# Cubic symmetric graphs of order $4p^3$

#### Jin-Xin Zhou

Department of Mathematics, Beijing Jiaotong University
Beijing 100044, P.R. China
ixzhou@bitu.edu.cn

#### Abstract

A graph is said to be *symmetric* if its automorphism group acts transitively on its arcs. Let p be a prime. In [J. Combin. Theory B 97 (2007) 627-646], Feng and Kwak classified connected cubic symmetric graphs of order 4p or  $4p^2$ . In this article, all connected cubic symmetric graphs of order  $4p^3$  are classified. It is shown that up to isomorphism there is one and only one connected cubic symmetric graph of order  $4p^3$  for each prime p, and all such graphs are normal Cayley graphs on some groups.

Key Words: Symmetric graphs; s-Regular graphs; Cayley graphs 2000 Mathematics Subject Classification: 05C25, 20B25.

### 1 Introduction

In this paper, we consider undirected finite connected graphs without loops and multiple edges. For a graph X, we use V(X), E(X) and  $\operatorname{Aut}(X)$  to denote its vertex set, edge set and full automorphism group, respectively. For  $u,v\in V(X)$ ,  $\{u,v\}$  is the edge incident to u and v in X. An sarc in a graph X for some positive integer s is an ordered (s+1)-tuple  $(v_0,v_1,\cdots,v_{s-1},v_s)$  of vertices of X such that  $v_{i-1}$  is adjacent to  $v_i$  for  $1\leq i\leq s$  and  $v_{i-1}\neq v_{i+1}$  for  $1\leq i\leq s-1$ . A graph X is said to be sarc-transitive if  $\operatorname{Aut}(X)$  is transitive on the set of sarcs in X. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A symmetric graph is said to be sarcy, that is, only the trivial automorphism group acts regularly on its sarcs, that is, only the trivial automorphism fixes an sarc-transitive means sarc-tran

In 1947, Tutte [19] initiated the investigation of cubic symmetric graphs by proving that there exist no cubic s-regular graphs for  $s \geq 6$ . Following this pioneering article, cubic symmetric graphs have been extensively studied over decades by many authors. For instance, for a cubic s-regular graph

X, by Djoković and Miller [4, Propositions 2–5], the stabilizer of  $v \in V(X)$  in  $\operatorname{Aut}(X)$  is isomorphic to  $\mathbb{Z}_3$ ,  $S_3$ ,  $S_3 \times \mathbb{Z}_2$ ,  $S_4$  or  $S_4 \times \mathbb{Z}_2$  for s=1,2,3,4 or 5, respectively. Based on this result, an exhaustive computer search by Conder and Dobcsányi [3] resulted in a complete list of cubic symmetric graphs on up to 768 vertices. Let p be a prime. The classification of cubic symmetric graphs of order 2p can be obtained from [2]. By analyzing automorphism groups of graphs, a classification of cubic symmetric graphs of order  $2p^2$  was given by Feng et al. [6]. Using covering techniques developed in [12, 13, 14, 15], Feng et al. [5, 8, 9] classified cubic symmetric graphs of order np or  $np^2$  with  $1 \le n \le 10$ , and Oh [16, 17] classified cubic symmetric graphs of order 14p or 16p. For the further classification of cubic symmetric graphs with given orders, Feng et al. [5, Problems 6.1-6.3] posed three problems, of which the third is the following.

**Problem:** For each natural number m, classify all connected cubic symmetric graphs of order  $2mp^3$  for each prime p.

When m=1, an answer for this problem was given in [7]. In this paper, we completely answer this problem for the case when m=2. It is shown that for each prime p, there is one and only one connected cubic symmetric graph of order  $4p^3$ , and all such graphs are 2-regular and can be constructed as normal Cayley graphs on some groups.

## 2 Preliminaries

An epimorphism  $\wp:\widetilde{X}\to X$  of graphs is called a regular covering projection if there is a semiregular subgroup  $\mathrm{CT}(\wp)$  of the automorphism group  $\mathrm{Aut}(\widetilde{X})$  of  $\widetilde{X}$  whose orbits in  $V(\widetilde{X})$  coincide with the vertex fibres  $\wp^{-1}(v)$ ,  $v\in V(X)$ , and the arc and edge orbits of  $\mathrm{CT}(\wp)$  coincide with the arc fibres  $\wp^{-1}(u,v),\ (u,v)\in A(X),$  and the edge fibres  $\wp^{-1}\{u,v\},\ \{u,v\}\in E(X),$  respectively. In particular, we call the graph  $\widetilde{X}$  a regular cover of the graph X. The semiregular group  $\mathrm{CT}(\wp)$  is called the covering transformation group.

For a graph X, let  $G \leq \operatorname{Aut}(X)$  act vertex-transitively on X. Let N be a normal subgroup of G. The quotient graph  $X_N$  of X relative to N is defined as the graph with vertices the orbits of N in V(X) and with two orbits adjacent if there is an edge in X between those two orbits. If X is a symmetric cubic graph and G acts arc-transitively on X, then by [11, Theorem 9], we have

**Proposition 2.1** If N has more than two orbits in V(X), then N is semiregular on V(X),  $X_N$  is a cubic symmetric graph with G/N as an sregular group of automorphisms, and X is a regular cover of  $X_N$  with the covering transformation group N.

For a finite group G, and a subset S of G such that  $1 \notin S$  and  $S = S^{-1}$ , the  $Cayley\ graph\ Cay(G,S)$  on G relative to S is defined to have vertex set G and edge set  $\{\{g,sg\}\mid g\in G,s\in S\}$ . It is known that Cay(G,S) is connected if and only if S generates G. Given  $g\in G$ , define the permutation R(g) on G by  $x\mapsto xg,x\in G$ . Then  $R(G)=\{R(g)\mid g\in G\}$ , called the right regular representation of G, is a permutation group isomorphic to G, which acts regularly on G. Thus the Cayley graph Cay(G,S) is vertextransitive. A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G,S)). It is easy to see that the group  $Aut(G,S)=\{\alpha\in Aut(G)\mid S^{\alpha}=S\}$  is a subgroup of  $Aut(Cay(G,S))_1$ , the stabilizer of the vertex 1 in Aut(Cay(G,S)). Xu [20, Proposition 1.5] proved the following.

**Proposition 2.2** The Cayley graph Cay(G, S) is normal if and only if  $Aut(Cay(G, S))_1 = Aut(G, S)$ .

Combining [8, Theorem 6.2] and [21, Theorem 2.3], we have the following.

**Proposition 2.3** Let X be a connected cubic symmetric graph of order 4p or  $4p^2$  for a prime p. Then X is isomorphic to the 2-regular hypercube  $Q_3$  of order 8, the 2-regular generalized Petersen graphs P(8,3) or P(10,7) of order 16 or 20 respectively, the 3-regular Dodecahedron of order 20 or the 3-regular Coxeter graph of order 28. In particular, X is Cayley if and only if  $X \cong Q_3$  or P(8,3).

# 3 Classification

Denote by  $\mathbb{Z}_n$  the cyclic group of order n, and by  $\mathbb{Z}_p^m$  the elementary abelian group  $\mathbb{Z}_p \times \mathbb{Z}_p \times \ldots \times \mathbb{Z}_p$ . In this section, we shall give a classification of

m times

connected cubic symmetric graphs of order  $4p^3$  for each prime p. To do this, we need the following lemma.

**Lemma 3.1** Let X be a connected cubic graph of order  $4p^n$  with p an odd prime and n a positive integer. Suppose that  $A \leq \operatorname{Aut}(X)$  acts transitively on the arc set of X. Then, we have the following statements.

- (1) If  $n \geq 2$ , then A has a non-trivial normal p-subgroup.
- (2) If p > 7, then A has a normal Sylow p-subgroup, say P, such that  $P/\Phi(P) \cong \mathbb{Z}_p^3$ , where  $\Phi(P)$ , called the Frattini subgroup of P, is the intersection of all maximal subgroups of P.

**Proof.** To show (1), let  $A_v$  be the stabilizer of a vertex  $v \in V(X)$  in A. By Tutte [19],  $|A_v|$  | 48 and hence |A| |  $2^6 \cdot 3 \cdot p^n$ . Take a minimal normal subgroup, say N, of A. Suppose that N is non-solvable. Then N is a product of isomorphic non-abelian simple groups. Since  $|N| | 2^{4+\ell} \cdot 3 \cdot p^n$ , by [10, p.12-14],  $N \cong A_5$  or PSL(2,7). Since n > 1, N has more than two orbits in V(X). By Proposition 2.1, N is semiregular on V(X). This forces that  $|N| \mid 4p^n$  and by [18, Theorem 8.5.3], N is solvable, a contradiction. Thus, N is solvable. Then N is an elementary abelian p- or 2-group. To complete the proof of (1), we may assume that N is a 2-group. Then N has more than two orbits in V(X). Again by Proposition 2.1, N is semiregular, and the quotient graph  $X_N$  of X relative to N is still a cubic symmetric graph with A/N as an arc-transitive group of automorphisms. It follows that  $N \cong \mathbb{Z}_2$  and  $X_N$  is a cubic symmetric graph of order  $2p^n$ . Since p > 2and n > 1, by [6, Lemma 3.1],  $Aut(X_N)$  has a normal p-subgroup, say  $\overline{M}$ . Then  $\overline{M}$  is contained in every Sylow p-subgroup of Aut $(X_M)$ . It follows that  $\overline{M} \subseteq A/N$  because every Sylow p-subgroup of A/N is also a Sylow psubgroup of Aut( $X_N$ ). Set  $\overline{M} = M/N$ . Since p > 2, one has  $M = P_1 \times N$ , where  $P_1$  is a Sylow p-subgroup of M. Then  $P_1$  is characteristic in M, and so it is normal in A because  $M \subseteq A$ . Thus, (1) holds.

For (2), since p > 7, one has  $n \ge 3$  by Proposition 2.3. It follows form (1) that A has a non-trivial normal p-subgroup. Let P be the maximal normal p-subgroup of A. Consider the quotient graph  $X_P$  of X relative to P. Clearly, P has more than two orbits in V(X). By Proposition 2.1,  $X_P$  is a cubic symmetric graph of order  $4p^\ell$  with  $\ell = p^n/|P|$ . The maximality of P gives  $\ell \le 1$ . Since p > 7, there are no cubic symmetric graphs of order 4p by Proposition 2.3. Thus  $\ell = 0$  and P is a Sylow p-subgroup of A. Clearly,  $\Phi(P)$  is characteristic in P. Since  $P \le A$ , one has  $\Phi(P) \le A$ . Consider the quotient graph  $X_{\Phi(P)}$  of X relative to  $\Phi(P)$ . By Proposition 2.1,  $X_{\Phi(P)}$  is a cubic symmetric graph of order  $4|P/\Phi(P)|$  with  $A/\Phi(P)$  as an arc-transitive group of automorphisms. Since  $P/\Phi(P) \le A/\Phi(P)$ , by Proposition 2.1,  $X_{\Phi(P)}$  is a covering graph of  $K_4$  with covering transformation group  $P/\Phi(P)$ . By [18, Theorem 5.3.2],  $P/\Phi(P)$  is an elementary abelian p-group. It follows from [8, Theorem 6.1] that  $P/\Phi(P) \cong \mathbb{Z}_p^n$ .

Below, we introduce a family of cubic symmetric graphs of order  $4p^3$  which was constructed by Feng and Kwak in [8, Example 3.2].

**Example 3.2** Let p be a prime and let  $\mathbb{Z}_p^3$  be the 3-dimensional row vector space over the field  $\mathbb{Z}_p$ . Take the standard basis vectors:  $e_1 = (1,0,0), e_2 = (0,1,0)$  and  $e_3 = (0,0,1)$ . The graph  $EC_{4p^3}$  is defined to have vertex set

 $V(EC_{4p^3}) = V(K_4) \times \mathbb{Z}_p^3$  and edge set

$$\begin{split} E(EC_{4p^3}) = & \quad \{(a,x)(b,x), (a,x)(c,x), (a,x)(d,x), \\ & \quad (b,x)(c,x+e_1), (c,x)(d,x+e_2), (c,x)(d,x+e_2), \\ & \quad (d,x)(b,x+e_3) \mid x \in \mathbb{Z}_p^3\}. \end{split}$$

By [8, Theorem 6.1], the cubic graph  $EC_{4p^3}$  is connected and 2-regular.

**Theorem 3.3** Let X be a connected cubic s-regular graph of order  $4p^3$  with p a prime. Then s=2 and X is isomorphic to the graph  $EC_{4p^3}$ .

**Proof.** Let  $p \leq 7$ . By [3], up to isomorphism, there is one and only one connected cubic symmetric graph of order  $4p^3$  for each p. It follows that  $X \cong EC_{4p^3}$ .

Let p > 7. Set  $A = \operatorname{Aut}(X)$  and let P be a Sylow p-subgroup. It follows from Tutte [19] that  $|A| \mid 2^6 \cdot 3 \cdot p^3$ . Then  $|P| = p^3$ . By Lemma 3.1,  $P \subseteq A$  and  $P = P/\Phi(P) \cong \mathbb{Z}_p^3$ . By Proposition 2.1, the quotient graph  $X_P$  of X relative to P is isomorphic to  $K_4$ , and X is a regular cover of  $X_P$  with covering transformation group P. By [8, Theorem 6.1],  $X \cong EC_{4p^3}$ .  $\square$ 

### 4 Cayley property

Let p be a prime. In this section, we shall show that all connected cubic symmetric graphs of order  $4p^3$  are normal Cayley graphs on some groups. We first introduce an infinite family of cubic 2-regular Cayley graphs.

Let n be a positive integer. Set  $E = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \cong \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ . Let d and e be two automorphisms of E induced by  $a \mapsto c$ ,  $b \mapsto (abc)^{-1}$ ,  $c \mapsto a$  and  $a \mapsto b$ ,  $b \mapsto a$ ,  $c \mapsto (abc)^{-1}$ , respectively. Set  $F = \langle d, e \rangle$ . It is easy to see that  $F \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ .

**Example 4.1** Let  $G(4p^{3n})$  be the semidirect product of E by F. Define

$$SC_{4p^{3n}} = \text{Cay}(G(4p^{3n}), \{da^{-1}c, eab^{-1}, de(bc^{-1})\}).$$

For the name of the graph  $SC_{4p^{3n}}$ , the letter S stands for symmetric, C stands for Cayley graph and suffix stands for the order of the graph.

**Lemma 4.2** For each odd prime p,  $SC_{4p^{3n}}$  is a connected cubic 2-regular normal Cayley graph on  $G(4p^{3n})$ .

**Proof.** Let  $S = \{x, y, z\}$  with  $x = da^{-1}c$ ,  $y = eab^{-1}$  and  $z = de(bc^{-1})$ . A short computation gives that  $(xy)^2 = (bc)^{-4}$ ,  $(yz)^2 = (ac)^{-4}$  and  $(zx)^2 = (ab)^{-4}$ . Since p is odd,

$$\langle (ab)^{-4}, (bc)^{-4}, (ac)^{-4} \rangle = \langle a, b, c \rangle.$$

This implies that  $\langle S \rangle = G(4p^{3n})$  and hence  $SC_{4p^{3n}}$  is connected. It is easy to check that the following two maps

$$\begin{array}{ll} \alpha: & a \mapsto b, b \mapsto c, c \mapsto a, d \mapsto e, e \mapsto de \\ \beta: & a \mapsto a, b \mapsto c, c \mapsto b, d \mapsto e, e \mapsto d \end{array}$$

can induce two automorphisms of  $G(4p^{3n})$ . Furthermore,  $\langle \alpha, \beta \rangle$  acts 2-transitively on S. It follows that  $\operatorname{Aut}(G(4p^{3n}), S) = \langle \alpha, \beta \rangle$  and hence  $SC_{4p^{3n}}$  is at least 2-regular.

Set  $X = SC_{4p^{3n}}$  and  $A = \operatorname{Aut}(X)$ . Since 3n > 1, by Lemma 3.1, A has a normal p-subgroup. Let N be the maximal normal p-subgroup of A. Clearly, N has more than two orbits in V(X). By Proposition 2.1, the quotient graph  $X_N$  of X relative to N is still a cubic symmetric graph of order  $4p^m$  with m < 3n and A/N is an arc-transitive group of automorphisms of  $X_N$ . By the maximality of N,  $m \le 1$  and hence  $X_N$  is a cubic symmetric graph of order 4 or 4p. Suppose that  $X_N$  has order 4p. By Proposition 2.3, p = 5 or 7 and  $X_N$  is non-Cayley. However, since p > 3,  $\langle R(a), R(b), R(c) \rangle$  is a Sylow p-subgroup of A. Therefore,  $N \le \langle R(a), R(b), R(c) \rangle \le R(G(4p^{3n}))$  and hence  $R(G(4p^{3n}))/N$  acts regularly on  $V(X_N)$ . It follows that  $X_N$  is a Cayley graph on  $G(4p^{3n})/N$ , a contradiction. Thus,  $X_N \cong K_4$  and  $A/N \le S_4$ . As a result, X is 2-regular.

With the help of computer software package MAGMA [1], we can obtain that  $SC_{4\cdot2^3}$  is disconnected. This implies that Lemma 4.2 is not true for the case of p=2.

The following theorem shows that all connected cubic symmetric graphs of order  $4p^3$  are normal Cayley graphs on some groups.

**Theorem 4.3** If p > 2, then  $EC_{4p^3} \cong SC_{4p^3}$ , which is a normal Cayley graph on  $G(4p^3)$ . If p = 2, then  $EC_{4\cdot 2^3}$  is isomorphic to the normal Cayley graph  $Cay(H, \{c, ac, bc\})$  where  $H = \langle a, b, c \mid a^4 = b^4 = c^2 = 1, ab = ba, cac = a^{-1}, cbc = b^{-1} \rangle$ .

**Proof.** By Theorem 3.3, up to isomorphism, there is one and only one connected cubic symmetric graph of order  $4p^3$  for each prime p. If p > 2, then by Lemma 4.2,  $SC_{4p^3}$  is a connected cubic symmetric normal Cayley graph on  $G(4p^3)$ . It follows that  $EC_{4p^3} \cong SC_{4p^3}$ .

Let p=2. Since  $\{c,ac,bc\}$  generates H,  $Cay(H,\{c,ac,bc\})$  is connected. It is easy to see that the automorphism of H induced by  $c\mapsto ac$ ,  $a\mapsto ba^{-1}$ ,  $b\mapsto a^{-1}$  permutes  $\{a,ab,ac\}$  cyclicly, and that the automorphism induced by  $c\mapsto c$ ,  $a\mapsto b$ ,  $b\mapsto a$  fixes c and interchanges ac and bc. Therefore,  $Cay(H,\{c,ac,bc\})$  is at least 2-regular. By Theorem 3.3,  $Cay(G,\{c,ac,bc\})\cong EC_{4\cdot2^3}$  is 2-regular. Thus,  $Aut(H,\{c,ac,bc\})=\langle\alpha,\beta\rangle$  and by Proposition 2.2,  $Cay(G,\{c,ac,bc\})$  is normal.

Acknowledgements: This work was supported by the Science and Technology Foundation of Beijing Jiaotong University (2008RC037).

#### References

- [1] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 24(1997) 235-265.
- [2] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987) 196-211.
- [3] M. Conder, P. Dobcsănyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.
- [4] D.Ž. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory B 29 (1980) 195–230.
- [5] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p<sup>2</sup>, Sci. in China A 49 (2006) 300-319.
- [6] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Aust. Math. Soc., 81 (2006), 153–164.
- [7] Y.-Q. Feng, J.H. Kwak, Cubic s-Regular graphs of order  $2p^3$ , J. Graph Theory, 52 (2006) 341–352.
- [8] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B, 97 (2007) 627-646.
- [9] Y.-Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p<sup>2</sup>, European J. Combin. 26 (2005) 1033-1052.
- [10] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
- [11] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984) 55-68.
- [12] A. Malnič, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998) 203-218.
- [13] A. Malnič, D. Marušič, P. Potočnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004) 71-97.
- [14] A. Malnič, D. Marušič, P. Potočnik, On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004) 99-113.

- [15] A. Malnič, R. Nedela, M. Škoviera, Lifting graph automorphisms by voltage assignments, Europ. J. Combin. 21 (2000) 927-947.
- [16] J.-M. Oh, A classification of cubic s-regular graphs of order 16p, Discrete Math. (2008) doi:10.1016/j.disc.2008.09.001.
- [17] J.-M. Oh, A classification of cubic s-regular graphs of order 14p, Discrete Math. (2008) doi:10.1016/j.disc.2008.06.025.
- [18] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
- [19] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947) 621-624.
- [20] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319.
- [21] C.-X. Zhou, Y.-Q. Feng, Automorphism groups of cubic Cayley graphs of order 4p, Algebra Colloq. 14 (2007) 351-359.