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Abstract In this paper, using the generating function, we derive Binet
formulas and determinant expressions for the k-generalized Fibonacci num-
bers and Lucas numbers. As applications, we obtain some new recurrence
relations for the Stirling numbers of the second kind and power sums.
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1 Introduction

The Fibonacci sequence and its various generalizations have been discussed
in so many articles and books ( see [3,12,15]). The well-known Fibonacci
sequence {F,} and Lucas sequence {L.} are defined by the following re-
currence relation: for n > 1

Fn = Fn—l + Fn—Zy (1)
where Fg = F) = 1, and
Ln = Ln—l + Ln-—2; (2)

where Lg = 2, L; = 1. We call F,, and L,, the nth Fibonacci number and
nth Lucas number respectively. The Binet formulas are well known in the
Fibonacci numbers theory (see [1,3}). These formulas allow all Fibonacci

numbers F,, and Lucas numbers L,, to be represented by the roots a = L‘Q@
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and 8 = 1—‘.3@ of the characteristic equation 22 —z — 1 = 0:

an-)-l - ﬁn-i—l

Fo= 3)

Ln=a"+p" (4)
Using the Girard-Waring formulas [3,4]

L2) k(n—k n—2k k_ N~k n—k

>0 (" et = ot )

g(—l)"n ) [ ©)

we have that the Fibonacci numbers F, and Lucas numbers L, satisfy the
formulas:

Fn=§(";"), 7

Ln=%n_’_‘k(";’°). ®)

k=0

Furthermore, we have the determinant formulas (see [1,3]):

i1 100 .. 0 0 O
-1 110 .- 0 0 O
o -111 .- O O O
Fn= )
0 00 -1 1 1
0 0 0O 0 -1 1
1 1 00 0 0
-2 1 10 0 0
0 -1 11 0 0
L,=
0 -1 1 1
0 0 -11
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We also know that the Lucas number L, can be expressed in terms of the
Fibonacci numbers as

Lo=2F, —F,_4, 9)
Ln = Fn—l + 2Fn_2. (10)

There has been much interests in applications of the Fibonacci sequence
and related sequences. In [9,15], the authors have investigated the rela-
tionships between the generalized order-k Lucas sequences and Fibonacci
sequences. In [1], the author has extended the identities and divisibility
properties enjoyed by the Fibonacci numbers to the solutions of other re-
currence relations. P. Stanimirovié [13] investigate the general second-order
non-degenerated sequence by matrix method. E. Kilic [6,7] obtain the gen-
eralized Binet formulas for the generalized Fibonacci p-numbers and gener-
alized order-k Fibonacci-Pell sequence by matrix method. In [16], we derive
the determinant formulas for the k-generalized Fibonacci numbers and Lu-
cas numbers by using symmetric functions. More general linear recursive
sequences have been studied by Z.-H. Sun [14]. Relationships between the
determinants or permanents of certain matrices and the terms of certain
linear recurrences have been investigated in [11].

In this paper, we recover the determinantal representations of k-generalized
Fibonacci numbers and Lucas numbers by using recurrence relation and the
relationship between the k-generalized Fibonacci sequence and k-generalized
Lucas sequence. We extend the identities (3), (4), (7) and (8) to the
k-generalized Fibonacci numbers and Lucas numbers, which can be seen
as the Binet formulas for the k-generalized Fibonacci numbers and Lucas
numbers. As application, we obtain some new recurrence relations for the
Stirling numbers of the second kind and power sums.

2 Determinant formulas
We consider a generalization of the Fibonacci sequence which is called the

k-generalized Fibonacci sequence for positive integer & > 2. Define the
k-generalized Fibonacci sequence {f,} as shown,

fa=01fy_1—02fpotasfpz— -+ (=1 larf, 4, forn>1, (11)

where the coefficients a;’s are arbitrary real numbers and

1, ifn=0
=< ! forl-k<n<O0.
f {0, otherwise o =ns
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By usual computation, we obtain the generating function for the k-generalized
Fibonacci sequence
= 1
= tn - * 1
F) Z fa 1— a1t + agt? — .- + (—1)kastF (12)

n=0

We define the k-generalized Lucas sequence {I,,} satisfies the same re-
currence equation as k-generalized Fibonacci sequence {f,,}

Ly =ail,_y —agl, o+asl,_g—-+(~-1)*agl,_,, forn>k,

but its initial values Iy, {3, - -+, lx~1 are determined by the following equa-
tions:

r
> (e, = (-1)" (k= r)ar,r =0,1,2,-- k-1, (13)
i=0
where ay,a3,- -+ ,a; are same with those in (11) and ap = 1. Generalizing
(9) and (10), we have following result.
Theorem 1. The k-generalized Fibonacci sequence { f,,} and k-generalized
Lucas sequence {{,,} are connected by the following relations

k
In = (=1 (k = r)ar far, (14)
r=0
k
ln =) (-1)"'ra;fa_r. (15)
r=1

Proof. By straightforward computation, we see that the k-generalized
Lucas sequence {l,,} have a closed-form ordinary generating function

00 k
— n o__ Zr:O(_l)r(k - r)a,.t"
L(t) - z lnt" = l—agyt+agt2—--. 4 (—l)kaktk ’ (16)

n=0

o k
Hence ngo I t" = (r_z:o(-l)'(k —r)art") 1-a1:+az?il.-.+(—1)kakt*
k 00 k
= (gb(—l)"(k - r)art")(ngo fal?) = 0( Zo(—l)'(k = 7)ar fn-r)t",

n= r=
k k
and I, = ) (-1)"(k — r)a, fa—r. Moreover, l, = 3 (-1)"(k—1)a, fn—r =
r=0 r=0

o0

k k
3 (1) Karfanrm 2 (1)1 famr = k 3= (-1t famr 3 (<1 o foy =

r=0 r=0

zk:("l)r—l"'arfn—r- O

r=1
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In [16], we obtain that the nth k-generalized Fibonacci number f, and
the nth k-generalized Lucas number {, can be expressed by two order-n
determinants with entries given by the coefficients of their recurrence equa-
tion, here we give another elementary proof. It is worth noting that there
is a determinantal formula involving the Toeplitz matrices for the inverse
of an infinite power series (see [2,8]). Applying [2, Eq. (9.1)] or [8, The-
orem 4], we can also deduce determinantal representation of k-generalized
Fibonacci number.

Theorem 2. For any integer n > 0, the following determinant formulas
are valid

a 1 0 0 ce» 0 O
as ay 1 0 0
as az a 1 <+« 0 0 O
fn= : : : O T (17
Gn-1 Gn-2 Qp-3 Gp-4 "+ G2 G 1
Gn QGp_1 Qp-2 Qp-3 -°° a3 az Q@

where a, =0 for all » > k.
Proof. Denote the determinant on the right hand of Eq. (17 ) by D,.
We use induction on n to show D, = f,. Whenn =1, Dy = a; = fj;

al 1 2

When n =2, Dy = ‘ = af —az = f. Let n > 3 and suppose

a a1
Dy = fi for all positive integers £ < n. If we expand the determinant
D,, by Laplace expansion with respect to the first column, we get D,, =
a1D,_y—02D, 3 +a3D,_g—---+(-1)farD,_, =a1f,_) —@2fps+
a3fpg—+ (=1)%1ay Sk = fa. By induction, we have the conclusion.
Theorem 3. For any integer n > 0, the following determinant formulas
are valid for the k-generalized Lucas numbers

(23] 1 0 0 e 0 0
2a; ay 1 0
3as as a 1 .o 0 O
by = . : : R )
(n=1)an-1 @n-2 Gn-3 @n-g -+ a2 a; 1
nNan apn—-1 QGn-2 Qn-3 -+ Qa3 a2 Qi

where a,. =0 for all » > k.
Proof. Denote the determinant on the right hand of Eq. (18 ) by C,.
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Expanding the determinant C,, by Laplace expansion with respect to the

first column and applying Theorem 1, we get Cp, = a3 fn~1—2as fn—2+---+
k

(-1)*~kay fn—k. By using (15) we obtain I, = ¥ (=1)""'ra,fu_r = Cy.
=1

This completes the proof. " 0

3 Binet formulas

The characteristic equation of the recurrence relation of the k-generalized
Fibonacci sequence {f,} given in (11) is

¢ —azF 1+ aprF 2 -... + (—l)k'lak_lx + (—l)ka.,c =0, (19)

All roots of the equation (19) are supposed to be distinct from each other.

Suppose zF —a;12%~ 1 +agz* 2 —. . .4 (-1)Flap_1z+(~1)*ax = (x—2z1 Wz —
k

z3) - - (z—xk), then (z—z1 ) (z—23) - - - (x—xk) = Z:o(—l)fej(:cl,xg,...,xk)m"‘j

Thus, a; is equal to the jth elementary symmetric function on x;, 2, . .., zk,

ie,a; =ej(z1,22,...,%k) = 3 TmyTmy ** Tmy, J = 1,2,...,
1€my<ma<--<mp <k

It is easy to show that 1 — a1t + agt? — -+« + (=1)*axth = (1 — z;1t)(1 -

zat) - -+ (1 — zxt), where z1,x2, - - ,zx are roots of the characteristic equa-

tion (19). Therefore,

o

Z f = 1 _ 1 1 . 1
n 1-aytt+azte—---+(—1)*artk (1-zyt) (1—zat) (1-zxt)

n=0
00 o0
= (Y =t") (X z5t") - (Z zptm) = 3 ( 2 LA SRR ) L
n=0 n=0 n=0 m+ng+ +np=n
2 (=1)"(k—r)a,t" ):( 1) (k=r)ant”

and Eolnt"—l St T e = (ma (=m0 (1=

m'*"(TzzT’l- +m Zz;‘t"+z.’£§'t"+ +Z.’L‘"t”

n=0 n=0

= Z (2T + 23 + - + 2F) t".

n=0

Thus we obtain the Binet formulas by which the k-generalized Fibonacci
number f, and Lucas number [,, can be expressed in terms of the roots of
the characteristic equation of the recurrence relation.
Theorem 4. For any integer n > 0, the nth k-generalized Fibonacci
number f, and nth k-generalized Lucas number [,, can be represented in
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the form
fa= YD alapreeals, (20)

n=ny+ngt-tng
ny,ng,- ng20

ln=27 +25 + -+ 2z}, (21)
Generalizing Eq.(7) and (8), we can derive the following theorem.

Theorem 5. For any integer n > 0, the nth k-generalized Fibonacci
number f, and nth k-generalized Lucas number !, can be written as

D > i (R I D S

n=ay+209+---+kay 81,82y...,8k
a=ay+ag+t--+ay

s s
ln = Z (-1"* s (31, 825404 Sk) aar gt (3)

n=s)+202+ ks
a=sy+ogt-tayg

Proof. Let Ci be the k x k companion matrix associated with the k-
generalized Fibonacci sequence {f,}, i.e.,

o mor e s (o
1 0 0 0 .. 0 0
0 1 0 0 - 0 0
e . , . (24)
0 0 0 0 - 0 0
\o 0 0o o - : 0o

It follows that the linear homogeneous recurrence relation (11) can be
rewritten as:

fn fn—l
fn-1 -2
fﬂ—2 = Ck fﬂ—3 . (25)
fn—k+1 fn—k
By iteration one obtains
fn fo
fa-1 f-1
fa-2 =Cp f-2 , forn>0. (26)
Sn-k+1 fks1
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fo 1
f-1 0

Since f-2 =| O |, we have that f, equals the (1, 1)-entry of
feks1 0

the matrix C¢. Thus, from [2, Theorem 3.1], we can derive

8
=Cy = n+s 8182 ok
R=Cra= > (-1 (3 o )al 0l
n=sy+280+--+kap 1392948k
.=‘1+’3+"'+‘k

The formula (23) follows directly from Waring’s formula (see {2,12]) which
express the power sum symmetric function p, = 27+ 2%+ -+ 2z} in terms
of the elementary symmetric functions of z1,zs,--- , Zk. a

Example 1. For k = 3, the 3-generalized Fibonacci sequence {f,} is
fa=a1fac1 —a2fn2+a3fn_z, n2>1, (27)
where fy = 1, f_1 = f_2 = 0, and a;,a,a3 are arbitrary real numbers.

(=]
The generating function is F(t) = }_ fut” = 1=z and
n=0

al 1 0 0 0

as a; 1 0 0

az a a; 0 0
fo= 0 a3 a --- 0 O - (_1)n+a( s )asl 82,93

n o o "___,1_1_22‘:2“.3 s1,82,83) 1 ay"ag
. . . . N . s=s1+83+s3
a) 1
0 0 0 - a a
The 3-generalized Lucas sequence {l,,} is

l,=ailn1 —agln_2+asly_3, n>3, (28)

with ly = 3, [ = a1, lo = a? —2a,, and a1, a3, a3 are arbitrary real numbers.
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00
Its generating function is L(t) = :‘—:o lt" = %‘_—2‘{;,, and

ag 1 0 0 O
2a9 a; 1 0 o
3az ay a 0 0
ln - 0 az a2 - 0 0 - 1 n+s " ( S )a‘" sgas;,_
n=014§l::+303( ) 51,982,353 ! a2 3
M . M . M . s=sy +83+83
a) 1
az ai

The Binet formulas for the 3-generalized Fibonacci numbers and Lucas

numbers are
fn= Z 7' zp? 25,

ni+ng+ng=n
ny.n2.n320

ln = a7 + 23 + 73,
where z1, 25, 23 are roots of the characteristic equation z3—a17x%+ayz—a3 =
0. .

4 Applications

The Stirling numbers are often defined as the coefficients in an expansion
of positive integral powers of a variable in terms of falling factorial powers,

n
or vice-versa [5]: 22 = Y (=1)"~*[}]zF, 2" Z {2}=E, n > 0, where
k=0

2=z(z-1)(z—-2)---(z—n+1)forn>1 a,nd 72 = 1. The numbers
(7] and {3} are the Stirling number of the first kind and the second kind,
respectively. Z.-H. Sun [14] have given a expression for the Stirling number
of the second kind in terms of a general linear recursive sequence. In this
section, we give some new recurrence relations for the Stirling numbers of
the second kind and power sums.

Let Sp(k) =1"+2™ +---+ k™ be sum of nth power of natural numbers
from 1 to k. Sp(k) is usually called sum of powers, or simply power sum.
It is well known that S, (k) is a polynomial in k of degree n + 1 (see [3,5)):

Salk) = 25 Zn: (—1)IB;("}')k™*+1=7, where B; are Bernoulli numbers de-

fined by generating function Z B,t*/n! = . We also know that power

n=0
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sum Sy, (k) can be expressed in terms of the Stirling numbers of the second
kind and binomial coefficients as [3,10] S, (k) = E( —1)n+i {"} J|(k+1

Now if we select z; = 1,29 = 2,--- ,z} = k in (20) and (21), then
[=,*] oo o0

F(t) = Z fat™ = (1—:)(1—21t)~~-(1—kt) = Z {n:k}tns and L(t) = 2 [,t" =
n=0 n=0 n=0

=]
mtst+ o+ g =u§0(1"+2"+~--+k")t". Hence f, = {"}1*} is
the Stirling number of the second kind and I, = S,(k) =1"+2"+..- 4+ k"
is power sum. Since 1 —ajt+agt? — . +(—1)*axth = (1 -t)(1-2t)--- (1 -

kt) = E (1) [ 51 ]t", thus a, = [, £F1 ] is the Stirling number of the

first kmd According to our theory above, we obtain the following results

involving the Stirling numbers and power sums:
Recurrence relation for the Stirling number of the second kind

n+k)| _[k+1]fn+k-1 k+1](n+k-2 -1k +1] [n
S et P [ & i e S C il i I}
Recurrence relation for the power sums

SO A O ] e e V[ E S
(30)

Relation between {"}*} and S, (k)

Su(k) = [k-lic- 1] {n+:— 1}_2[;:ﬂ{n+:—2}+...+(_1)k-1k[k-; 1] {n’:-};
(31)

s oY e )
(32)

Determinant formulas
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[k 1 0 0 0 0
pit I 1 o 0 0
k+1 k+1 k+1 0 0 0
ooy BB 0 |
[kk+l [kfiisl [kuL. ["‘“l ] 1
(5] GE3e) [iks o I b B
[ 1 0 0 0 0
2[k+1] [k-,:-1] 1 0 0
st [ Y o o0 o
Sn(k) =
(n=1) [kfiizl [kfiiia] [kfii4 ["“] ["“] 1
nffi] L5 Gl o GRG0
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