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ABSTRACT. Given a graph G := (V| E) and an integer k > 2, the
component order edge connectivity of G is the smallest size of an
edge set D such that the subgraph induced by G — D has all com-
ponents of order less than k. Let G(n,m) denote the collection of
simple graphs G which have n vertices and m edges. In this pa-
per we consider properties of component order edge connectivity for
G(n, m). Particularly we prove properties of the maximum and min-
imum values of the component order edge connectivity for G(n,m)
for specific values of n, m and k.

1. INTRODUCTION

Reliability is a significant characteristic of any network. Depending upon
the nature of the network being analyzed, reliability can be determined in
a number of ways. As is often the case with networks, nodes or edges may
be predisposed to failure apropos the structure being represented.

For models where edges are reliable but nodes are prone to failure, one
reliability measure that has been extensively studied is vertex connectivity.
For a connected graph the verter connectivity is the minimum number of
vertices that must be deleted so that the resulting graph is disconnected. A
recent generalization of vertex connectivity is the component order connec-
tivity of a graph studied in (1], (4] and [5]. The component order connectivity
of a graph is the minimum number of vertices that must be deleted so that
the resulting graph has all components of order less than a predetermined
value k. If we consider a network to be operational, or in an operating state,
if there exists at least one component of order greater than or equal to k,
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then the component order connectivity of the graph is the minimum num-
ber of nodes that must be deleted to reach a failure state. This parameter
can be used to measure a network’s reliability and fault-tolerance.

In many communication networks, however, it is the edges rather than
the nodes that are susceptible to failure. For networks in which the edges
are prone to failure, a measure of reliability to consider, edge connectivity,
is the minimum number of edges that must be deleted to disconnect the
graph. Similar to vertex connectivity described above, we can generalize
the notion of edge connectivity to another measure of network reliability:
component order edge connectivity. The component order edge connectivity
of a graph is the minimum number of edges that must be deleted so that the
resulting graph has all components of order less than a predetermined value
k. If we consider a network to be operational, or in an operating state, if
it contains at least one component of order k or more, then the component
order edge connectivity of a graph is the smallest number of edges that
must be deleted to reach a failure state. This edge-focused parameter can
be used as a measure of a network’s reliability and failure-tolerance. For a
review, history and applications of the component order edge connectivity
of a graph see {2] and [3].

Assume we are to construct a network using n nodes and m edges, and we
know the network is operational if there is at least one component of order
k or more. Two important questions to consider are: (1) What would be
the most reliable network structure we can create under these restrictions?
and (2) What would be the least reliable network structure we can create
under these restrictions? The answer to these questions can be found by
studying the maximum and minimum value of the component order edge
connectivity parameter for all graphs for given values of n, m and k.

Much attention has been given to finding similar bounds for vertex con-
nectivity and edge connectivity. In [7], Harary et al. found a lower bound
for the vertex connectivity of a graph based on the order and the mini-
mum degree of the graph. In [10], Hellwig et al. found similar bounds for
graphs and digraphs with particular restrictions on the degree, minimum,
maximum, or degree sequence. Similar results have been found for edge
connectivity. See for example [8] and [11].

In this paper, we focus our attention on the collection G(n,m), which
consists of all graphs with n vertices and m edges. We study the component
order edge connectivity of graphs in G(n,m), particularly the minimum and
maximum values of the parameter for different values of n, m and k.

2. BACKGROUND AND DEFINITIONS

Throughout this paper, let G := (V, E) denote a simple graph with vertex
or node set V and edge set E. Let |V| and |E| denote the cardinality of V
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and F respectively. For any edge set D C E, let G— D denote the subgraph
of G containing the vertex set V and the edge set E — D.

Definition 2.1. For any graph G, and any integer & > 2, the component
order edge connectivity of G, denoted Ax(G), is the minimum |D| where
D C E and G — D has no components of order k or larger.

For any finite collection of graphs G, let
At (G) = min{A\(G) : G € G}

and
M () := max{A:(G) : G € G}

Assume n and m are positive integers such that m < (3). Let G(n,m)
denote the collection of graphs G where |V| = n and |E| = m. Thus
G(n,m) consists of all graphs that have n vertices and m edges. For a
review of G(n, m) see for example [6].

In order to find the most (and least) reliable network structures as de-
scribed above (for a network with n vertices and m nodes) we will consider
A% (G(n,m)) and Af(G(n,m)) for different values of n, m, and k.

3. REsuULTS

First we consider the parameters A{ and A; when k = 2. In order to
be in a failure state when k = 2, we must have no edges remaining in the
graph. Hence we can determine the parameter of A2(G) for any graph G by
knowing the size of the edge set of G. This observation proves the following
theorem.

Theorem 3.1. For any G € G(n,m),
A(G)=m

and
M (G(n,m)) = A5 (G(n,m)) = m.

Now we will consider case when k > 3. The following theorem shows
that Al and \; are non-decreasing functions of m. Also if we increase m
by 1, then A{ and A; can increase by at most 1. In Proposition 2.6 of [3],
Boesch et al. proved a similar result for trees.

Theorem 3.2. For anyn and m < (3),
0 < A (G(r,m+1)) = N (G(r,m)) < 1

and
0 < N (Gln,m +1)) - X (Gln,m)) < 1.
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Proof. We will show the result for A}. A similar argument holds for A} as
well.

For all graphs G,,4+1 € G(n,m + 1), there exists a subgraph G,, €
G(n,m) of G,,y1 and an edge e such that G41 = Gy Ue. Lemma 3.2
of [3] states if H is a subgraph of G, then A (H) < Ax(G). Since G
is a subgraph of Gm+1, A(Gm) € MA(Gm41). This holds for all graphs
Gm+1 € G(n,m +1). Thus

(3.1) A (G(m,m)) < N (Gln,m +1)).

Also because Gppy1 = G Ue we know Ae(Gmt1) € Ae(Gm) + 1. This
holds for all graphs Gpm+1 € G(n,m + 1), thus

(3.2) X (G(n,m + 1)) < M (G(n,m)) +1.
From equations 3.1 and 3.2 we obtain our result. O

Iteration of Theorem 3.2 produces the following corollary. It shows if the
size of the edge set and A_ (G(n,m)) increase by the same amount, then
the value of A (G(n,m)) can be determined for all intermediary values of
m. The same holds for Af (G(n,m)).

Corollary 3.3. Assume a and b are positive integers such thatb < a < (’2‘)
If
AI: (G(n’ a)) - /\;(G’(n, b)) =a-b,
then forallb<m<a
At (G(n,m)) = AL (G(n, b)) + m —b.

Using Corollary 3.3 we will find A; (G(n,m)) for all values of n, m, and
k > 3. We will consider two cases, depending on m. If m is sufficiently
small we can construct a graph that will have all components of order less
than k. It follows that A (G(n,m)) = 0 for small values of m. However for
large values of m we must remove edges in order to have only components
of order less than k.

A key aspect in determining A; will be to consider a graph G € G(n,m)

where
e =[] () (70 1),

such that all components have order less than k, making G a failure state.

Construct G to be the disjoint union of I_k—ﬁl-_l complete components of

order £k — 1 and all other n — (k — 1) [k—fl J vertices (if nonzero) form a

228



completely connected component. Thus if K,, denotes a complete graph on
v vertices, then

where r := n — (k- 1) I_EZ—IJ . By construction G € G(n, A(n,k)) and

Me(G) = 0. Obviously if A (G) = 0, then A (G(n, A(n, k)) = 0.
The following theorem uses this observation, Corollary 3.3 and the value
of M\x(Ky) to find A; for all values of n,m, and k > 3.

Theorem 3.4. For anyn, m and k 2 3,

0 if m< A(n,k)
m — A(n, k) otherwise.

Ae (G(n,m)) = {

Proof. Let G € G(n, A(n,k)) be defined as above. If m < A(n, k), there
exists a graph G,, € G(n,m) which is a subgraph of G and therefore Gy,
has no components of order k or larger. Thus A¢(G,,) = 0, which implies
At (G(n,m)) =0.

In [2] the authors showed that

=5 o(a () = ()40
Note that K, is the only graph in G(n, (5)). Hence
)
2 (oo (3)
= (;‘) — A(n, k).

Recall G € G(n, A(n, k)) where M(G) = Ay (G(n, A(n, k))) = 0. Compar-
ing graphs K, and G we can see that

Me(Kn) — Me(G) = A7 (G (n, (’2'))) — A7 G(n, A(n, k)

= (’2‘) — A(n, k).
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By Corollary 3.3, for all A(n,k) <m < (’2'), we have

’\; (G(n7 m)) = )\; (G(n, A(n: k))) +m- A(n’ k)
=m — A(n, k).

O

Combining Theorems 3.1 and 3.4 we have found A (G(n,m)) for all n,m
and k as well as values for \f (G(n,m)) for k = 2. For A\{ when k = 3, we
need to remove the minimum number of edges to have a subgraph which
has all components of order two or less. This would imply that the resulting
components include a set of independent edges and a set of isolated vertices.

A collection of edges E is said to be independent if no two edges have a
common vertex. An edge set E is said to be a mazimal independent edge
set if there does not exist an independent edge set of size |E| + 1. This
implies if £ is a maximal independent edge set then |E| is the maximum
size of all independent edge sets. The size of a maximal independent edge
set is called the independent edge number of the graph. For a given graph
G let I(G) denote the independent edge number of G.

Given a graph G, we can find AJ(G) by removing edges until we have
a maximal independent edge set remaining. Thus AJ (G) = |E| - I(G). In
order to generalize this to a collection of graphs, we will fix the value of
I(G) and maximize |E| over all graphs with a fixed order n.

In (9], Erdés et al. showed the following theorem which gives bounds for
the number of edges, m, a graph can have if it has an independent edge
number i.

Theorem 3.5 (Erdés et al. [9]). If a graph G has n vertices and I(G) =i

then
171 -0 ()]

and equality occurs only when the graph is: 1) isolated vertices and Kop;qq
or 2) n — i vertices each connected to all i vertices in K;.

The previous result tells us that if we want to construct a graph on n
vertices with independent edge number equal to ¢, then there is an upper
bound on the number of additional edges the graph can contain. This
theorem will help us find A} (G(n,m)) for all values of n and m.

Theorem 3.6. Fizn, let 0 < i < % be an integer, and define f,(i) :=
max [(¥1), i(n — i) + ()] . Then for any fu(i—1) < m < min [(3): f2 ()]

M (G(n,m)) =m —i.
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Proof. To prove the result, we will show that for any 0 <i < 3

(3.3) M (G(n, f2(3))) = fu(i) —i
and forany 0<i< 2 -1
(3.4) AT (G(n, fald) + 1)) = fali) —4;

then we will apply Corollary 3.3.

Proof of equation (3.3): :

By Theorem 3.5 there exists a graph G; € G(n, fr(%)) such that I (é,-) =
i. This implies that A3(G;) = fa(i) =i and AT (G(n, fa(3))) > fn(é)—i. Also
there are no graphs in G(n, f,(%)) that have an independent edge number
less than . If there was a graph G € G(n, fn(i)) with edge independence
number i -1, then |E| = m = f,(¢) > fn(i—1) which contradicts Theorem
3.5. Thus AT (G(n, fn(%))) £ fa(é) —i. Combining these two statements, we

see A3 (G(n, fa(4))) = fn(i) —i.

Proof of equation (3.4):

Notice by Theorem 3.5, a graph G with I(G) = ¢ can have at most
fn(i) edges. This implies that every graph G € G(n, fu(¢) + 1) has in-
dependent edge number at least i + 1. Therefore A (G(n, fu(?) + 1)) <
fa(@)+1=(i+1) = fo(é) — i. Also by Theorem 3.5 there exists a graph
H € G(n, fo(3) + 1) with I(H) = i + 1. Therefore A} (H) = fn(i) - 1,
which implies A§ (G(n, fn(3) + 1)) = fa(i) — i. Hence we have shown that
’\;(G(n’ fa() + 1)) = fu(d) — 4.

Combining equations (3.3) and (3.4) for 1 < i < %, we see that

’\;_(G(n) fn(z))) - )‘;(G(n> fn(z - 1) + 1))
=fa(B) —i=(fali—1) - (i-1))
= fali) = (fali= 1) +1).

Hence by Corollary 3.3 we know that for any 1 < i < % and fr(i — 1) <
A (G(n,m)) = AF(G(n, fa(i = 1)+ 1)) + m — (fu(i— 1) + 1)
=fai-1)-@E-D+m-(fa(i-1)+1)

=m — 1.

In the case where i = % is an integer, we have (3) = min [(3), fa(?)].
Again from [2], we know A3(Kn) = AT (G (n, (3))) = (5) — A(n,3). By the
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definition of A(n,3) we have

o (e()-()3

Combining (3.4) and (3.5), we see that
3 (6(m(3))) - % (@ (msm (3-1)+1)
-(()-3)-=G-0-G-1)
= ( ) (fn( ) + 1)

Thus by Corollary 3.3 we know that for any f, (2 - 1 < m < ;)

M (G (n,m)) = AF (G (7 n (g ~1)+1)) +m- (a (- - 1) +1)
(3G e (G -) 1)

Our previous results are mainly concerned with values of A; (G(n,m))
for all values of n, m and k, and A{ (G(n, m)) for all values of n, m and for
k = 2 or 3. The following theorem explores A} (G(n,m)) given a restriction
on m with respect to n and with no restrictions on k.

Let K, ,_1 denote the star graph on v vertices, so K;,-1 € G(v,v - 1).
Let Kf,_; be a graph consisting of c + 1 components; one component is
isomorphic to K;,,—1 and the remaining ¢ components are isolated vertices.
Thus K5 ,_, € G(v+c,v—1). We will use K5 ,_, to find A} (G(n,m)) when
m<n-1.

Theorem 3.7. Fizn. Forany2<kandm<n-1

+ _J)o fk>m+2
A (Gln,m)) = {m— (k—=2) ifk<m+2
Proof. Notice that if a graph has m edges or less, the order of the largest
component must be less than m + 2. This implies that if ¥ > m + 2 then
MHG(n,m)) =0.
Assume k < m + 2, so we may have a component of order & or larger.
By deleting at least m — (k — 2) edges, the remaining subgraph will have
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size k — 2 or less. Thus the subgraph must have all components of order
k — 1 or less. This implies that for m + 2 > k,

M (Gn,m)) <m—(k-2).

It remains to show that A{(G(n,m)) > m — (k — 2). Theorem 2.2 of
[3] states that Ax(Ki1,-1) = v — k + 1. By construction we know that
Kf, 1 €Gw+c,v—1)and \(Kf,_1) =v—k+1. Settingv=m+1
and ¢ = n — (m + 1), we have Kﬁ,—n(m“) € G(n,m) and Ag( ﬁ;‘m“)) =
m—k+2. Thus A} (G(n,m)) > m — (k — 2), which completes the proof. O
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