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Abstract

A subset of vertices of a graph G is called a feedback vertex set of G if
its removal results in an acyclic subgraph. In this paper, we consider
the feedback vertex set of generalized Kautz digraphs GK (2, n). Let
f(2,n) denote the minimum cardinality over all feedback vertex sets
of the Generalized Kautz digraph GK(2,n), we obtain the upper
bound of f(2,n) as follows

f@m) <n- (31 + 1552+ 125D,
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1 Introduction

Let G = (V,E) be a graph or digraph without multiple edges, with
vertex set V(G) and edge set E(G). It is well known that the cycle rank of
a graph G is the minimum number of edges that must be removed in order
to eliminate all of the cycles in the graph. That is, if G has v vertices, ¢
edges, and w connected components, then the minimum number of edges
whose deletion from G leaves an acyclic graph equals the cycle rank (or
Betti number) p(G) =€ — v + w.

A corresponding problem is the removal of vertices. A subset F' C V(G)
is called a feedback vertez set if the subgraph G — F is acyclic, that is, if
G - F is a forest. The minimum cardinality of a feedback vertex set is
called the feedback number (or decycling number proposed first by Beineke
and Vandell [5]) of G. A feedback vertex set of this cardinality is called a
minimum feedback vertex set.

Determining the feedback number of a graph G is equivalent to finding
the greatest order of an induced forest of G proposed first by Erdés, Saks
and Sés [8], since the sum of the two numbers equals the order of G. A
review of recent results and open problems on the decycling number is pro-
vided by Bau and Beineke [3].

Apart from its graph-theoretical interest, the minimum feedback vertex
set problem has important application to several fields. For example, the
problems are in operating systems to resource allocation mechanisms that
prevent deadlocks [15], in artificial intelligence to the constraint satisfac-
tion problem and Bayesian inference, in synchronous distributed systems
to the study of monopolies and in optical networks to converters placement
problem(see [7, 9]).

The minimum feedback set problem is known to be N P-hard for gen-
eral graphs {11} and the best known approximation algorithm is one with
an approximation ratio two [1). Determining the feedback number is quite
difficult even for some elementary graphs. However, the problem has
been studied for some special graphs and digraphs, such as hypercubes,
meshes, toroids, butterflies, cube-connected cycles and directed split-stars
(see [1, 2, 4, 7,9, 10, 13, 14, 16, 17, 18)).

In this paper, we consider the problem for a particular class of intercon-
nection network, namely, generalized Kautz digraph GK(d,n)(d > 2,n >
1), which extends Kautz digraphs for general number of vertices. The
vertex-set of GK (d, n) is defined as the set V(GK(d,n)) = {0,1,..,n—1}
and the edge set

E = {(3,5)lj = —(id+ r)(mod n),r = 1,2,...,d}. (1.1)
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Lemma 1.1. Ford > 2 and n > d,
(1) GK(d,n) is d-regular and GK(d,d" + d"~!) = K(d,n);
(2) GK(d,n) has no loops if and only if n is divisible by (d + 1);
(3) GK(d,n) is strongly connected;
(4) GK(d,n) = L(GK(d, 3)) if n is divisible by d.
Denote the minimum cardinality over all feedback vertex sets of GK (2, n)

by f(2,n), and call it the feedback number of GK(2,n). We obtain the
upper bound of f(2,7n) as follows

f(2n)<n—(lJ+l J+l—J

2 Some Notations and Lemma

Throughout this paper, we follow Xu [19] for graph-theoretical terminol-
ogy and notation not defined here.

Let G = (V, E) be a graph and S C V(G). The symbol Ng(S5) denotes
the set of neighbors of §, namely, Ng(S) = {z € V(G- S)|zy € E(G),y €
S}. The out-neighborhood of a vertex v € V(G) is denoted by N*(v) =
{u € V(G)|vu € E(G)}. For a set S C V(G), N*(S) = UpesN*(v).
The in-neighborhood of a vertex v € V(G) is denoted by N~(v) = {u €
V(G)|uv € E(G)}. For aset S C V(G), N~(S) = UyesN~(v).

The subgraph induced by S is denoted by G[S]. The set S is cycle-free
if G[S] has no cycles. A cycle-free set S is maximal if G[F) contains cycles
for any F C V(G) and S C F. It is clear that S is a minimal feedback
vertex set if and only if V(G) — S is a maximal cycle-free set.

By definition of GK(d, n), the edge set of GK(d, n) can also be written
as the following definition:

E={(,5)li = (dn-1-14)+pB)(modn),=0,1,...,d—1}. (2.1)

Indeed, these two definitions are the same. To see this, let 8 =d ~ 7.
Then
r=12,...,de&f=01,...,d-1.

Substituting # = d — r into (2.1) yields
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i =(d(n —1-1)+ B)(mod n) = —(d + di — B)(mod n)
= —(d+ di — d + r)(mod n) = —(id + r)(mod n).

This is (1.1). Similarly, substituting » = d— 8 into (1.1) yields (2.1). Thus,
for i € V(GK(d,n)), N(i) = N*(3) U N~ (i), where

N‘*’(z)={(d(n—1—z)+ﬁ)(mod n) | ﬂe {0a1v2)"'7d—1}}
={(k+dn—-d+B~-di|B€{0,1,2,...,d—1},k € Z},
N-(i) = {{&thin-itb=d | 5 ¢ 10,1,2,...,d - 1},k € Z}.

Let [a,b] = {va,Ya41,..., v} for any two vertices vq, v € V(GK(d,n))
(@ < b). Let V4 be the subset of V(GK(d,n)) which contains the ver-
tices deleted. The remaining vertex set of V(GK(d,n)) is denoted by
V;=V(GK(d,n)) — Va. Let G[V;] be the subgraph of GK(d,n) induced
by the vertices set V..

Let V. be the subset of V;. which contains the vertices lying on a cycle
of induced subgraph G[V;]. Let V,. = V(GK(d,n)) — V.. It implies that
Vae contains all the vertices without lying on any cycle of G[V;]. If we
prove that V. is empty set, i.e.,, V; = @, then it is equal to prove that
Vae = V(GK(d,n)), it means G[V;] is an acyclic subgraph. Inversely,
if G[V;] is acyclic subgraph, then V. = 0. So, to prove G[V;] is acyclic
subgraph, it suffices to prove that V, = 0 or V,,. = V(GK(d,n)).

In the following, we give a fundamental lemma.

Lemma 2.1. For arbitrary subset S C V,, if N*(S) C V,,, then S C V..
Proof. Suppose to the contrary that there exists a vertex = € S such that
z & Vpe. Then there exists a cycle C in G[V;] containing z. It follows

that C also containing a vertex y € N*(z) C N+(S), a contradiction to
N*(8S) € Vie. The lemma holds. O
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3 Feedback Vertex Set of GK(2,n)

Now we consider the feedback vertex set of GK(2,n). For any 7 €
V(GK(2,n)), the neighbour vertex set of ¢ is N(i) = N+(i)UN (i), where

N*t@G@) ={(k+2m—-2+8-2i|B€{0,1},ke Z}
={(k+2n—-2-2, (k+2)n—-1-2i| ke Z},
N=(i) = {@thinoitb2 ¢ {0,1},k € 2}
_{(2+k)n—t -2 (2+k)n—t— lkGZ}

Define six subsets of V(GK(2,n)) as follows:

F =10, I.%J - 1],

By = [I.%J’ I.%.”’ 9

Fo=[3]+1, (31 +1222)),

Fa=[13]+ 352+ L (3] +1252] + 1,
F5=[[3] + 2352 +2, L3+ 1252] + | 252) +1],
Fo=[l3]+ 1252+ %" +2n -1}

Apparently, F1, F,,..., Fg is a partition of V(GK(2,n)), so we have
F,-nF,- =fforl1 <i#j<6,and V(G’K(2,n)) = U/ UFUF;UF5UFg.

Suppose that Vy = FoUFyU Fg, then V. = F; UF3U Fy since Fy,..., Fg
is a partition of V(GK(2,n)). In the following we will prove that G[F; U
F3 U F5) = G[V;] is acyclic, which implies that F U Fy U Fg is a feedback
vertex set of GK (2, n).
Lemma 3.1. G[V;] is acyclic.

Proof. Recall that G[V;] is acyclic if and only if V. = @ or Vi, = V(GB(2,n)).
To prove G[V;] is acyclic, it suffices to show V,,. = V(GK(2,n)).

Let n = t(mod 9), 0 < t < 8. According to the value of ¢, we will
consider nine cases. We just prove two cases for t = 0, 2, other cases omit.

Casel. t = 0.
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Since n = 0(mod 9), that is, n = 9m,m € Z,. Then we have

Fi=0,|2) -1]=[0,3m—1],
B =(3],13]] = [8m,3m],

F=[3]+1,2]+ %32]] =Bm+1,6m - 1],
F4=[l%J+L1‘;—J+1 l I+ [232] + 1] = [6m, 6m],

Fo=[2]+ |23 + l%J+L"‘2J+l"‘“J+11—[6m+17m—11
Fs=[[§J+["—;—2J+["- ] +2,n=1]=[Tm,9m - 1].

Vz € Vg = F UFy U Fg = [3m,3m] U [6m,6m] U [Tm,9m — 1], since V;
contains the vertices deleted from V(GK(2,n)) then z € V,, ie., z ¢ V,,
that is £ € V,,c. Thus V3 C V,,, ie.,

(1) [3m, 3m)U[6m, 6m]U[7m, 9Im—1] C Vye.

(2) Since [0,m — 1] C V;. and
N*t([0,m - 1)) = [Tm,9m — 1] C Ve,
by Lemma 2.1, we have [0,m — 1] C V;,, which and (1) imply that
[0,m — 1] U [3m, 3m] U [6m, 6m] U [Tm,9m — 1) C V.

(3) Let k = [} log 3B=1], then

k > 3log3m~l
22":+3 > 3m-1,
2%k+3.4

3 22h+3 _>- m,
ém+ 2+l > 7m,
k < %loggﬂ'g‘—l-kl,
92k+1 < 3m-—1,
22242 < 2m.

3

Since [4m,6m — ﬁﬁ_ 1) € V, and

N*([4m, 6m — 3242 _ 1))
= [6m +ﬁi—+1 9m—1]U[0 m - 1]

C [Tm, 9m—1]u[0 m—1] C Vpe,

by Lemma 2.1, we have [4m, 6m — —u—+£'— 1] € Vae.

Since [6m + &— ,7m — 1] C V; and

N*([6m + —z—ki%"—,?m - 1)) = [4m,6m — -1+—+— — 1) C Vie,
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by Lemma 2.1, we have [6m + ﬁf%tl, ™™ — 1] C V.
Since [6m — 22042 6m — 2242 _ 1] C V; and

N+([6m - ———‘j'—22k;2 2 6m — ——"'—22’; 2 ~1)])
k 2k+4+3
=[61’n-{-22+l 1+1’6m+2_.;_i'_1.]

2k+1

Clom+25t,9m -1 C V,,
by Lemma 2.1, we have [6m — ﬁ;ﬂ,Gm - 2—%31'—2- - 1] C Vpe.
Since [6m + &;ﬂﬁm+ %ﬂ — 1] C Ve and

N*([6m + 22041 gm 4 220041 _y))
[6m — 22042 6m — 2242 _ )
2k

C [Am,6m — 2582 — 1] C Vp,

by Lemma 2.1, we have [6m + gik—-:;—‘l’-l,Sm + L?ﬂ -1} C Vye
Continuing in this way, we have [6m — ﬂ;—ﬂ,ﬁm - .21'.3L2 -1} C Vae
and [6m+ £t 6m+ 04 1) C Vo for L =k, k—1,..., 1. Tt follows

that [4m,6m — 3] C Vi and [6m + 1,7m — 1] C V,,., which and (2) imply
that [0,m — 1)U [3m,3m] U [4m,6m — 3] U [6m,9m — 1) C V.

(4) Since [6m — 2,6m — 1] C V;. and
N+([6m — 2,6m — 1]) = [6m,6m + 3] C Vi,

by Lemma 2.1, we have [6m — 2,6m — 1] C V,, which and (3) imply that
[0,m — 1)U [3m,3m]U [4m,9m — 1] C Vi,

(5) Let k = | log4(m — 1)}, then

k < Llog4(m-1),
92k < 4(m-1),

3m + 22k < Tm -4,

92k-2 < m-1,
3m+2%-2 < 4m-1,

k > 3log4(m—1) -1,
22k > m-—1,

3m + 22k > 4dm -1,

3m+2%* > 4m.
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(5.1) Since {m,3m — 22%-1 — 1] C V, and

N*([m,3m —2%-1 — 1)) = [3m + 2%, 7Tm — 1] C [d4m, Tm — 1] C Vi,
by Lemma 2.1, we have [m,3m — 92k-1 _ 1] € Vi, which and (4) imply
that [0,3m — 22k=1 — 1] U [3m, 3m| U [4m,9m — 1] C V.

(5.2) Since [3m + 2%¢-2 4m — 1] C V, and

N+([83m + 222 4m — 1]) = [m,3m — 221 — 1] C V,,,,

by Lemma 2.1, we have [3m + 2252, 4m — 1] C V., which and (5.1) imply
that [0,3m — 22%=! — 1] U [3m, 3m] U [3m + 2%%~2,9m — 1] C V..

(5.3) Since [3m — 22¢~1 3m — 223 _ 1] C V; and

N*+([3m — 226-1 3m — 22k=3 _ 1)) = [3m + 22%-2,3m + 22F — |]
C [3m +22¥-2,9m — 1] C Vi,

by Lemma 2.1, we have [3m — 22k=1 3m — 2%-3 _ §] C V...

Since [3m + 22%—4,3m + 22¥-2 — 1] C V; and

N*([3m + 22%=4 3m 4 226=2 _ 1]) = [3m — 22k~1 3m — 22k-3 _ |
C [0,3m —22k-3 — 1) C V,,,

by Lemma 2.1, we have [3m + 2264 3m + 22k-2 _ 1] C V...

Continuing in this way, we have [3m — 22-!,3m — 2%-3 — 1] C V.
and [3m +22-483m +2%-2 - 1] C Vyc for | = k k—-1,...,2. It follows
[3m — 2%k-1 3m — 3] C V,,. and [3m + 1, 3m + 22~ -2 —-1] g Vnc, which and
(5.2) imply that [0,3m — 3] U [3m,9m — 1] C V..

(6) Since [3m —2,3m —1] C V; and

N*+([3m = 2,3m — 1]) = [3m, 3m + 3] C Vi,
by Lemma 2.1, we have [3m — 2,3m — 1] C V,, which and (5.3) imply that
[0,9m — 1] C V,e, ie., Vo= 0.
Case2. t = 2.
Since n = 2(mod 9), that is, n = 9m + 2,m € Z,. Then we have

F =002 -1] = [0,3m - 1],
Fy =[|3),13])] = [3m, 3m)],

FB=(3]+11% J+["'2J]—[3m+l 6m)|,

F4=[L-’§j+[“ J+1 [ 24 |252] + 1] = [6m + 1,6m + 1],
Fs=[3]+ ["'2J+2 l%J+t"'2J+l"'8J+1] [6m +2,7m],
Fe=[L§J+["-2J+L" | +2,n=1]=[Tm+1,9m +1].
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Vz € V3 = F5, U Fy U Fg, since Vg contains the vertices deleted from
V(GK(2,n)) thenz € V;, ie., z € V,, that is x € V.. Thus V4 C V., i.e,,

(1) [3m, 3m|U[6m+1,6m+1]U[Tm+1,9m+1] C Vpc.

(2) Since [0, — 1] C V;. and
N*(0,m = 1]) = [7m +2,9m + 1] C Vi,
by Lemma 2.1 we have [0, m — 1] C V;¢, which and (1) imply that [0,m —
1)U [3m,3m]U [6m + 1,6m + 1]U [Tm +1,9m + 1) C V.

(3) Let k = [1log 3m=1], then

k2k 3 2 zlog 5,

+ > _

32‘6;3 I 1 ; 737:711 1,

6m+ 24 > 7m,

k < glog3m=lyg,
92k+1 < 3m-1,
gﬁt;iz- < 2m.

(3.1) Since [4m + 1,6m — 22742 + 1] C V; and
Nt([dm+1,6m — gﬁ-%*£+1])
=[6m+ 254 4 1,0m + 1] U[0,m ~ 1]
Cltm+1,9m+1)U[0,m - 1] C Vy,

by Lemma 2.1, we have [dm + 1,6m — 22242 + 1} C Vi
3
Since [6m + g%%'—l +1,7m] C V; and
N*([6m + -2“%*11 +1,7m]) = [Am + 2,6m — ﬂ;ﬂ +1]) C Vo,
by Lemma 2.1, we have [6m + &?ﬂ +1,7m} C V., which and (2) imply
that [0,m — 1)U [3m, 3m] U [4m + 1,6m — 2342 4 1]U[6m + 1,6m + 1)U
[6m + 2574 4 1,0m + 1).
(3.2) Since [6m — ﬂ;ﬂ +2,6m — &;*'—2- +1]C V; and
N*+([6m — 2242 1 9 6m — 2542 1))
= [6m + 25+ 11, 6m + 204

2k+1

Clom+ 25+ +1,9m+1] C Va,
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by Lemma 2.1, we have [6m — ﬁ'i_;_g_z +2,6m — %"—2 +1) € Vpe.

Since [6m + ?-2-"—_3-’—'-'2 +1,6m + 3”—4'3—'11] C V. and

N*(fom + 2341 11 6m + Z5041))
k
= [6m — 542 1 9 6m — 242 4 1] C V,,,

by Lemma 2.1, we have [6m + 22"—4;"—1 +1,6m+ z—u%ﬂ] C Vpe.

Continuing in this way, we have [6m — "’2'—+;'4£ +2,6m— 2—2‘5“-3- +1) C Vpe
and [6m+&_3ﬁ+l,6m+Lt;ﬂ] CVacforl=kk-1,...,1.

It follows that [6m — ZX342 1 9 6m — 1] C Vi, and [6m + 2,6m +
?—“%ﬂ] C Ve, which and (3.1) imply that [0,m — 1] U [3m,3m] U [4m +
1,6m—1]U[6m +1,9m + 1] C V..

(4) Since [6m,6m| C V;. and
N*([6m,6m]) = [6m + 2,6m + 3] C V,,

by Lemma 2.1, we have [6m, 6m] C V},c, which and (3.2) imply that [0, m ~
1)U [3m,3m]U [dm + 1,9m + 1] C Vpe.

5) Let k = [2 log 2], then
2 2

> 1 m
I;Zk ; %l,og 'R
3m + 22k+1 > 4m,
3m+2%+1 412 > 4m+2,
k < jlog(2m 1),
22k < 2m-1,
3m — 2% —1 > m.

(5.1) Since [m,3m — 2% — 1) C V, and
N*t([m,3m —2% — 1)) = [Bm + 2%+ 4 2. "m + 1] C [dm + 1,7m + 1] C V

by Lemma 2.1, we have [m, 3m — 2%¢ — 1] C V,, which and (4) imply that
[0,3m — 2% — 1} U [3m, 3m] U [dm + 1,9m + 1] C V...

(5.2) Since [3m + 22k~ +1,4m] C V; and
N*([3m + 22! +1,4m]) = [m,3m — 2% — 1] C [0,3m — 2% — 1] C V.,
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by Lemma 2.1, we have [3m + 2%*~1 + 1,4m]| C V,;, which and (5.1) imply
that [0,3m — 22 — 1]U [3m,3m] U [3m + 221 4+ 1,9m + 1) C Vpe.

(5.3) Since [3m — 22* 3m — 22k-2 — 1] C V;. and

N*([3m — 22%,3m — 22-2 — 1))
= [3m+2%%-1 +2,3m + 22k 4 1] C Bm + 221 +1,9m + 1] C Vi,

by Lemma 2.1, we have [3m — 22¥,3m — 222 — 1] C V,,., which and (5.2)
imply that [0, 3m — 2252 — 1)U [3m,3m]U [3m + 2%%~1 + 1,9m + 1] C V..

(5.4) Since [3m +22¢=3 4+ 1,3m + 22¥~!] C V; and

N*([3m 4223 4 1,3m + 2%-1))
= [3m—2% 3m - 222 1] C[0,3m - 2%*~2 - 1] C V,,,,

by Lemma 2.1, we have [3m+22-3+1, 3m+22k~1] C V,,., which and (5.3)
imply that [0, 3m — 225=2 — 1)U [3m, 3m] U [3m + 223 + 1,9m + 1] C V.

Continuing in this way, we have [3m — 2%, 3m — 22-2 — 1] C V,,; and
[3m+22"3+ 1,3m+22"1] CVpcforl=kk-1,...,2

It follows that [3m — 22%, 3m — 5] C Vi, and [3m +3,3m + 2%~ C V.
which and (5.4) imply that [0,3m — 5]U [3m,3m]U [3m +3,9m + 1] C V..

(6) Since [3m —4,3m — 2] C V; and
N+([3m —4,3m — 2]) = [3m +4,3m + 9] c Vnc)

by Lemma 2.1, we have [3m — 4, 3m — 3] C Vj,(, which and (5.4) imply that
[0,3m — 2] U [3m,3m]U [3m + 3,9m + 1] C V..

(7) Since [3m +2,3m + 2] C V,. and
N+([8m +2,3m +2]) = [3m — 4,3m - 3] C V,,

by Lemma 2.1, we have [3m + 2,3m + 2] C V., which and (6) imply that
[0,3m — 2] U [3m,3m] U [3m + 2,9m + 1] C V..

(8) Since [3m — 1,3m — 1) C V; and
Nt([3m -1,3m - 1]) = [3m + 2,3m + 3] C Vy,

by Lemma 2.1, we have [3m — 1,3m — 1] C V.., which and (7) imply that
[0,3m] U [3m + 2,9m + 1] C V.
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(9) Since [3m +1,3m + 1] C V; and
N+([83m+1,3m+1}) = [3m — 2,3m — 1] C Ve,

by Lemma 2.1, we have [3m + 1,3m + 1] C V;, which and (8) imply that
[0,9m + 1] € V,, ie., V. = 0. Thus, G[V,] is acyclic.

(]

4 Upper Bound of the Minimum Feedback
Vertex Number of GK(2,n)

Let f(2,7n) denote the minimum cardinality over all feedback vertex sets
of GK(2,n). By Lemma 3.1, we obtain the upper bound of the minimum
feedback vertex number of GK(2,n) as follows

Theorem 4.1. The minimum feedback vertez set of GK(2,n) is of size
f@n)<n—(l3 J+l J+l——J)

Proof. By Lemma 3.1, we have V3 = Fo U F4 U F; is a feedback vertex set
of GK(2,n). Since

|F2| = [L5): 13]l =1,

B3] = [[13]+ [252] +1, 18] + [232) + 1] =1,
IFel = I[13] + [252] + | 252 J+2n=1l=n— (3] +252] + [252) + 2
Thus,
f@n) < Vel = |FUFUFs|=|Fa|+ |Fil + |Fsl
=<1+1+n—<LEJ+L"‘2J+L";8J+2)
= n-(31+1%57
a
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