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Abstract: Let D be a simple digraph without loops and parallel arcs. Deng
and Kelmans [A. Deng, A. Kelmans, Spectra of digraph transformations, Linear
Algebra and its Applications, 439(2013)106-132] gave the definition of transfor-
mation digraphs by introducing symbol ‘0’ and ‘1’, and investigated the regular
and spectra of digraph transformation. In this paper we discuss a class of total
transformation digraphs associate with symbol ‘0’. Furthermore, we determine
the regularity of these ten new kinds of total transformation digraphs and also
give necessary and sufficient conditions for them to be strongly connected.
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1 Introduction

In this paper, we only consider simple digraph D with vertex set V(D)
and arc set A(D). For a vertex v € V(D), we denote the out-degree,
the in-degree of v by d*(v), d~(v). We denote the minimum out-degree,
the minimum in-degree and minimum degree of D by §*(D), 6~ (D) and
§(D) = min{é6*(D),0-(D)}. C, denote the directed cycle of order n.
K, denote the complete digraph of order n. A star denotes by Kj,, is a
bipartite digraph D[X,Y] with |X| =1 or |Y| = 1 and this vertex has only
out-neighbours{out-star) or in-neighbours(in-star).

Let D = (V(D), A(D)) be a digraph, where |V(D)| = n, |A(D)| = m
and V(D) = {v1,v, -+ ,vn}. The line digraph of D, denoted by L(D), is
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the digraph with vertex set V(L(D)) = {ai;|(vi,v;) € A(D)}, and a vertex
aij is adjacent to a vertex a,; in L(D) if and only if v; = v, in D.

Wu and Meng(5]introduced a kinds of transformation graphs and in-
vestigated some basic properties of them. The authors[2] determined the
regularity and spectral radius of transformation graphs. The authors[4]
gave the definition of transformation digraphs and discussed some proper-
ties of middle digraph. The authors[6] discussed the properties of D*¥?,
where z,y, z taking values — or +. The authors [3]gave the definition of
a new class of transformation graphs by introducing symbol ‘0’, and dis-
cussed some properties: regularity, connectedness and spectra. Recently,
the authors[1} gave the definition of transformation digraphs by introduc-
ing symbol ‘0’ and ‘1’, and investigated the regular and spectra of digraph
transformation. In this paper, we main consider the case of '0’.

Definition 1.1. Let D = (V(D), A(D)) be a digraph, x,y, z be three vari-
ables taking values — or +. The transformation digraph of D, denoted
by D*Y*, is a digraph with vertez set V(D*¥*) = V(D) U A(D). For any
vertez a,b € V(D*¥?), (a,b) € A(D*¥*) if and only if one of the following
four cases holds:

(i) If a € V(D) and b € V(D), then (a,b) € A(D) in D if x = + and
(a,b) ¢ A(D) in D ifx = —.

(#) If a € A(D) and b € A(D), then the head of arc a is the tail of arc b
in D if y = + and the head of arc a is not the tail of arc b in D if y = —.

(iii) If a € V(D) and b € A(D), then a is the tail of arc b in D if z = +
and a is not the tail of arc b in D if z = —.

(v) Ifa € A(D) and b € V(D), then b is the head of arca in D if z = +
and b is not the head of arca in D if z = —.

Furthermore, (i') for any vertex a € V(D) and b € V(D), then there is
no arc between a and b if x = 0;

(i) for any vertex a € A(D) and b € A(D), then there is no arc between
aandb ify=0;

(i4i") for any vertez a € V(D) and b € A(D), then there is no arc between
aandbif z=0.

According to the definition, we can get twenty-seven kinds of total trans-
formation graphs, in which D+++ is total digraph of D, and D~~~ is its
complement. Also, D~~*%, D~*~ and D~** are the complement of Dt+—,
Dt-+ and D*~-. Moreover, D%0, DO+0 p+00 p-00 p--0 p+-0
D0, D=0 and D*+0 are simple. So, in this paper we investigate basic
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properties of other ten kinds of new total transformation digraphs associate
with symbol ‘0’.
First, we list the vertex number, arc number and out-degree of new

transformation digraphs D=¥*. Let A = 3, cy(p) 45 (v)dp(v).

TD verter d¥t(v),v € V(D) d¥*(a).a = (u,v) € A(D) arc number
p+o- m+n m n-1 2mn - m
po+-— m+4n m—dg(u) dE(o)%-n-—! 2mn —-2m + A
D=9- m+4n n+m—l—2d$(v) n~-1 n’—n+2mn—3m
poo- m+n m - d}i(v) n-1 2mn - 2m
D%=+ | m4n ¢t (v) m = db(v) mZ+m-A
po0+ m+n ag(g) 1 2m
D—0+ m+n n-1 1 n2enem
DO+ | m4n ah () db(v) +1 2m + A
po—-— m4n m—dg(v) m+n—2—d$(v) m3 +2mn—3m- A
DO+ | m4n 24} (v) 1 3m

Table 1

In a digraph D, two vertices u and v are strongly connected if each of
u and v is reachable from the other. In this paper, we investigate the
regularity of ten kinds of new total transformation digraphs and also give
necessary and sufficient conditions for them to be strongly connected. For
convenience, we use V(D) U V(L(D)) to denote the vertex set of D*¥,

2 Regularity of D*¥*

In this section, we will study the regular of transformation digraphs. A
digraph D is k-regular, if for any v € V(D), d*(v) =d~(v) = k.

Theorem 2.1. For a digraph D of order n, then D%t is regular if and
onlyif D=C,.

Proof. By Table 1, for any vertex v € V(D), d} ooy (v) = dp ™t (v), dpeos (v) =
dp(v). For any arc a € A(D), dfjoos(a) = 1, dpeos (@) = 1. If DO is reg-
ular, then df(v) = dp(v) = 1 for every vertex v € V(D), hence D = C,.
If D 2 C,,, then D% is regular. O

By the similar argument, we have the following theorem:

Theorem 2.2. For a digraph D of order n. Then

(1) D°=* and D% are regular if and only if D is an m/2-regular
diagraph.

(2) Dt%* and D%+ are not regular.

(3) D%~ and D~%* are regular if and only if n = 2.

(4) D%t~ is reqular if and only if D is an (m—n+1)/2-regular diagraph.
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(5) D°~ is regular if and only if D is an m — n + 1-regular diagraph.
(6) D*°= is reqular if and only if m =n — 1.

3 Connectedness of D*¥*

Theorem 3.1. For a digraph D, D%+ is strongly connected if and only if
D is strongly connected.

Proof. Suppose that D is not strongly connected, then there are two subsets
X1, Xz of V(D), such that there is no directed path from X; to X5. That
is, there is no directed path in D% from X, to Xz, hence, D% is strongly
connected, then D is strongly connected.

Conversely, if D is strongly connected, for any u,v € V(D), there is a
directed path in D from u to v, then it is also a directed path in D%+,

For any a,b € V(L(D)), let a = (u,v),b = (z,y). If v # z, there is a
directed path P, from v to z in D%+, and (a,v) U P, U (z,b) is a directed
path from a to b in D%*; if v = z, then (a, v,b) is a directed path in D%+
from a to b.

For any u € V(D), b = (z,y) € V(L(D)), if v = z, then (u,b) €
A(DO%+); if u # =, then there exists a directed path P, from u to z in
D%+ and P,U(z,b) is a directed path from u to b in D°°*, If u =y, then
(b,u) € A(D%); if u # y, then there is a directed path P; from y to « in
D%+ and (b,y) U Ps is a directed path from b to u in D%+, O

Since D% is spanning subdigraph of D%+ and D%+, then we can get
the following theorem:

Theorem 3.2. For a digraph D, D%t and D+ are strongly connected
if and only if D is strongly connected.

Theorem 3.3. For a digraph D, D°* is strongly connected if and only
ifo(D) > 1.

Proof. The ’only if’ part is obvious. We now show the ’if’ part. For any
vertices u,v € V(D), if there is a directed path in D from u to v, then
there is a directed path in D°~+, If there is no a directed path in D from
u to v, then there are two arcs a = (u,z),b = (y,v) € A(D)(z # y) since
8(D) > 1, hence (a,b) € A(D°~*). Thus, (u,a,b,v) is a directed path in
D+ from u to v.
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For any two vertices a = (u,z),¢c = (w,2) € V(L(D)), if z = w, then
(a,z,¢) is a directed path in D%~ from a to ¢; if x # w, then (a,c) €
A(D-+).

For any two vertices u € V(D),c = (w,2) € V(L(D)), if u = w, then
(u,c) € A(D°*); if u # w, there is a directed path P, from u to w in
D%*, then P, U (w,c) is a directed path in D°=* from u to ¢. If u = z,
then (c,u) € A(D°*); if u # z, then there is a directed path P, from z to
u in D%+, thus, (c,w) U P, is a directed path in D%+ fromctou. O

Theorem 3.4. For a digraph D, D™°% is strongly connected for any di-
groph.

Proof. If D is empty, then it is obvious. Now we consider D is nonempty.
For any two vertices u,v € V(D), if (u,v) ¢ A(D), then (u,v) € A(D™t);
if a = (u,v) € A(D), then (u,a,v) is a directed path in D~%* from u to v.

For any two vertices a = (u,v),b = (z,y) € V(L(D)), if v = z, then
(a,v,b) is a directed path in D=%% from a to b; if v # z, by the above
argument, there is a directed path P from v to z in D~%+, then (a,v) U
PU(z,b) is a directed path in D~°* from a to b.

For any two vertices u € V(D),b = (z,y) € V(L(D)), if u = z, then
(u,b) € A(D~%%); if u # x, then P, U (z,b) is a directed path in D™%+
from u to b (P, is a directed path from u to z in D~%* ). Similarly, if
u =y, then (b,u) € A(D~%%); if u # y, then (b,y) U P; is a directed path
in D=%* from b to u (P, is a directed path from y to u in D=0+ ). O

Theorem 3.5. For a digraph D, D*°~ is strongly connected if and only
if D has at least one arc.

Proof. If D has no arc, then D*%~ is not strongly connected. Therefore, if
D+ is strongly connected, then D has at least one arc.

On the other hand, if D has at least one arc, let a = (u,v) € A(D), then
(u,v,a,u) is a directed cycle of length 3.

For any two vertices z,y € V(D), if b = (z,y) € A(D), then (z,y) €
A(D*9-). Consider (z,y) ¢ A(D), if z = v and y # v, then (z,v,a,y) is a
directed path in Dt%= from z to y; if z # v and y = v, then (z,a,u,y) is
a directed path in D*%~ from z to y; if £ # u and y # v, then (z,qa,y) is
a directed path in D%~ from z to y.

For any two vertices b = (z,y),¢ = (w,2) € V(L(D)), if = w and
y # z, then (b,z,z,c) is a directed path in D*%~ from b to ¢; if z # w,
then (b, ,c) is a directed path in D*%~ from b to c.
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For any two vertices w € V(D),b = (z,y) € V(L(D)), if w = =z, then
(w,y,b) is a directed path in D*°~ from w to b; if w # z, then (w,b) €
A(D*°"). If w = y, then (b, z,w) is a directed path in D*°~ from b to w;
if w # y, then (b,w) € A(D¥07). O

Theorem 3.6. For a digraph D, D% is strongly connected if and only
if D is not a star.(out-star or in-star).

Proof. If D is a star, then D%~ is not strongly connected. Therefore,
D~ is strongly connected, then D is not a star.

Let D is not a star, without loss of generality, we may assume that D
is not an in-star. For any two vertices u,v € V(D), if (u,v) ¢ A(D), then
(u,v) € A(D%"). Now we consider the case that a = (u,v) € A(D).
There is a vertex w(# v) € V(D) such that (u,w) ¢ A(D), then (u,w) €
A(D™%7), if (w,v) ¢ A(D), then (w,v) € A(D7°"), thus (u,w,v) is a
directed path in D=%=; if b = (w,v) € A(D), then there is an isolated
vertex z or an arc ¢ such that v is not the head of ¢ since D is not an
in-star, thus (u, z,v), (u,¢,v) or (u,w,c,v) is a directed path in D—%-,

For any two vertices a = (u,v),e = (z,y) € V(L(D)), by the above
argument, there is a directed path P from u to y in D~°-, then (a,u) U
PU (y,e) is a directed path in D%~ from a to e.

For any two vertices u € V(D),e = (z,y) € V(L(D)), if u # z, then
(u,€) € A(D™%); if u = z, there is a directed path P, from u to y,
then (u, P;,y,e) is a directed path from u to e. Similarly, if u # y, then
(e,u) € A(D~0); if u = y, then (e,z, P2, u)(P2 is a directed path from z
to u ) is a directed path in D% from e to u.

Similarly, we can show that if D is not an out-star, then D~°~ is strongly
connected. a

Theorem 3.7. For a digraph D, D~ is strongly connected if and only if
DKy sU(n—k—-1)K,, where0<k<n-—1.

Proof. If D = K14, U (n —k —1)K;, where 0 < k < n — 1, then D%~
is not strongly connected. Therefore, D%~ is strongly connected, then
DZKixyU(n—k—1)K,;, where 0 <k<n-—1

On the other hand, if D 2 K, U (n — k — 1)K, for any two vertices
u,v € V(D), if a = (v,u) € A(D), then (u,a,v) is a directed path in D%~
from u to v. Now, we consider the case that (v,u) ¢ A(D), there are at
least two arcs with u is not as the tail of a, v is not as the head of b, let
a = (z,9),b = (w,2). If y # 2, then (u,a,z0b,v) is a directed path in
D%- from u to v; if y = z, then there is an arc ¢ such that y is not the

210



head of ¢ since D & Ky, U(n -k — 1)Ky, let ¢ = (3,7). If ¢ # w, then
(u,@,w,¢,¥,b,v) is a directed path in D%~ from u to v; if i = w, then
(u,a,j,¢,y,b,v) is a directed path in D°°~ from u to v.

For any two vertices a = (v,u),b = (w,2) € V(L(D)), by the above
argument, there is a directed path P from v to z, then (a,v) U P U (z,b) is
a directed path in D%~ from a to b.

For any two vertices w € V(D),a = (v,u) € V(L(D)), if w # v, then
(w,a) € A(D-); if w = v, there is a directed path P, from w to u, then
(w, Py, u,a) is a directed path in D%~ from w to a. Similarly, if w # u,
then (a,w) € A(D®); if w = u, then (a,v, P2,w) (P2 is a directed path
from v to w) is a directed path in D%~ from a to w. O

By the similar argument, we have the following theorem:

Theorem 3.8. For a digraph D, D°~~ and D%t~ are strongly connected
ifand only if D Z K1, U(n—k —1)K;, where0 <k <n-—1.
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Fault-free cycles passing through
prescribed a linear forest in a
hypercube with faulty edges *
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Abstract

Chen considered the problem of fault-free cycles passing through pre-
scribed a linear forest in an n-dimensional hypercube Q,, with some faulty
edges and obtained the following result: Let n > h > 2, F C E(Qy) with
|F[ < n—h, and Ey C E(Qu)\F' with |Ep| = h. If the subgraph induced
by Ey is a linear forest, then in the graph @, — F' all edges of E; lie on
a cycle of every even length | with 2*~Y(n+1—-h)+2(h—-1) <1 < 2"
In this paper, above result is improved as follows: under the same condi-
tion in @, — F all edges of Ey lie on a cycle of every even length ! with
2(h—=1)n—-6h—-2)<l< 2™

Keywords: Hypercube; Cycle embedding; Hamiltonian cycle; Fault toler-
ance; Interconnection network

1 Introduction

It is well known that the n-dimensional hypercube, denoted by Q., is
one of the most popular and efficient interconnection networks. It possesses
many excellent properties such as recursive structure, symmetry, small di-
ameter, low degree, popular structure embedding, and easy routing. There
is a large amount of literature on graph-theoretical properties of hypercubes
and their applications in parallel computing (e.g., see [7,9]).

In this paper, we follow [2] for graph-theoretical terminology and nota-
tion, and a graph G = (V, E) means a simple graph, where V = V(G? is the
vertex-set and E = E(G) is the edge-set of the graph G. The Hamiltonian
property is one of the major requirements in designing network topologies
since a topology structure containing Hamiltonian paths or cycles can effi-
ciently simulate many algorithms designed on linear arrays or rings. It is
well known that the n-dimensional hypercube has Hamiltonian cycles.

*The work was supported by NNSF of China (No. 10671191).
tCorrespondence to X.B. Chen, E-mail address: chenxbfz@yahoo.com.cn.
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A graph G is called edge-pancyclic if its every edge lies on a cycle of
every length from 3 to |V(G)| gsee, e.g., [1]{ Similarly, a bipartite graph
(a graph containing no cycle of odd length) G is called edge-bipancyclic
if its every edge lies on a cycle of every even length from 4 to |V(G)|.
Fault tolerant ability is an important factor for interconnection networks.
A (bipartite) graph G is called k—edge-fault-tolerant edge-(bi)pancyclic if
every graph obtained by deleting any up to k edges from G remains edge-
(bi)pancyclic. Many results on (edge-fault-tolerant) edge-(bi)pancyclicity
were obtained for hypercubes and their variants [6,8,10-17).

On the other hand, a few papers [3,5] investigated the following prob-
lem: Given a set of prescribed edges in a hypercube without faulty edges,
which conditions guarantee the existence of a Hamiltonian path or cycle
passing through all edges of this set in the hypercube? In hypercube-like
interconnection networks with faulty vertices and/or edges, the problem of
constructing a Hamiltonian cycle or path passing through prescribed edge
list in the order given was considered in [11]. Recently, Chen [4] studied the
problem of fault-free cycles passing through prescribed edges in a hypercube
with faulty edges and obtained a result, see Lemma 1 below.

In this paper, the same problem is considered, and the result of [4] is
improved as follows:

Theorem 1. Let n > h > 2, F C E(Qy) with |[F| < n - h, and Eg C
E(Qn)\F with |Eg| = h. If the subgraph induced by Ej is a linear forest
(i.e., pairwise vertex-disjoint paths), then in the graph @,, — F all edges of
Ejp lie on a cycle of every even length [ with 2(h—1)n —6(h-2) <1 < 2™
Moreover, if 2 = 2, then the result is optimal in the sense that @Q,, contains
(1) two edges such that any cycle in Q, passing through them is of length
at least 2n, and (2) edge subsets Ep and F with |E0‘L= 2,|F| =n -2 such
that no Hamiltonian cycle passes through the two edges of Ey in Q,, — F.
The proof of Theorem 1 is in Section 3.

2 Preliminaries

In this section, we present some preliminaries on hypercubes.

The n-dimensional (binary) hypercube Q,, is a bipartite graph with 27,
its any vertex v is denoted by an n-bit binary string v = AjAa...Ap—_1 A,
where \; € {0,1} for all 4,1 < i < n. Two vertices of Q,, are adjacent if
and only if their binary strings differ in exactly one bit position, so @, is
an n regular graph. Assume e = (u,v) is any edge of @,. If the two binary
strings of u and v differ in the ith bit position, where 1 < i < n, then the
edge e is called a dimension ¢ edge of Q.. The set of all dimension 7 edges
of Qn, is denoted by E;. It is clear that any two edges of E; are not adjacent
(that is, E; is a matching in Q,) and |E;] = 2"~! for all 4,1 < i < n. For
any given j € {1,2,..n}, let Q2_, and Q}_; be two (n — 1)-dimensional
subcubes of @, induced by all the vertices with the jth bit positions being
0 and 1, respectively. It is clear that @, — E; = Q2 _, UQ} _,, we say that
@~ is decomposed into two (n — 1)-dimensional subcubes Q%_, and Q1_,
by E;. For agiven A € {0,1}, if vy is a vertex of Q}_,, then there is exactly

one corresponding vertex v;_j in Qlf_’} such that the edge (va,v1-2) € Ej,
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and if (uy,v,) is an edge of Q}_;, then there is exactly one corresponding

edge (u1-»,v1-2) in QL7} such that (ux,u1-») € E; and (va,v1-1) € Ej,
and uxuj-\v1-A) is a cycle with length four in Q.

Lemma 1.1 Letn > h > 2, F C E(Q,) with gF| <n-—h, and Ey C
E(Qu)\F with |Eg| = h. If the subgraph induced by Ey is a linear forest,
then in the graph Q, —F all edges of Eq lie on a cycle of every even length !
with 2"~ (n4+1—-h)+2(h—1) <1 < 2". Moreover, if h = 2, then the result
is optimal in the sense that Q, contains (1) two edges such that any cycle
in Q, passing through them is of length at least 2n, and (2) edge subsets
Eo and F with |Ey| = 2,|F| = n— 2 such that no Hamiltonian cycle passes
through the two edges of Eg in Qn — F.

Lemma 2.5 Given a set Ey of at most 2n—3 edges in an n—dimensional
hypercube Qn(n > 2). Then Q, contains a Hamiltonian cycle passing
through all edges of Eq if and only if the subgraph induced by Eo is a linear
forest.

Lemma 3.1!90  The n-dimensional hypercube Q,, is (n — 2)-edge-fault-
tolerant edge-bipancyclic for every n 2 3.

Lemma 4.1 IfQ, (n > 2) has at most n—2 faulty edges, then for any
two different vertices u and v there ezists a fault-free uv-path of length !
with d(u,v)+2 <1 < 2™ — 1 and 2|(I—d(u,v)), where d(u, v§) i3 the distance
of vertices u and v.

Lemma 5. Let e = (u,v) and f = (ug,v2) be two edges in the n-
dimensional hypercube Q,. Then edges e and f are not contained in any
(n = 1)-dimensional subcube of Qn if and only if there are two vertices
belonging to {u;,v1,ug,ve} with the distance between them being n.
Proof. Sufficiency. Without loss of generality, we assume d(u;,us) =
n. Since the distance between any two different vertices in an (n — 1)-
dimensional hypercube is at most n — 1, the two vertices u; and uy are not
contained in any (n — 1)-dimensional subcube of Q,, and so do the two
edges e and f.

Necessity. By contradiction, assume the distance between any two ver-
tices belonging to {u;,v1,u2, v} is at most n — 1.

By symmetry of Q,,, without loss of generality, assume u, = 000...000
and v; = 000...001, then uy and v; are neither 111...111 nor 111...110.
Since edges e and f are not contained in any (n — 1)-dimensional subcube
of Qn, the 1lst position of uz or vy is 1. Assume ug = 1As2...An—1An, then
v = 0. A1 An OT U2 = 10 A Ap—1Aq, Where My = 1— A, A; € {0, 1},
2<i<n.

If o = OXa...A\n_1An, since uy is neither 111...111 nor 111...110, there
exists j, 2 < j < n — 1, such that A; = 0, then the jth position of the four
vertices is 0, so they are contained in an (n — 1)-dimensional subcube of
Qn, it is a contradiction.

If o = 122, A A1 An, then A = 1 for every j (2<j <n—1)and
j # 4. Since \; = 1 or A\; = 1, and uz and vy are neither 111...111 nor
111...110, it is a contradiction.

So Lemma 5 holds. []

Lemma 6. Given an edge e in Q. Then there are exactly 2n — 1 edges
such that any one of these edges and the edge e are not contained in any
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(n — 1)-dimensional subcube of Q,. Denote by E' the set of these 2n — 1
edges. Let H be a linear forest in Qy, then |E(H)NE'| < 4.

Proof. By symmetry of Q,, assume e = (ug, vp), where up = 000...000 and
vg = 000...001. By Lemma 5, if an end-vertex of an edge is u; = 111...111
or v; = 111...110, then the edge and e are not contained in any (n — 1)-
dimensional subcube of @,. Since @, is an n-regular graph, there are
exactly n edges incident with u; and v, respectively, notice that u; and v,
are two end-vertices of the edge (u1,v1), so these 2n — 1 edges consist of
E’. 1t is easy to see that the latter half of the lemma is also true. [1
Lemma 7. Given an edge e in Qy, then there are ezactly n—1 cycles with
length four such that any two of these cycles have the edge e in common.
Proof. Assume e = (ug,vg), where ug = 000...000 and v = 000...001. In
Qn all vertices adjacent to ug are u; = 100...000, u; = 010...000 , ... ,
Un—1 = 000...010 and wvp; all vertices adjacent to vy are v; = 100...001,
vg = 010...001, ... , vpn—; = 000...011 and ug. Clearly, n—1 cycles ugu;v;vq
with length four for every ¢ =1,...,n — 1, meet the lemma. [f

3 Proof of Theorem 1

Since |[EgUF| < h+n—-1—h=mn-1, there exists j,1 < j < n, such
that (Eo U F) N E; = 0, where E; is the set of all dimension j edges of Q,,.

Suppose @, is decomposed into two (n — 1)-dimensional subcubes Q%_,

and Q._, by E;. Let Fy = FNE(Q)_,) and E} = E;n E(Q)_,) for
xe {0,1}.

B{y Le}amma. 1, Theorem 1 holds if h = 2. Assume 3 < h < n, we now
prove Theorem 1 by induction on n.

If n = 4, then h =3 and F = §. By Lemma 1, it is sufficient to prove
that all edges of Ej lie on a cycle of length 10 in Q4.

Case 1. Ey C E(Q3) or Eg C E(Q3).

Without loss of generality, assume Ey C E(Q3).

By Lemma 2, in Q$ all edges of Eg lie on a cycle Cy of length 23 = 8.
Since 8 > 3, there is an edge (ug,v) € E(Co)\Eo, such that the corre-
spolnding edge (u1,v1) € E(Q}). Hence in Q4 all edges of Ey lie on the
cycle

C* = (Co — (uo,v0)) U (uo, u1) U (u1,v1) U (v1,0)
of length 10.

Case 2. Eg = EQ UE} and @ # E} C E(Q3), X € {0,1}. Assume
|EQ| > |E§|, then |EQ| =2 and |E}| = 1. Let E§ = {a,b} and E} = {c}.

Subcase 2.1. Edges a and b are adjacent.

It is easy to see that in Q3 edges a and b lie on a cycle Cy of length
4. Since 4 — 2 > 1, there is an edge (uo,v0) € E(Co)\{a,b} such that the
corresponding edge (ul,m% € E(Q},)!}c. By Lemma 1, in Q} edges (u3,v;)
a.ndl ¢ lie on a cycle C) of length 6. Hence in Q4 all edges of E; lie on the
cycle

C** := (Co — (u0,v0)) U (C1 — (u1,v1)) U (uo,u1) U (vo, v1)
of length 10 (see Fig. 1).

Subcase 2.2. Edges a and b are not adjacent.
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Subsubcase 2.2.1. The corresponding edge of the edge c is the edge a or
b. Assume edge a = (ugp, Zo) is the corresponding edge of ¢ = (ul,azs.

By Lemma 1, in QJ edges a and b lie on a cycle Cp of length 6, let
(u0,vp) € E(Cp)\a, then (ug,vp) # b. Clearly, the edge ¢ and the corre-
sponding edge (u;,v;) of the edge (up,vo) lie on a cycle C; of length 4 in
Q3. Hence in Q4 all edges of Ej lie on the cycle C** as before of length 10.

Subsubcase 2.2.2. The corresponding edge of edge ¢ is neither edge a
nor edge b.

Let ¢ = (u1,v,), then its corresponding edge e = (uo,v0) € E(QI)\EJ.
Since edges @ and b are not adjacent, the subgraph induced by eU EJ is a
linear forest. By Lemma 2, in Q3 all edges of e U EJ lie on a cycle Cp of
length 23 = 8. Hence in Q4 all edges of Ey lie on the cycle C* as before of

length 10.
So Theorem 1 holds for n = 4. Suppose Theorem 1 holds for n — 1

(> 4), we now prove Theorem 1 for n (> 5).
There are two cases to consider.
Case 1. Ey C E(Q°_,)\Fp or Eo C E(QL_))\F:.
Without loss of generality, assume Ey C E(Q%_,)\Fo.

Subcase 1.1. h=n—1.

Then F = (. We now prove that in @y, all edges of Eg lie on a cycle of
every even length ! with 2n2 —10n +18 <1< 2" Sincen—1<2n—3
(n > 5), by Lemma 2, it is sufficient to prove that in @,, all edges of Ej lie
on a cycle of every even length { with 2n®2 —10n 4+ 18 <1 < 2" — 2.

Since the subgraph induced by Ejp is a linear forest, denoted by G, there
is an edge e in G such that an end-vertex of edge e is of degree 1. Since
|[Fol=0< {(n—1)~(n—2) and |Eg\ e = h — 1 =n — 2, by the induction
hypothesis, in Q2 _, all edges of Ey \ e lie on a cycle C of every even length
lowith2(n-3)(n—1)-6(n—4) =22 -14n+30< g <21 -2

Subsubcase 1.1.1. e € E(Cy).

Since 2n%—14n+30 > n—1, there is an edge (uo,vo) € E(Co) \ E§, such
that its corresponding edge (u1,v1) € E(Q}_,). By Lemma 3, in Q1 _; the
edge (u3,v;) lies on a cycle C; of every even length l; with 4 < [; <271,
Hence in @, all edges of Eq lie on the cycle C** as before of every even
length { = lp + I; with 2n%2 — 14n + 34 < | < 2" — 2 (See Fig. 1). Since
2n2 — 14n + 34 < 2n? — 10n + 18, Theorem 1 follows.

Subsubcase 1.1.2. e ¢ E(Cp). Let e = (up, vp).

There are three cases to consider.

Case (i). {uo,v0} NV (Co) =0.

Denote by E’ the set of all such edges of Q2_; that any one edge of E’
and edge e are not contained in any (n — 2)-dimensional subcube of Q% _;.
Since the subgraph induced by E(Cp) \ Ep is a linear forest, by Lemma 6,
then |(E(Co)\ Eo)NE'| < 4. Since (2n% —14n+30) — (n—2) > 4, thereis an
edge (zo,y0) € E(Co) \ Ep such that edges e and (zg, yo) are contained in
an (n — 2)-dimensional subcube of Q°_,, and so their corresponding edges
(u1,v) and (z;,3) are contained in an (n — 2)-dimensional subcube of
Ql_,. By Lemma 1, in QL _, edges (u1,v1) and (z1,¥1) lie on the cycle C;
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of every even length [; with 2(n—2) <} £2" 2 and 2(n—-1) <) < 2°L,
Hence in Q,, all edges of Ejy lie on the cycle

Ci= (Co — (a0, 40)) U (C1 ~ (@1,81) ~ (w1,0)) U (@0, 21) U (3o, 32) U
(vo,u1) U (vo, 1) Ve
of every even length I =y +1; + 2 with 2n2 ~ 12n +28 < 1 < 2" — 2 (see
Fig. 2). Since 2n? — 12n + 28 < 2n2 — 10n + 18, Theorem 1 follows.

Case (ii). |{uo,v0} NV (Co)| = 1.

Without loss of generality, assume {ug, voJ NV (Co) = {uo}.

Since G is a linear forest, there exists an edge (ug, zo) € E(Cp)\ Eo. Let
the corresponding vertices of vp and zp be v, and z; respectively. Clearly,
d(vg,zo) = 2 and d(v1,z;) = 2. Since F = §, by Lemma 4, in Q}_, there
is a fault-free v;z;-path P of every even length {; with 2 < ; < 2"~1 -2,
Hence in @, all edges of Ey lie on the cycle

C := (Co — (ug,z0)) U PU (zg,z1) U (vg,v1)Ue
of every even length I = lp +; + 2 with 2n% — 14n + 34 < 1 < 2™ — 2 (see
Fig. 3), then Theorem 1 follows.

Case (iii). {uo,vo} C V(Co).

Since G is a linear forest, and an end-vertex of edge e is of degree 1, in
E(Co) \ Ep there are at least three edges adjacent to e. Without loss of
generality, assume (ug, Zo), (vo,%0) € E(Cp) \ Eo such that the two uqug-
paths on cycle Cyp pass through zq and ¥, respectively. Clearly, the distance
of zo and yp is 1 or 3, so the distance of their corresponding vertices z; and
1 is also 1 or 3. By Lemma 4, in Q) _; there is a fault-free z,y;-path P of
every odd length l; with 3 < ; < 2"~! — 1. Hence in Q, all edges of E
lie on the cycle

C := (Co — (uo, Zo) — (v0,¥0)) U P U (20, 21) U (yo, 1) Ue
of every even length | = lp +{; + 1 with 2n? — 1dn + 34 <1 < 2" — 2 (see
Fig. 4), then Theorem 1 follows.

Subcase 1.2. 3<h<n-2.

Subsubcase 1.2.1. Fy # 0.

Let w € Fy, then |Fy \ w| £ |F| -1 < (n —1) — h. By the induction
hypothesis, in Q%_;, — (Fp \ w) all edges of Ej lie on a cycle Cp of every
even length ly with 2(h — 1)(n — 1) — 6(h — 2) < lp < 2", If w € E(C)),
then let w = (ug,vp); otherwise let e = guo, vp), where e is any edge of
E(Co) \ Eo. Let the corresponding edge of edge (ug,vo) be (u1,v;). Since
|F| < |F| £ (n-1)—h < (n—=1)—2, by Lemma 3, in Q}_, — (F1 \ (u1,v))
the edge (uy,v;) lies on a cycle C; of every even length I, with 4 < |} <
2"~1, Hence in @, — F all edges of Ey lie on the cycle C** as before of
every even length | = g+, with 2(h—1)(n—-1)—6(h—2)+4 <1 <271,
Since 2(h — 1)(n — 1) —6(h — 2) + 4 < 2(h — 1)n — 6(h — 2), Theorem 1
follows.

Subsubcase 1.2.2. Fy = 0.

Since |Fol=0<(n—1)—h, |Fi| < (n—-1)-h < (n—1) — 2, by the
induction hypothesis, in Q% _, all edges of Ey lie on a cycle Cy of every even
length lg with 2(h—1)(n—1)—6(h—2) < ly < 2", Sincen > h > 3, then
2(h—1)(n—12—6 h—2)—h=2h-2)(n—4)+2(n—1)—h >n—1—h, and
therefore, |E(Co) \ Eo| > |F1|. So there is an edge (uo,v0) € E(Cp) \ Ep
such that its corresponding edge (u1,v1) € E(QL_,) \ Fi, by Lemma 3,
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edge (u1,v;) lies on a cycle C; of every even length I; with 4 <[, <271,
Similar to subsubcase 1.2.1, Theorem 1 follows.
Case 2. Let Ey = EQU E} and @ # E} C E(Q)_,) \ F for A € {0,1},
a.ndvl’Et’l =k >1and |E3{=h—k2 1.
ithout loss of generality, suppose k > h—k,thenk >2and h > k+1.
. Subcase 2.1. h=3. Thenk =2and h—k = 1. Let Eg = {a,b} and
E; = {c}.
° By{L];mma 1, it is sufficient to prove that in @,, — F all edges of Ej lie
on a cycle of length 4n — 6.

Subsubcase 2.1.1. |Fo|<n—4=(n-1)-3.

By Lemma 7, in QL_, there are exactly n — 2 cycles of length 4 such
that any two of these cycles have edge ¢ in common. Since |Fj| < n -4,
then in Q} _, — F there are two cycles of length 4, denoted by C; and Cs,
that contain edge ¢ and no faulty edges. It is easy to see that (C,UC3) —¢
is a cycle of length 6, so in Q2 _, its corresponding cycle is also of length 6,
denoted by C3. Clearly, the cycle C; contains at most two edges of E, and
if edges @ and b have a common vertex v, then v is adjacent to at most two
edges of C3. Since 6 > 2, there is an edge e = (ug,v0) € E(C3) \ Ef such
that the subgraph induced by e U EJ is a linear forest. By the induction
hypothesis, in Q_, — (Fp \ €) all edges of e U EJ lie on a cycle Cp of
length 4(n — 1) — 6, and in Q._, — F; edge ¢ and the corresponding edge
e1 = (u,v1) of edge e lie on the cycle C; or C; of length 4, without loss of
generality, assume c and e; lie on a cycle C; of length 4. Hence in @, — F
all edges of Ey lie on the cycle C** of length 4n — 6 as before.

Subsubcase 2.1.2. |[Fpl=n—-4<(n-1)-2.

Then F; = @. By Lemma 1, in Q%_, — Fy edges a and b lie on a
cycle Co of length 2(n — 1). By Lemma 5, in QL_; there are exactly
2(n — 1) = 1 = 2n — 3 edges such that any one of these edges and edge
¢ are not contained in any (n — 2)-dimensional subcube of Q}_;, denote
by E’ the set of these 2n — 3 edges. Let E” be the set of 2n — 3 edges in

0 _, corresponding to E’. Since Co — EJ is a linear forest, by Lemma 6,
|E(Co—ES)NE"| < 4. Since 2(n—1)-2—-4 > 1, i.e., |[E(Co—EJ)|—4 > |{c},
there is an edge e = (ug,vo) € E(Cp) \ E§ such that its corresponding edge
e1 = (u1,n) € B(QL_,) \ (E' Uc), hence edges ¢ and e; are contained in
an (n — 2)-dimensional subcube Q,—2 of Q1_,. Since [F;|=0< (n—2)—2
(n > 5), by Lemma 1, in @,_2 edges c and e; lie on a cycle C of length
2(n — 2). Hence in Q, — F all edges of Ej lie on the cycle C** as before of
length 2(n — 1) 4+ 2(n — 2) = 4n — 6.

Subcase 2.2. A< h < n.

Since |Fp| < |F| < n—h £ (n — 1) — k, by the induction hypothesis,
in Q%_, — Fp all edges of EJ lie on a cycle Cy of every even length Iy with
20k —1)(n—1)—6(k—2) <o < 2" L

Now we are to pick up an edge e € E(Cp) \ E§ such that E} Ue,; is a
linear forest in QL _,. We define three subsets of E(Cp) as follows.

If e € E(Cp) such that its corresponding edge e; € E}, then the edge e

219



is said to be of class 1. Denote by E; the set of all edges being of class 1,
then |Ey| < |E}l = h — k.

Suppose G is the subgraph of Q_; induced by E} and G consists of t
(= 1) pairwise vertex-disjoint paths. Denote by V5 the set of all vertices of
degree 2 in G. It is easy to see that |Va| = |E}|-t=h—k~-t < h—k-1.

If v € V(Co) C V(QC_,) such that its corresponding vertex vy € Vo C
V(G), then any one of the two edges of E(Co% incident with vertex v is said
to be of class 2. Denote by E» the set of all edges being of class 2. then
B < 2Vl <2(h—K) -2

f e € E(Cop) and its corresponding edge is e; such that e; UP is a cycle,
where P is a path of length at least three of the graph G, that is, the two
end-vertices of edge e is exactly the end-vertices of the path P, then edge
e is said to be of class 3. Denote by E3 the set of all edges being of class
3. Since in @, the length of a cycle is at least 4, it is easy to see that
|Es| < 3|E§| = 3(h = k).

Hence |EyUE,UE;s| < ¥ (h—k)~2. If k > 5, then 2(k—1)(n—1)—6(k—
2)—k > 8(n—1)—6(k—2)—k = 2(n—1)+6(n+1-k)—k > L(h—k)~2, then
-k > -lgq(h — k) — 2. Furthermore, it is easy to verify that the inequality
lo—k > 3 (h—k)—2 holds for 2 < k < 4. So |E(Cy)|—|E§| > |E1UE,UEs|.
It follows that there exists an edge e = (uo, vo) € E(Co)\(EQUEUE,UE3)
such that its corresponding edge e; = (u1,v1) € E(QL_;) \ E}.

By the definition of E;, E; and FEs, it is easy to see that the subgraph
H induced by e; U E} is a linear forest. Since |[Fy\e;| < |Fi]<n—-1-h<
(mn—1)—(h—k+1)and |eyUE}| = h—k+1 2> 2, by the induction
hypothesis, in QL_, — (Fy \ e1) all edges of e; U E} lie on a cycle C; of
every even length [ with 2(h—k)(n—1)-6(h—k—1) <1, <271, Soin
Qn — F all edges of Ey lie on the cycle C** as before of every even length
{=1lp+1 with 2(h — 1)(n — 1) — 6(h — 32[‘5 { £ 2™, Since h > 4, then
2(h—1)(n—1) — 6(h—3) < 2(h - 1)n - 6(h —2), Theorem 1 follows.

This completes the proof by induction.
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