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Abstract

Let UY be the set of unicyclic weighted graphs of size m with
weight W. In this paper, we determine the weighted graph in uw
with maximum spectral radius.
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1 Introduction

Let Gnm be the set of simple connected graphs with n vertices and m
edges. For G € Gy m, let V(G) = {v1,v2,++ ,vn}. Given weight multiset
W ={w; > ws >+ > wy >0} and let f be a bijection from E(G) to
W, which is denoted by f(v;u;) = w;; for every viv; € E(G). A weighted
graph of G( with respect to W and f ), denoted by G;V, is the graph G
along with weight f(v;u;) = w;; for every edge v;v; € E(G). G;V can also
be represented by the weighted adjacency matriz AY = (alf )nxn of Gy,

where )
aw _ f(vi'uj) = Wyj4 Zf V; ;5 c€E
- 0 'Lf Vivy ¢E

ij
Clearly, A}V is non-negative and symmetric matrix. The spectrum of A}”

is called the spectrum of G}” and the spectral radius of G}V is denoted by

p(GY). Tt is well known that p(GY’) is simple eigenvalue of A} correspond-
ing to positive eigenvector which is called Perron-vector. Given G € Gp m
and weight multiset W, let G¥ = {G}¥ | f : E(G) «— W} be all the
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weighted graph of G with respect to weight function f . We call a weighted
graph G’y the mazimal weighted graph of G if p(G?f) > p(G}”) for any
G}’V € GY. Denote by g,”,‘f,,, = Ugeg, .G the class of weighted graphs
of G in G, ;, with given weight multiset W. We call G}‘f. the mazimum
weighted graph if p(GY.) 2 p(GY¥) for any G} e G¥ ...

A unicyclic graph is a connected graph with exactly one cycle. Let U,
be the class of all the unicyclic graphs each of them with m edges, and U
the set of unicyclic graphs with given weight W

Brualdi and Solheid [1] posed the following problem concerning the spec-
tral radius of graphs: “given a set .% of graphs, to find an upper bound for
the spectral radius of graphs in % and characterize the graphs in which
the maximal spectral radius is attained.” The spectral radius of unicyclic
graphs are investigated by some authors in [2, 3, 4, 5, 6]. However, the
spectrum of weighted graph is less considered. There are few of results
related on weighted unicyclic graphs. Yang et al [7] gave an upper bound
of spectral radius of weighted trees. Yuan Jingsong et al [9] gave the spec-
tral radius of the weighted double-star. In this paper, we will give the
maximum weighted unicyclic graph in U (see Theorem 2.2) whose spec-
tral radius are determined by Theorem 2.9. The Corollary 2.10 shows that
the spectral radius of maximum weighted unicyclic graph depends on the
weight function, which is shown in the Table 1.

2 Main Results

As similar as the result for (unweighted) graph in [8], we have the
following.

Lemma 2.1 ((9]). Let u and v be two vertices of a connected weighted
graph G;V with positive weights W. vy,va,...,05 (1 < s < d(v)) are some
vertices of Ng(v)\Ng(uv) and x = (z1,%2,...,%,)T is the Perron vector
of G}V, where z; corresponds to the vertex v; (1 < i < n). Let HY be
the graph obtained from G}V by rotating the edges v;v to the new edges
viu together with the weights f(v;v) for i = 1,2,...,s. If z, > z,, then
pGY) < p(HY).

The weighted graph H}’Y stated in Lemma 2.1 is called the transfigura-
tion from G}V by rotating v;v to v;u.

Theorem 2.2. Let G}‘f. be @ mazimum weighted graph in UY . Then G
must be the graph consisting of a 3-cycle C3 = vivouzvy such that vy joins
m — 3 pendant vertices.
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Proof. Let C = vjvy---vv; be the k-cycle of G, and x be the Perron
vector of the maximum weighted graph GY¥.. whose entries is denoted by
z, at vertex v. Suppose that k > 4 and, without loss of generality, assume
that z,, > z,,, we will get a transfiguration H}/ from G¥.. by rotating
v3v4 to vav1, then p(GY..) < p(HY) by Lemma 2.1. Clearly, HfY € UW¥
which contradicts the assumption of G}ﬁ‘f.. Thus C = Cjs is a 3-cycle.

If d(v1) > 2 and d(ve) > 2, without loss of generality assume that
Ty, = Tu,, and let N(vg)\V(C) = {u1,us,...,u,}. Let HY be the transfig-
uration getting from G?f. by rotating u;ve to u;v; for ¢ =1,2,...,7. Then
p(G}‘f.) < p(HY) by Lemma 2.1, a contradiction. Thus there exists only
one vertex in C3 such that its degree greater than 2, say d(v;) > 3 and
d(’vg) = d(vg) =2.

At last we will show that the vertices in U = V(G)\V(Cs) must be
adjacent to v;. Otherwise, there exists a vertex u € U such that uv; &
E(G). Let P be a path connecting v and u, and let u; be the vertex on P
adjacent to u. If z,, > z,, then rotating uu; to uv, we get HY € UY with
large spectral radius by Lemma 2.1; if z,, < z,, then rotating vov; and
v3v] to vauy and vsu;, respectively, we get H}W € U,,Vf' with large spectral
radius by Lemma 2.1. It is a contradiction and the proof is completed. O

In what follows we denote by A the unicyclic graph of size m having a
3-cycle vivavsvy with m — 3 pendant vertices vy, ..., v, joining to v;, and
A% = {A}V | f: E(A) «— W} where A}V is shown in Fig.1(a). Theorem
2.2 shows that the maximum graph G-. of U} belongs to AY.

Lemma 2.3. Let AY be the weighted adjacency matriz of A}V e AW
where f(viv;) = wi; for viv; € E(A). Then all the nonzero eigenvalues of
A}” are the roots of the equation:

A= () wi)N - 2wipwizwash + wi( Y wi) =0 (1)

vi~vY; 4<ign

Proof. Let A # 0 be an eigenvalue of A}” and x the eigenvector of A whose
entries is denoted by z,,, at vertex v;. From A‘f"x = A\x, we have

AZy, = W12Ty, + W13Tus + Z W1 Ty, (2)
4<i<n

ATy, = W1 Ty, + W23T0y, (3)

ATy, = W31Ty, + W32Tv, (4)

Az, = wiiz,, (1=4,..,n) (5)
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By multiplying A to (2) and (3), we obtain the following (6) and (7)

)\2:17,,1 = /\wlg.'z:,,z + /\‘wls.'L',,a + A z Wi Ty (6)
4<i<n
)\2:1:,,2 = AW12Ty, + W3y, (7)

Put (4) and (5) to (6), we obtain (8)

(A= Y wh)ey, = (wiz + wigws)z,, (8)
3<i<n

Put (4) to (7), we obtain (9)
(A2 - wiy)zy, = (Mwi2 + wi3wes) Ty, 9)

First we claim that z,, and z,, can not be zero simultaneously. In fact,
if z,, = Ty, = 0, we get z,, = 0 from (3), and so z,; = 0 by (5) for
7=4,5,...,n, thus x = 0, a contradiction.

Next we claim that z,, and z,, can not be zero simultaneously. In fact,
if ,, = 0 then z,;, = 0 by (5) for ¢ = 4,5,...,n, and return to (2), (3) and
(4) we have

W12Ty, + W13Ty, =0
’\xvz = We3Ty, (10)
ATy, = W3pTy,

If z,, = 0, then x,, = 0, and thus x = 0, a contradiction. Similarly, z,,
and z,, can not be zero simultaneously.
In addition, from (10) we know that if z,, = 0 and z,, 3 0 then we have

w3 = wy2 and A = —wo3 that corresponds the eigenvector: z,, = Ty; =0
for j =4,5,...,m and z,, = —z,, #0; if z,, =0 and z,, # 0 then we also
have w3 = wip and A = —wq3 as the same as above.

According to above arguments, we need to consider two cases bellow.

Case 1. z,, # 0 and z,,,z,, can not equal zero simultaneously.
Without loss of generality, we assume z,, # 0. Eliminating z,, and z,,
from (8) and (9), we obtain (1).

Case 2. z,, =0, z,, #0 and z,, #0.

In this case, we know that A = —wsy3 and wy2 = wy3. Thus one can
verify that A = —weg3 is also a root of (1).

Conversely, let A be a root of (1), we will show that there exists x =
(Tuy s Tugs -y Tu,) # 0 such that A%x = Ax. Now we need to consider
two cases. If A # —wy3, then we take z,, # 0 and get z,, = %1z, for

. A A
i=4,5,..,m, T, = WLty g o= ﬂzﬁzﬁgsﬂnzvl from (5), (3)

—w23
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{a) )

Figure 1: A}” is shown in (a), and g:(Aek) = gr(Aex) < 0 are shown in (b)

and (4) respectively. From the fact that A is a root of (1), we can verify

x satisfy (2). Hence A;Vx = Ax. If A = —wyg3 then w12 = w3 from (1).
Set z,,, = Ty, =+ =z, =0 and zy, = —z,, # 0. We can verify the
equations of (2}, (3), (4) and (5). Hence A?’x = Ax.

We end the proof. a

Lemma 2.4. If AY is mazimal in AV, then {f*(viv2), f*(viv3)} =
{w1,wp} where W is ordered as wy 2 w2 2 -+ 2 wp,.

Proof. Let X = (Ty,, Ty, To, )T be the Perron vector of A}‘f, and A}'x
the weighted adjacent matrix. We first prove z,, > z,; (j = 2,3,...,n).
Otherwise, without loss of generality, assume that z,, > z,,. By rotating
VU4, ..., V1Un tO VoUy,..., UaUn, respectively, we get a weighted graph A}V
from A.‘;‘f such that p(A}”) > p(A}’.‘f) by Lemma 2.1, a contradiction. By
the same way, we can also prove that z,,, Z,, > z,, (1 =4,5,...,n). Then
Ty, Tuzy Ty, Loy > Ty Ty, (.7 =4,5,..., n)» Ty Tugy Tuy Tug > Ty Tug-

Now suppose that f*(vous) > f*(v1v2), by exchanging the weights on
v1vo and vpv3, we get A";‘,’ from A}‘f with weighted adjacent matrix A}‘,’.
Then

:zTA}f‘,'x - a;TA}‘f:r = 2Ty, Loy — TuaTus )(f*(v2v3) — f*(v102)) >0

The Rayleigh principle implies p(A;‘,’) > p(A)‘i‘f), a contradiction. Simi-
larly, f*(vov3) < f*(v1vs). Thus we obtain our result. o

In what follows W is ordered as non-increased sequence: w; > wo >
-+ 2 Wp,. According to Lemma 2.3, we may assume that f*(viv2) = wy,
f*(v1v3) = we. Therefore, to determine the maximal weighted graph A}'f,
we only need to decide the value f*(vpv3) € {w3,wy, ..., wn}. We now focus
to consider weight graph AY¥ in AW where fi is defined by

wy, if e =v1v9

fr(e) = Qwz, if e =v1v3 and fi : {viw | 3 <l < m} — W\{w;, w2, wi}.
wi, if e = voug
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In what follows we will determine f* = f, for some ¢t > 3. To this end, let
us define

gr(A) = At - Z w22 - 2w wowp )\ + wi Z w? (11)
1<i<m 3<iFk<m

which is obtained from (1) by replacing wj2, w3, we3 with w, wq, wy re-
spectively. Thus, according to Lemma 2.3 and Lemma 2.4, we have the
following.

Corollary 2.5. Let AW, be mazimal in AW. Then p(A}‘f) = mam{p(A}":) |
3<k<m}= ma.x{/\{gk()\) =0,3 <k <m}.

Taking any w; # wi(3 < k # t <m), from (11) we have

9tV = ar(A) = —2wrwa(w —w)A + (wf —w})( D wd)  (12)
3<igkk,t<m

Let A; be the unique root of equation (12) which is adhered in what follows.
Then
(we + wi)(Cacistk,tcm w?)

Sy >0 (13)

Atk =

Lemma 2.6. wy > wy if and only if go(A) — gi(A) < O whenever A > Ay
wy = wy if and only if ge(A) = gi(N).

Proof. From (12), we know that g:(A) — gx(Aex) = 0 and the sign of
9e(A) — gk (A) for A > Ay is accordance with that of the coefficient of A in
(12). Thus if wy > wy then g¢(A)—gr(A) < 0 whenever A > A\. Conversely,
if g:(A) — gx(A) < 0 whenever A > Ay, then g,(A) — gx(A) — —oo while
A tends to +o00, which implies that the coefficient of A in (12) is negative
and so w; > wy.

The next part of this lemma is obvious. O

Notice that w, = wy if and only if g,(A) = gx(A). To find the largest
root of g.(A) we may assume that the given weights are distinct, i.e., w; >
wy > -+ > wy,. Additionally, the largest root of gi()) is simple by Perron-
Frobinius theorem. Further, we have the following.

Lemma 2.7. Let A\; > Ay > A3 > Ay be the roots of gr(X)(3 < k < m).
Then Ay > A2 > 0> A3 > Ay and wy € (A, Ay).

Proof. First from (11) we know that gi(A) has no zero root, and

gr(w1) =wi—( Y wihw!-2wiwuwr+wi( ¥ wd)

1<ig<m 3<j#k<m
= —wd( 5 ) - 2wdupwk tuR( S w) <0
2<i<m 3<jF#Fk<m

166



Since A; > max{|Az], |Asl, |Aa]} and A1 + A2+ Az + Ay = 0, we have A3 < 0.
Additionally, the image of the function gi(}) is of “W” type and g¢(0) > 0.
We claim that w; € (A2, A1) and A > A2 > 0> A3 > M\ O

Lemma 2.8. Let3<k#t<m, andw; >wy > -+ > wp,. Then
(1) Suppose g:(Mx) < 0. Then wy < wy if and only if p(A )<p(A

(2) Suppose gi(Mk) > 0. Then (wr — we)((wr + w; Zssi;ét,kSm
2wiws) > 0 if and only if p(A )<p(A )-

(3) Suppose gi(Mix) = 0. Then (wi+we) 23<z¢: kgm W —2wiw, < 0 and
wi, < wy if and only if p(AY) < p(AY), and (wk+w¢) Y agist kgm W
— 2wiws > 0 if and only zfp Afk) = (AV‘:)

Proof. (1). If wy > wy then g¢(A) — gr(A) < 0 whenever A > Ay by
Lemma 2.6, and hence the image of g;(A) is below that of gi()\) whenever
A > Ak ( see Fig.1(b)). Since g:(A)( gx(A)) has only two positive eigenvalues
by Lemma 2.7, and g,(O) > 0( 9k(0) > 0), ge(Aek) < 0(gr(Aex) < 0). Thus
we claim that p(A )< p(A,g )-

Conversely, ﬁlSt suppose that p(A%Y fo) < p(AW). By the way of con-
tradiction, let w; < wg. Then g(A) — gx(X) > 0 whenever A > Ay by
Lemma 2.6, and hence the image of gt(/\) is up that of gi()A) whenever
A > Ak Since gi(Mk) < 0, we have p(A}) > p(AY) as above arguments,
a contradiction.

(2). Taking A = w; in (12), we have

gk(w) — ge(wr) = (Wi —wo)((we +we) Y wf - 2wiws).
3<ig#t,k<m

By assumption, gi(w;) — ge(w1) > 0. Then the image of g:(A) is below
that of gr{A) between their second and first large eigenvalues by Lemma
2.7( sce Fig.2). Thus p(AW) <p(AW), and further p(AW) < p(A%’) since
ge(Aex) > 0. Conversely, suppose that p(A ) < p(A ). If gi(wy) —
gt(w1) < 0 then g;(wy)—gi(w;y) > 0. Since gk(/\:k) = gt(/\tk) > 0( note that
Atk = Akt by definition), we claim that p(AW) < p(A . ) s the arguments
above, a contradiction; if gp(w;) — gg('wl) 0 then z\,k = w; by (12).
However, gi(Ak) = ge(Aex) > 0 and gr(w1) = ge(w1) < 0 by Lemma 2.7, a
contradiction. Hence gi(w;) — g¢(w1) > 0.

(3). Since g;(Aex) = 0, we have Ay is the first large of second large root
of both g;(A) = 0 and gx(A) = 0

If (wi + wt)23<,# k<m W — 2wiwg < 0, that is, Ayx < wy, then Ay
is the second large root by Lemma. 2.7. If wy < w; then g4(A) — gx(A) <O
whenever A > Ay by Lemma 2.6, and hence the image of g;()) is below that
of gr()\) whenever A > Aui( see Fig.1(b)). Thus we claim p(AY) <p(AY).
Conversely, if p(A ) < p(A ), then Ay must be the second large root
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since 0 = g(Aex) = gr(Aek). Hence ge(A) — gx(A) < 0 for A > Ay, and
Atk < wy by Lemma 2.7. The former gives w; > wy from Lemma 2.6, and
the latter gives Ay < wy, that is, (Wi +wWe) Yacise k<m w? — 2wiw, < 0.
If (wk +we) Dacie ham Wi — 2wiwz > 0, that is, Ak > wy, then Ay is
the first large root by Lemma 2.7. It follows that p(A?:) = p(A%’) = Atk,
and the vice verse.
We complete the proof. 0O

From Lemma 2.8, we obtain the necessary and sufficiency condition for
AY to be the maximal graph in AY.

Theorem 2.9. Let AY € AW(3<t<m), wherem >4 and W = {w; >
we > -+ > wm}. Then A}f’ is mazimum graph in UY if and only if (14)
holds.

(Wsz)ng%ks,,.w?'lezwz>0 and gi(Aek) 2 0, for 3<k <t—1(if any) 14
(wi W')Zag#;:gnw? —2whws <0 if ge(Aex) >0, for some t+1<k<m (14)

Proof. Suppose that A“: is the maximal graph in AW for some 3 < t < m.
For3 < k < t—1, wr > we. Then g¢(Mx) > 0 by Lemma 2.8(1). If g, (Aex) >
0 then (wk+we) Fgcinr k<m Wi —2wiwz >0 Lemma 2.8(2); if gy(Aex) = 0
then (witwe) 3oacisy p<m WF—2wiwy >0 by the latter condition of Lemma
2.8(3). Thus the first term of (14) holds. For t +1 < k < m, wy, < w;.
If ge(Ae) > 0, then (wy — we)((Wk + We) Pggie pcm WE — 2wiwz) > 0 by
Lemma 2.8(2), which gives the second term of (14).

Conversely, we consider two cases. First we suppose that 3 < k <
t = 1. Then (wk+we) Yagize km Wi~ 2wiwz > 0 and ge(Ak) 2 0 by
assumption. If g;(A;) > 0 then p(A%) < p(A%’) by Lemma 2.8(2) since
wy > wy; if gi(A) = 0 then p(A}’Z) = p(A“;‘f) by the latter condition
of Lemma 2.8(3). Next we suppose that t +1 < k < m. If g;(\) >0
then (wi+we) P acin kam Wi —2wiws <0 by assumption. In this situation
we have p(A}) < p(AY) by Lemma 2.8(2) since wy > w. If g (Ak) < 0
then p(A}":) < p(Aﬁ’) by Lemma 2.8(1) since w; > wg. For g;(Aex) = 0, we
again divide three subcases. If (wk+we) Pacise k<m W — 2wiwz < 0, then
p(A‘fZ) < p(A?") by the first condition of Lemma 2.8(3) since w, > wy; if
(Wetwe) D acisek<m w?—2w?w, > 0, then p(A}‘:) = p(A}'{’) by the second
condition of Lemma 2.8(3); if (wk +wt) Xacisy kam W7 — 2wiws = 0 then
Ak = wy, and so 0 = g;(Aex) = ge(wr) < 0 by Lemma 2.7, a contradiction.

We complete the proof. a

Clearly, the extremal situations of Theorem 2.9 can be simplified as
bellow.
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Figure 2: g;(As) >0 and g;(w;) — gk(w1) < 0 are shown in Fig.2

Corollary 2.10. A}Zis a mazimal in AYif and only if (wr+ws) 245#,:5171
w? < 2wiws if g3(Aak) > 0 for some4 < k < m. A}‘; is a mazimal in AW
if and only if (wk + W) P 4<itk<m w? > 2wiwy and g;(Ak) > O for any
3<k<m-1.

The condition “gi(Aw) > 0” in (14) is simple since both g;()\) and
Aur are clearly expressed in (11) and (13) respectively. At last, by putting
weighted adjacency matrix of A}V to MATLAB program, we give the Table
1 to illustrate that the maximum graph A}‘{ € AW can achieve at any
possible value 3 < ¢ < m, which can also be verified by our Theorem 2.9
and Corollary 2.10. From Table 1 we know that A}‘:, A}Z and A}‘; are three
maximum weighted unicyclic graphs corresponding to different weights W,

Table 1:
k 12| 3 4 5 6 7 8

W = {we | k}|2]2] 19 1.8 1.7 1.7 1.7 1.6 max

4] 5.20306 | 5.20303 | 5.20310 | 5.20310 | 5.20310 | 5.20312 p(ZK_)_
W = {we | k}[3|2] 19 1.8 1.7 1.7 1.7 1.6 max

o(A}) 5.78450 [ 5.77739 | 5.77035 | 5.77035 [ 5.77035 [ 5.76327 | p(A Y
W= {w |k} [2]2] 1.9 18 1.8 1.7 1.7 1.5 max

p(AY) 520645 | 5.20646 | 5.20646 | 5.20658 | 5.20658 | 5.20649 | p(AY)
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