(1,5,1,1). For y = 0, the same
solutions are found with the roles of r and s interchanged. Now let zy # 0.
We have z,y < 2, since otherwise from (6) we have ab(2+y) +2(a +b)y <
a + b+ 2ab which is a contradiction. Therefore, z =y = 1 and (iii) holds.
0

Lemma 6 Let c=2. Then in (3) we haver =a=1 andb=s—2.

Proof. Letting ¢ = 2 in (4) we have
ab(z+y)+(a+b+Dzy+ay+br=a+b+1+ab. (D

If a,b = 0, then we find z = y = 1 and hence r = s = 1, a contradiction.
So let a + b # 0. It is seen from (7) that zy = 0. If z = 0, then (7) yields
a(b+1)(y—1)=b+1 and thus a = 1 and y = 2. The case y = 0 is similar
with the roles of r and s interchanged. O

We summarize the results of the previous lemmas in the following The-
orem.
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Theorem 2 Let 1 <r < s, (r,8) # (1,1) and let H = K, ; +tK) be a star
complement for the eigenvalue 1 in G. Suppose that H + u = H(a,b,c) is
an extension by a vertex of H in G. Then the graph H(a,b,c) has one of
the forms presented in Table 1.

Table 1 All possible extensions by a vertex of H = K, + tK; for the
eigenvalue 1.

# H (a,b,¢)
1 K1,2+tK1 (0121' 3)’(1, 114)a (19218)s(0a0a 1)’ (01 1:1))(1)0:2)
2 Kyz+tKiy (1,3,6),(0,0,1),(0,2,1),(1,1,2)
3 Kys+tKy (0,2,0),(0,0,1),(1,1,1),(0,4,1),(1,3,2),(1,5,5)
4 Kig+tKy (1,3,0),(0,0,1),(0,8,1),(1,7,2)
5 K1,10+tK1 (1:2’0)’(11510)’(())0; 1)’(0,9’1)9 (1,8, 2)
6 Kyo+tK, (2,2,5),(0,0,1),(1,1,1)
7 Kos+tKy, (1,1,0),(0,3,0),(0,0,1),(2,2,1),(1,4,1),(2,5,4)
8 Kpuiz+tK, (2,9,0),(0,0,1),(1,12,1)
9 Kzs+tK; (1,1,0),(0,0,1),(2,2,1),(3,3,4)

10 K3,11 + tKl (31 7a 0)’ (Ov 0) 1), (2, 10) 1)

11 Ks,lo + tKl (51 61 0)7 (Oa 0, 1), (41 9, 1)

12 Kl»-’ + K, (0’0,1)$ (013— 171)’(1)8_2) 2)

13 K,,+tK, (0,0,1),(r—1,8—1,1)

3 Maximal graphs

When H is one of the cases #1 to #12 in Theorem 2, there are different
types of vertices in the star set which makes it a tedious task to find all
maximal graphs with H as a star complement. However, in the case #13
there are only two types of vertices and it seems tractable. Hence, in this
section we investigate the maximal extensions G of H = K, , + tK; when
H is the case #13 in Theorem 2. Note that ¢ > 1 and there are two types
of vertices in the star set X. Let v € X and H 4+ u = H(a,b,c). We say
that u is of type 1 (2) if (a,b,¢) = (0,0,1) ((a,b,¢c) = (r ~ 1,8 — 1,1)).
Then (1) and (2) show that any vertex of type 1 lies in a component of
G which is K. We can ignore such vertices for the following reason: If
G is a maximal graph for H = K, ; + tK; containing r vertices of type
1, then G’ obtained from G by removing r components K, is a maximal
graph for H' = K, , + (t — r)K,. Therefore, we may assume that G has
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no vertices of type 1. We index a vertex of type 2 by (i,7,k) if it is not
adjacent (not adjacent, adjacent) to u; (vj, wi) in U (V, W). Therefore,
the vertices of the compatibility graph are indexed by the triples (¢, 7, k),
where 1<i<nrl<j<sand1<k<t

Let u,v € X be two distinct vertices of type 2. Then by (2),
<buy,by>=p—r-5+2, 8)

where p denotes the number of common neighbors of « and v in H. Since
< by,b, >= —1,0, we conclude that at least one and at most two of U-,
V- and W-neighborhoods of v and v must coincide. Moreover, u is joined
to v in G if and only they coincide for exactly one of these neighborhoods.
In the compatibility graph, (i3, 41, k1) is joined to (iz, j2, k2) if and only if
they coincide in at least one coordinate and at most two. We now find the
maximal cliques in the compatibility graph.

Theorem 3 The vertex set of a mazimal clique in the compatibility graph,
up to isomorphism, is one of the following forms:

(i) My = {(i,42,43) |4 =1},1<1<3.
(ii) {(il,ig,ig) | at least two of i1,12,13 are 1}, ift>1.

(iii) {(1: 1, 1)) (1’29 2), (2’ 1)2)’ (21 2, 1)}! ift> 1

Proof. Let M be a maximal clique. If ¢t = 1, then obviously we have
the case (i). Therefore, let ¢ > 1. First suppose that M has two vertices
which have the same entries in two coordinates. With no loss of generality,
we let (1,1,1),(1,1,2) € M. Then the remaining vertices in M are of the
form (1) (1,4,k) or (2) (4,1,k). If all vertices are of type (1) or all are
of type (2), then we conclude that M is of the form (i). Otherwise, M is
of the form (ii). Now assume that no two vertices in M coincide in two
coordinates. With no loss of generality, let (1,1,1),(1,2,2) € M. Then
the remaining vertices in M are of the form (1) (1,4, k), (2) (3,1,2) or (3)
(3,2,1) . If M has vertices of type (2) or (3), then clearly M is of the from
(iii). Otherwise, we find that M is not maximal, a contradiction. O

The theorem above along with the preceding paragraph describe all
possible maximal graphs G up to isomorphism. Note that in the case (i),
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Ghasr+s+t+rs,r+s+t+rt or r+ s+t + st vertices, in the case
(ii), 2(r + s +t — 1) vertices and in the case (iii), 7 + s + ¢ + 4 vertices.

Some small cases in Table 1 can be dealt with using computer search.
For this purpose, Zoran Stani¢ and Nedeljko Stefanovié have developed a
software called SCL (Star Complement Library) which is available at [17].
The interested reader can download the software and examine the maximal
graphs for small cases of Table 1. Here, for example, we present the results
obtained from this program for the case K;3 + tK;, t < 5. Let G be a
maximal graph. As it seen from Table 1, there is no extension when t = 0.
For t = 1, we have G = P;, the path on 5 vertices. If ¢ = 2, then we obtain
that G = P5 + K; or G is an irregular graph on 9 vertices with the spec-
trum —23, —0.732051, 14,2.73205. For ¢ = 3, G is an irregular graph on 10
vertices with the spectrum —22, —12, -0.414214, 14,2.41421 or G is an irreg-
ular graph on 14 vertices with the spectrum —33, -2, —1.37228, 18, 4.37228.
Finally, if t = 4, then G is an irregular graph on 14 vertices with the spec-
trum —3, —2.70156, —2, —13,17,3.70156 or G is an irregular graph on 23
vertices with the spectrum —52, —4.66366, —4, —3, —2.79008, 116, 8.45374.

4 Regular graphs

In this section we identify regular graphs which have H as a star comple-
ment for the eigenvalue 1. Suppose that G is a k-regular extension of H
with star set X. Let v € X. Then it is well known that < b,,j >= —1.
Therefore, if H + « = H(a, b, ¢), then by (2), we have

a(s+1)+b(r+1)+(c+1)(1-7s)=0.

Using Theorem 2, we find the solutions of this equation. The results are
given in the following Theorem.

Theorem 4 Let 1 < r < s, (1,8) # (1,1) and let H = K, , + tK; be a
star complement for the eigenvalue 1 in a regular graph G. Suppose that
H +u = H(a,b,c) is an extension by a vertex of H in G. Then the graph
H(a,b,c) has one of the forms presented in Table 2.
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Table 2 All possible extensions by a vertex of H = K, , + tK,
for the eigenvalue 1 in a regular graph.

# H (a,b,¢)

1 K1,2+tK1 (0,2, 3),(1,1,4),(0,1,1),(1,0,2)
2 Kis+tK, (0,2,0),(1,1,1),(0,4,1),(1,3,2)
3 Kys+1tK, (1,1,0),(0,3,0),(2,2,1),(1,4,1)
4 K3,3 +tK, (la 1’0)1(2’2a1)

5 Ki,s+tK; (none of the above) (0,s~1,1),(1,5~2,2)

6 K, ,+tK; (none of the above) (r—1,s-1,1)

A strongly regular graph with parameters (n, k, A, p) (a srg(n, k, A, ),
for short) is a k-regular graph on n vertices such that any two adjacent
vertices have exactly A common neighbors and any two nonadjacent ver-
tices have exactly ¢ common neighbors. We refer the reader to [6, 7] which
provide comprehensive surveys on strongly regular graphs. Given two pos-
itive integers n and k, Kneser graph K(n,k) is the graph whose vertices
represent the k-subsets of an n-set, and where two vertices are connected if
and only if they correspond to disjoint subsets. The eigenvalues of Kneser
graphs are known (see 14, Page 199]).

Lemma 7 The unique regular extension G of the case #6 in Table 2 is the
complement of the line graph of K,1+1,541 if t = 1 and there is no regular
extension if t # 1.

Proof. We have (a,b,¢) = (r—1,s—1,1). Suppose that X has p vertices.
Then by the regularity of G, we have r(k—s) = p(r—1),s(k—-7) =p(s—1)
and kt = p. From the first two equations, we have k(r — s) = p(r —s). This
implies k = p, since if r = s, then from the second and third equations,
we have sk + kt = kst + rs which gives t = 1 and so k = p. From k& = p,
we have t = 1 and p = rs. We index the vertices of G as follows. The
vertices of X are indexed by (i,7), where 1 < i < rand 1< j <s. The
vertices of U and V are indexed by (¢,0) (1 <i <) and (0,5) (1< j < s),
respectively. The vertex of W is indexed by (0,0). Then by the results of
the previous section it is seen that (%, ) is joined to (¢, j') in G if and only
if i # ¢ and j # j'. Therefore, G is the complement of the line graph of
Kri1,541- a

Lemma 8 The regular extensions G of the case #5 in Table 2 are as below.
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(?) Ift =1, then G is the the complement of line graph of of K3 443.
(i) Ift =2, then G is the complement of the line graph of K,.3.

(v) Ift =0 ort > 2, then no regular eztension ezists.

Proof. We have (a,b,¢) = (0,8 — 1,1),(1,s — 2,2), where s # 1,2,5.
Suppose that X has p vertices of type (0,s — 1,1) and g vertices of type
(1,3—2,2). By the regularity of G, we have k—s =¢,s(k—1) =p(s—1)+
g(s—2) and kt = p+2q. These equations give (s?—s)(t—1)+tg(s—1) = 2gs
which in turn yields t < 3. If ¢t = 3, then s < 2, a contradiction. If t = 1,
then ¢ = 0 which has been dealt with in the preceding paragraph and
hence G is the complement of the line graph of K3 s41. Now suppose that
t = 2. Then ¢ = (3) and p = 2s. Therefore, G is of order (°}°). Now it
follows that G is the complement of the line graph of K,;3 (Kneser graph
K(s +3,2)) since it has a star complement K , + 2K for the eigenvalue 1
(see also [10]). a

Lemma 9 The regular extensions G of the case #1 in Table 2 are as below.

(7) Ift=1, then G is the cycle Cs.
(%) Ift =2, then G is the Petersen graph.
(ii6) Ift =3, then G is the complement of Clebsch graph.

(iv) Ift = 4, then G is a regular induced subgraph of the complement of
the Schlifli graph.

(v) Ift =0 ort > 4, then no regular eztension ezxists.

Proof. Suppose that X has p, p2, p3, ps vertices of type (0,2,3), (1,1,4),
(0,1,1), (1,0,2), respectively. By the regularity of G, we have

k—2=p2+p4,
2(k — 1) = 2p1 + p2 + ps,
tk = 3p; + 4p2 + p3 + 2p4.

These equations yield t < 5. Let t =5. Thenp; <10for1 <i < 4. We
have po = k — ps — 2 and p3 = k — pg — 16. Therefore, k — py > 16 and
so pz 2> 14, a contradiction. Hence, 1 < ¢t < 4. If ¢ = 1, then p; = 0 for
t=1,2,4 and k = p3 = 2 and we have G = Cg. If t = 2, then the case
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coincides with the case #5 and hence G is the Petersen graph (K(5,2)).
Lett =3, Thenps, =0,p; <1,p3 < 6andp, <3. Also we havep; =6—%k
which means k = 5,6. Now from py = k — 2 < 3, it is obtained that k = 5
and hence p; = 1,p3 = 6 and p; = 3. The unique graph we obtain is
a srg(16,5,0,2). But there is a unique strongly regular graph with these
parameter which is the complement of the Clebsch graph [6]. Its eigenvalues
are 51,110, —3%, Finally, let t = 4. By taking all possibilities for vertices of
any type, we obtain a srg(27,10,1,5). There is a unique strongly regular
graph with these parameter which is the complement of the Schléfli graph
[6]. Its eigenvalues are 10%,120, —58. m]

Lemma 10 The regular extensions G of the case #2 in Table 2 are as
below.

(1) Ift =0, then G is the complement of the Clebsch graph.

(i) Ift = 1, then G is a regular induced subgreph of the complement of
the Schlafli graph.

(¢i7) Ift =2, then G is the complement of the line graph of Kg

(%) Ift > 2, then no regular extension exists.

Proof. Suppose that X has p;, p2, ps, p4 vertices of type (0,2,0), (1,1,1),
(0,4,1), (1,3,2), respectively. By the regularity of G, we have

k-5 = p2 +P4,
5(k — 1) = 2p; + p2 + 4p3 + 3pq,
tk = p2 + p3 + 2p4.

These equations yield ¢t < 2. Let ¢t = 0. Then p; = 0 for 2 < ¢ < 4,
k =5 and p; = 10. The unique graph we obtain is a srg(16, 5,0, 2), i.e. the
complement of the Clebsch graph. If ¢ = 1, then p; = 0 and if we take all
possibilities for vertices of other types, then we find a srg(27,10,1,5), i.e.
the complement of the Schlifli graph. Finally, let ¢ = 2. Then p; < 10 for
1 < i < 4. Since p3 = ps + 10, we have p3 =10, po =0, p; = k — 15 and
pq = k — 5. This implies py = 10 and p; = 0. Therefore, in this situation
the case coincides with the case #5 and G is K(8,2). ]

Lemma 11 The regular eztensions G of the case #4 in Table 2 are as
follows.
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(?) Ift =0, then G is a regular induced subgraph of the line graph of Kg.
(i) Ift =1, then G is the complement of the line graph of K4 4.

(¢5) Ift > 1, then no regular eztension exists.

Proof. Suppose that X has p; and p, vertices of type (1,1,0) and (2,2, 1),
respectively. By the regularity of G, we have

3(k—3)=p1 + 2p,
tk = p,.

These equations yield ¢t < 1. If ¢t = 0, then p» = 0 and if we take all
possibilities for vertices of type 1, then we find a srg(15,6,1,3). There is
a unique strongly regular graph with these parameters which is K(6, 2) [6].
Its eigenvalues are 61,19, —35. Now let ¢t = 1. Then p;,p2 < 9. We have
p1 =k —9 and ps = k which yield p; = 0 and p; = 9. Thus we have the
case #6 and G is the complement of the line graph of Kj 4. O

Lemma 12 The regular extensions G of the case #3 in Table 2 are as
follows.

(¢) Ift =0, then G is a regular induced subgraph of the complement of
the Schlifli graph.

(i6) Ift =1, then G is a regular induced subgraph of the complement of o
Chang groph.

(#2) Ift > 1, then no regular extension exists.

Proof. This case is somewhat different from the other cases. Suppose
that X has p;,p2,p3, ps vertices of type (1,1,0), (0,3,0), (2,2,1), (1,4,1),
respectively. By the regularity of G, we have

2(k — 5) = p1 + 2p3 + pa,
5(k —2) = p1 + 3p2 + 2p3 + 4ps,
tk = p3 + pa.

These equations yield t < 1. Let ¢t = 0. Then p3 = ps = 0. If we take
all possibilities for vertices of types 1 and 2, then we find a srg(27,10, 1, 5),
i.e. the complement of the Schldfli graph. Now assume that ¢ = 1. Note
that p; < 10 for 1 < i < 4. We have pg = p; + 10 which yields p4 = 10,
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p1 = 0 and po = ps = k — 10. It implies any regular graph containing
K5 + K as star complement for 1, has a 10-regular induced subgraph F,
that is, the subgraph induced on 10 vertices of type 4. We index a vertex
of type 2 by the triple {i, 7, k} if it is adjacent to v;,v;,vx in V. Similarly,
we index a vertex of type 3 by the pair {4,j} if it is adjacent to v;,v; in
V. From (2), it is seen that any two vertices of X, one of type 2 and the
other of type 3 must have intersecting neighborhoods in V. This implies
that p2,p3 < 5 and so k < 15. Suppose that k = 15. Then p; = pa = 5.
Our goal is to find a 15-regular graph, say G, on 28 vertices containing F
as an induced subgraph and having 5 vertices for each of types 2 and 3.
By (2), we see that a vertex of type 2 (3) is adjacent to a vertex of type 4
in the compatibility graph if and only if they have 2 (1) or 3 (2) common
neighbors in V and moreover a vertex of type 2 (3) is adjacent to a vertex
of type 4 in G if and only if they have 2 (1) common neighbors in V. Now
an easy analysis shows that up to isomorphism the following cases may
occur for the vertices of type 2 and 3 in G:

1. type 2: {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5},
type 3: {1,2}, {1,3}, {1,4}, {1,5}, {2,3};

2. type 2 {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4} {2,3,4},
type 3: {1,2}, {1,3}, {1,4}, {2,3} {2,4};

3. type 2: {1,2,3}, {1,2,4}, {1,2,5}, {1,3,5} {2,3,4},
type 3: {1,2}, {1,3}, {1,4}, {2,3} {2,5};

4. type 2: {1,2,4}, {1,2, 5}, {1,3, 4}, {1,3,5} {2,3,4},
type 3: {1:2}1 {1a3}r {1’4}7 {2a 3} {4’5};

5. type 2: {1,2,4}, {1,2,5}, {1,4,5}, {1,3,5} {2,3,4},
type 3: {1,2}, {1’3}’ {]-’4}1 {2,5} {41 5};

6. type 2: {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5} {2,4,5},
type 3: {1,2}, {2,3}, {3,4}, {4,5} {1,5}.

Since the vertices of types 2 and 3 in G induces a 6-regular graph, only
the case 6 can hold. The graph we obtain is a srg(28, 15, 6,10). There are
four strongly regular graphs with these parameters, one is Kneser graph
K(8,2) and the other three are the complements of the Chang graphs (see
(7, page 258] and [6]). Since K(8,2) has no induced subgraph K,s + K,
G must be the complement of a Chang graph. Similarly, we deal with the
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other values of & and we find that there are solutions for k = 10,12, 13 and
they are induced subgraphs of the one with k£ = 15. In the following we
demonstrate the choices for vertices of type 2 and 3 in each case.

e k=10,p; =p3 =0.

e k=12, type 2: {1,3,5},{2,4,5}, type 3: {1,2},{3,4}.

o k=13,type2: {1,2,4},{1,3,5},{2,3,5}, type 3: {1,2},{3,4}, {4,5}.

a
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