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Abstract

A graph is said to be symmetric if its automorphism group acts
transitively on its arcs. Let p be a prime. In [J. Combin. Theory B
97 (2007) 627-646}, Feng and Kwak classified connected cubic sym-
metric graphs of order 4p or 4p®. In this article, all connected cubic
symmetric graphs of order 4p® are classified. It is shown that up to
isomorphism there is one and only one connected cubic symmetric
graph of order 4p® for each prime p, and all such graphs are normal
Cayley graphs on some groups.
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1 Introduction

In this paper, we consider undirected finite connected graphs without loops
and multiple edges. For a graph X, we use V(X), E(X) and Aut(X) to
denote its vertex set, edge set and full automorphism group, respectively.
For u,v € V(X), {u,v} is the edge incident to » and v in X. An s-
arc in a graph X for some positive integer s is an ordered (s + 1)-tuple
(vo,v1,- - ,Vs—1,vs) Of vertices of X such that v;_; is adjacent to v; for
l1<i<sandvi_; # vi41 for 1 <7 < s—1. A graph X is said to be
s-arc-transitive if Aut(X) is transitive on the set of s-arcs in X. In par-
ticular, O-arc-transitive means vertez-transitive, and l-arc-transitive means
arc-transitive or symmetric. A symmetric graph is said to be s-regular if
its full automorphism group acts regularly on its s-arcs, that is, only the
trivial automorphism fixes an s-arc.

In 1947, Tutte [19] initiated the investigation of cubic symmetric graphs
by proving that there exist no cubic s-regular graphs for s > 6. Following
this pioneering article, cubic symmetric graphs have been extensively stud-
ied over decades by many authors. For instance, for a cubic s-regular graph
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X, by Djokovi¢ and Miller [4, Propositions 2-5], the stabilizer of v € V(X)
in Aut(X) is isomorphic to Zs, S3, S3 X Zo, Sq or Sy X Zy for s=1,2,3,4
or 5, respectively. Based on this result, an exhaustive computer search by
Conder and Dobcsényi [3] resulted in a complete list of cubic symmetric
graphs on up to 768 vertices. Let p be a prime. The classification of cubic
symmetric graphs of order 2p can be obtained from [2]. By analyzing au-
tomorphism groups of graphs, a classification of cubic symmetric graphs of
order 2p? was given by Feng et al. [6]. Using covering techniques developed
in [12, 13, 14, 15], Feng et al. [5, 8, 9] classified cubic symmetric graphs of
order np or np? with 4 < n < 10, and Oh [16, 17] classified cubic symmetric
graphs of order 14p or 16p. For the further classification of cubic symmet-
ric graphs with given orders, Feng et al. [5, Problems 6.1-6.3] posed three
problems, of which the third is the following.

Problem: For each natural number m, classify all connected cubic sym-
metric graphs of order 2mp® for each prime p.

When m = 1, an answer for this problem was given in [7]. In this paper,
we completely answer this problem for the case when m = 2. It is shown
that for each prime p, there is one and only one connected cubic symmetric
graph of order 4p3, and all such graphs are 2-regular and can be constructed
as normal Cayley graphs on some groups.

2 Preliminaries

An epimorphism g : X > Xof graphs is called a regular covering projec-
tion if there is a semiregular subgroup CT(p) of the automorphism group
Aut(X) of X whose orbits in V(X) coincide with the vertez fibres p~1(v),
v € V(X), and the arc and edge orbits of CT(gp) coincide with the arc fibres
o~ (u,v), (u,v) € A(X), and the edge fibres p~!{u,v}, {u,v} € E(X), re-
spectively. In particular, we call the graph Xa regular cover of the graph
X. The semiregular group CT(p) is called the covering transformation
group.

For a graph X, let G < Aut(X) act vertex-transitively on X. Let N
be a normal subgroup of G. The quotient graph Xy of X relative to N is
defined as the graph with vertices the orbits of N in V(X) and with two
orbits adjacent if there is an edge in X between those two orbits. If X is
a symmetric cubic graph and G acts arc-transitively on X, then by [11,
Theorem 9], we have

Proposition 2.1 If N has more than two orbits in V(X), then N is
semiregular on V(X), Xy is a cubic symmetric graph with G/N as an s-
regqular group of automorphisms, and X is a regular cover of Xn with the
covering transformation group N.
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For a finite group G, and a subset S of G such that 1 ¢ Sand S = §~1,
the Cayley graph Cay(G,S) on G relative to S is defined to have vertex
set G and edge set {{g,s9} | g € G,s € S}. It is known that Cay(G, S) is
connected if and only if S generates G. Given g € G, define the permutation
R(g) on G by z +— zg,z € G. Then R(G) = {R(g) | g € G}, called the
right regular representation of G, is a permutation group isomorphic to
G, which acts regularly on G. Thus the Cayley graph Cay(G, S) is vertex-
transitive. A Cayley graph Cay(G, S) is said to be normalif R(G) is normal
in Aut(Cay(G,S)). It is easy to see that the group Aut(G,S) = {a €
Aut(G) | §* = S} is a subgroup of Aut(Cay(G, S))1, the stabilizer of the
vertex 1 in Aut(Cay(G, S)). Xu [20, Proposition 1.5] proved the following.

Proposition 2.2 The Cayley graph Cay(G,S) is normal if and only if
Aut(Cay(G, S))1 = Aut(G, S).

Combining [8, Theorem 6.2] and [21, Theorem 2.3}, we have the follow-
ing.

Proposition 2.3 Let X be a connected cubic symmetric graph of order 4p
or 4p? for a prime p. Then X is isomorphic to the 2-regular hypercube Q3
of order 8, the 2-regular generalized Petersen graphs P(8,3) or P(10,7) of
order 16 or 20 respectively, the 3-regular Dodecahedron of order 20 or the
3-regular Cozeter graph of order 28. In particular, X is Cayley if and only
if X = Q3 or P(8,3).

3 Classification

Denote by Z,, the cyclic group of order n, and by Z* the elementary abelian
group Z, X Zp X ... X Zyp. In this section, we shall give a classification of

m ;i'mes
connected cubic symmetric graphs of order 4p® for each prime p. To do
this, we need the following lemma.

Lemma 3.1 Let X be a connected cubic graph of order 4p™ with p an odd
prime and n a positive integer. Suppose that A < Aut(X) acts transitively
on the arc set of X. Then, we have the following statements.

(1) Ifn > 2, then A has a non-trivial normal p-subgroup.

(2) If p > 7, then A has a normal Sylow p-subgroup, say P, such that
P/®(P) = Z3, where ®(P), called the Frattini subgroup of P, is the
intersection of all mazrimal subgroups of P.
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Proof. To show (1), let A, be the stabilizer of a vertex v € V(X) in
A. By Tutte [19], |A,] | 48 and hence |4| | 26 - 3. p®. Take a minimal
normal subgroup, say N, of A. Suppose that N is non-solvable. Then N is
a product of isomorphic non-abelian simple groups. Since |N| | 24+¢.3.p",
by [10, p.12-14], N & A5 or PSL(2,7). Since n > 1, N has more than two
orbits in V/(X). By Proposition 2.1, N is semiregular on V(X). This forces
that [N| | 4p™ and by [18, Theorem 8.5.3), N is solvable, a contradiction.
Thus, N is solvable. Then N is an elementary abelian p- or 2-group. To
complete the proof of (1), we may assume that N is a 2-group. Then N has
more than two orbits in V(X). Again by Proposition 2.1, N is semiregular,
and the quotient graph Xn of X relative to N is still a cubic symmetric
graph with A/N as an arc-transitive group of automorphisms. It follows
that N = Z, and X is a cubic symmetric graph of order 2p™. Since p > 2
and n > 1, by [6, Lemma 3.1], Aut(Xx) has a normal p-subgroup, say M.
Then M is contained in every Sylow p-subgroup of Aut(X M) It follows
that M < A/N because every Sylow p-subgroup of A/N is also a Sylow p-
subgroup of Aut(Xy). Set M = M/N. Since p > 2, one has M = P, x N,
where P, is a Sylow p-subgroup of M. Then P, is characteristic in M, and
so it is normal in A because M < A. Thus, (1) holds.

For (2), since p > 7, one has n > 3 by Proposition 2.3. It follows form
(1) that A has a non-trivial normal p-subgroup. Let P be the maximal
normal p-subgroup of A. Consider the quotient graph Xp of X relative to
P. Clearly, P has more than two orbits in V/(X). By Proposition 2.1, Xp
is a cubic symmetric graph of order 4p¢ with £ = p"/|P|. The maximality
of P gives £ < 1. Since p > 7, there are no cubic symmetric graphs of
order 4p by Proposition 2.3. Thus £ =0 and P is a Sylow p-subgroup of A.
Clearly, ®(P) is characteristic in P. Since P < A, one has $(P) < A. Con-
sider the quotient graph X¢(py of X relative to &(P). By Proposition 2.1,
Xg(p) is a cubic symmetric graph of order 4|P/®(P)| with A/®(P) as an
arc-transitive group of automorphisms. Since P/®(P)<A/®(P), by Propo-
sition 2.1, Xg¢(p) is a covering graph of K4 with covering transformation
group P/®(P). By [18, Theorem 5.3.2], P/®(P) is an elementary abelian
p-group. It follows from [8, Theorem 6.1] that P/®(P) = Z3. O

Below, we introduce a family of cubic symmetric graphs of order 4p°
which was constructed by Feng and Kwak in {8, Example 3.2).

Example 3.2 Let p be a prime and let Zf, be the 3-dimensional row vector
space over the field Z,. Take the standard basis vectors: e; = (1,0,0),ep =

(0,1,0) and e3 = (0,0,1). The graph ECyps is defined to have vertez set
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V(ECyps) = V(Ka) x Z3 and edge set

E(EC4}73) = {(aaz)(b’ z), (a,:r)(c, z), (a,z)(d,z),
(b, z){(c,z + 1), (¢, z)(d, = + e2), (¢, z)(d, z + €2),
(d,z)(bz+e3) |z € Zg}.

By (8, Theorem 6.1], the cubic graph ECyps is connected and 2-regular.

Theorem 3.3 Let X be a connected cubic s-regular graph of order 4p® with
p a prime. Then s =2 and X is isomorphic to the graph ECyps.

Proof. Let p < 7. By 3], up to isomorphism, there is one and only one
connected cubic symmetric graph of order 4p® for each p. It follows that
X = ECyps.

Let p > 7. Set A = Aut(X) and let P be a Sylow p-subgroup. It follows
from Tutte [19] that |A| | 26 - 3-p®. Then |P]=p% By Lemma 3.1, P< A
and P = P/®(P) = Zg. By Proposition 2.1, the quotient graph Xp of X
relative to P is isomorphic to K4, and X is a regular cover of Xp with
covering transformation group P. By [8, Theorem 6.1), X = ECys. O

4 Cayley property

Let p be a prime. In this section, we shall show that all connected cubic
symmetric graphs of order 4p3 are normal Cayley graphs on some groups.
We first introduce an infinite family of cubic 2-regular Cayley graphs.

Let n be a positive integer. Set E = (a) x (b) x {¢) = Zpn X Zpn X Zpn.
Let d and e be two automorphisms of E induced by a — ¢, b — (abc)™1!,
c—aandaw— b b a, c— (abc)”?, respectively. Set F = (d,e). It is
easy to see that F = Zs x Zs.

Example 4.1 Let G(4p®*) be the semidirect product of E by F. Define
SCypon = Cay(G(4p""), {da™'c,eab™?, de(bc™1)}).

For the name of the graph SCypsn, the letter S stands for symmetric, C
stands for Cayley graph and suffix stands for the order of the graph.

Lemma 4.2 For each odd prime p, SCypan is a connected cubic 2-regular
normal Cayley graph on G(4p®").

Proof. Let S = {z,y,2} withz =da"c,y = eab~! and z = de(bc™!). A
short computation gives that (zy)? = (be)™?, (y2)? = (ac)™* and (22)? =
(ab)~*. Since p is odd,

{(ab)~*, (bc)™, (ac)™%) = (a, b, ¢).
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This implies that (S) = G(4p®") and hence SCypsn is connected. It is easy
to check that the following two maps

a: a—bb—cc—ad—ee—de
B: a—ab—cec—bd—ee—d

can induce two automorphisms of G(4p3"). Furthermore, (o, ) acts 2-
transitively on S. It follows that Aut(G(4p®*),S) = (e, B) and hence
SCypsn is at least 2-regular.

Set X = SCyps» and A = Aut(X). Since 3n > 1, by Lemma 3.1, 4
has a normal p-subgroup. Let N be the maximal normal p-subgroup of A.
Clearly, N has more than two orbits in V' (X). By Proposition 2.1, the quo-
tient graph X of X relative to N is still a cubic symmetric graph of order
4p™ with m < 3n and A/N is an arc-transitive group of automorphisms of
Xn. By the maximality of N, m < 1 and hence X is a cubic symmetric
graph of order 4 or 4p. Suppose that Xy has order 4p. By Proposition 2.3,
p=5or7and Xy is non-Cayley. However, since p > 3, (R(a), R(b), R(c)) is
a Sylow p-subgroup of A. Therefore, N < (R(a), R(b), R(c)) < R(G(4p"))
and hence R(G(4p"))/N acts regularly on V(Xx). It follows that Xy
is a Cayley graph on G(4p®*)/N, a contradiction. Thus, Xy 2 K, and
A/N < S,. As a result, X is 2-regular. ]

With the help of computer software package MAGMA [1], we can obtain
that SCj.9s is disconnected. This implies that Lemma 4.2 is not true for
the case of p = 2.

The following theorem shows that all connected cubic symmetric graphs
of order 4p® are normal Cayley graphs on some groups.

Theorem 4.3 If p > 2, then ECy,s = SCyps, which is a normal Cayley
graph on G(4p®). Ifp = 2, then ECy.93 is isomorphic to the normal Cayley
graph Cay(H,{c,ac,bc}) where H = (a,b,c | a* = b* = 2 = 1,ab =
ba,cac = a~},cbc = b71).

Proof. By Theorem 3.3, up to isomorphism, there is one and only one
connected cubic symmetric graph of order 4p® for each prime p. If p > 2,
then by Lemma 4.2, SCjy,s is a connected cubic symmetric normal Cayley
graph on G(4p%). 1t follows that ECy,s & SCyps.

Let p = 2. Since {c,ac,bc} generates H, Cay(H, {c,ac,bc}) is con-
nected. It is easy to see that the automorphism of H induced by ¢ —
ac,a — ba=1,b+ a~! permutes {a,ab,ac} cyclicly, and that the automor-
phism induced by ¢ — ¢,a — b,b — a fixes ¢ and interchanges ac and
be. Therefore, Cay(H, {c,ac,bc}) is at least 2-regular. By Theorem 3.3,
Cay(G, {c, ac,bc}) = ECy.9s is 2-regular. Thus, Aut(H, {c,ac,bc}) = (a, B)
and by Proposition 2.2, Cay(G, {c, ac, be}) is normal. |

190



Acknowledgements: This work was supported by the Science and Tech-
nology Foundation of Beijing Jiaotong University (2008RCO037).

References

[1) W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I:
The user language, J. Symbolic Comput. 24(1997) 235-265.

(2] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a
prime, J. Combin. Theory B 42 (1987) 196-211.

[3] M. Conder, P. Dobcsanyi, Trivalent symmetric graphs on up to 768
vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.

[4] D.Z. Djokovié, G.L. Miller, Regular groups of automorphisms of cubic
graphs, J. Combin. Theory B 29 (1980) 195-230.

[5] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order
10p or 10p?, Sci. in China A 49 (2006) 300-319.

[6] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd
prime power, J. Aust. Math. Soc., 81 (2006), 153-164.

[7) Y.-Q. Feng, J.H. Kwak, Cubic s-Regular graphs of order 2p*, J. Graph
Theory, 52 (2006) 341-352.

[8] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small num-
ber times a prime or a prime square, J. Combin. Theory B, 97 (2007)
627-646.

(9] Y.-Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric
graphs of order 8p or 8p?, European J. Combin. 26 (2005) 1033-1052.

[10] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.

[11] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime va-
lency, J. Graph Theory 8 (1984) 55-68.

[12] A. Malni¢, Group actions, coverings and lifts of automorphisms, Dis-
crete Math. 182 (1998) 203-218.

(13] A. Malni¢, D. Marusi¢, P. Poto¢nik, Elementary abelian covers of
graphs, J. Algebraic Combin. 20 (2004) 71-97.

(14] A. Malni¢, D. Marusi¢, P. Potoénik, On cubic graphs admitting an
edge-transitive solvable group, J. Algebraic Combin. 20 (2004) 99-113.

191



[15] A. Malni¢, R. Nedela, M. Skoviera, Lifting graph automorphisms by
voltage assignments, Europ. J. Combin. 21 (2000) 927-947.

[16] J.-M. Oh, A classification of cubic s-regular graphs of order 16p, Dis-
crete Math. (2008) doi:10.1016/].disc.2008.09.001.

[17] J.-M. Oh, A classification of cubic s-regular graphs of order 14p, Dis-
crete Math. (2008) doi:10.1016/j.disc.2008.06.025.

(18] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag,
New York, 1982.

{(19] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43
(1947) 621-624.

[20}] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs,
Discrete Math. 182 (1998) 309-319.

[21] C.-X. Zhou, Y .-Q. Feng, Automorphism groups of cubic Cayley graphs
of order 4p, Algebra Colloq. 14 {2007) 351-359.

192



