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Abstract

The Wiener polarity index of a graph G, denoted by W,(G), is
the number of unordered pairs of vertices u, v such that the distance
between u and v is three, which was introduced by Harold Wiener
in 1947. The Wiener polarity index is used to demonstrate quantita-
tive structure-property relationships in a series of acyclic and cycle-
containing hydrocarbons. In this paper, we study the Wiener polar-
ity index on the Cartesian, direct, strong and lexicographic product
of two non-trivial connected graphs.
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1 Introduction

Let G = (V, E) be a connected simple graph. The distance between two
vertices v and v in G, denoted by dg(u,v), is the length of a shortest path
between u and v in G. Let Ng(v) be the neighborhood of v, and dg(v) =
|Ne(v)| denote the degree of vertex v. For notations and terminology
not given here, see e.g. [2] and [19]. The Wiener polarity index of a graph
G = (V, E), denoted by W,,(G), is the number of unordered pairs of vertices
{u,v} of G such that dg(u,v) =3, ie.,

Wp(G) = |{{u, v}d(u,v) = 3,u,0 € V(G)}].
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The name “Wiener polarity index” is introduced by Harold Wiener [18]
in 1947. Wiener himself conceived the index only for acyclic molecules
and defined it in a slightly different — yet equivalent — manner. In the
same paper, Wiener also introduced another index for acyclic molecules,
called Wiener indez or Wiener distance indez and defined by W(G) :=
2 {uw)cv 96 (¥, v). The Wiener index W(G) is popular in both chemical
and mathematical literatures. For more results on Wiener index, we refer
to the survey paper [8] written by Dobrynin et al.

The Wiener polarity index is used to demonstrate quantitative structure-
property relationships in a series of acyclic and cycle-containing hydrocar-
bons by Lukovits and Linert (15]). Hosoya in [10] found a physical-chemical
interpretation of W,(G). Du et al. [9] described a linear time algorithm
APT for computing the Wiener polarity index of trees, and characterized
the trees maximizing the Wiener polarity index among all trees of given
order. The extremal Wiener polarity index of (chemical) trees with given
different parameters (e.g. order, diameter, maximum degree, the number
of pendants, etc.) were studied, see [4, 5, 7, 12, 13]. Moreover, the uni-
cyclic graphs minimizing (resp. maximizing) the Wiener polarity index
among all unicyclic graphs of order n were given in [11]. Recently, Ma et
al. study the extremal Wiener polarity index of unicyclic graphs with a
given diameter [17]. Furthermore, the maximum Wiener polarity index of
bicyclic graphs is also determined [16]. There are also extremal results on
some other graphs, such as fullerenes, hexagonal systems and cactus graph
classes, we refer to [1, 3, 6]. In [14], Ili¢ and Ilié¢ defined the generalized
Wiener polarity index Wi (G) as the number of unordered pairs of vertices
{u,v} of G such that the shortest distance d(u,v) between u and v is k
(this is actually the k-th coefficient in the Wiener polynomial).

Let G be a graph with w components Gy, ..., G,. Obviously, W,(G) =
Z Wy (G;). Thus, to calculate the Wiener pola.nty index for general graphs,
1t 1s sufficient to study how to calculate the index for connected graphs.

For a given connected graph G, we define Wa(G) := |{{u,v} | d(x,v) =
2,u,v € V(G)}|, which is the number of unordered pairs of vertices {u, v}
of G such that dg(u,v) = 2. Actually, for a given graph G, we can compute
the exact value of W3(G) in a polynomial time.
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In this paper, we study the Wiener polarity index on the Cartesian, di-
rect, strong and lexicographic product of two non-trivial connected graphs.

2 The Cartesian Product

In this section, we firstly introduce the Cartesian product of two con-
nected graphs and derive some of its basic properties, and then we are
concerned with the Wiener polarity index of the Cartesian product of two
non-trivial connected graphs.

The Cartesian product of two graphs G and H, denoted by GOH, is
defined on the Cartesian product V(G) x V(H) of the vertex sets of G and
H. The edge set E(GOH) is the set of all pairs ((»,z), (v,y)) of vertices
for which either v = v and zy € E(H) or uwv € E(G) and = = y, where
u,v € V(G) and z,y € V(H). Namely,

V(GOH) = V(G) x V(H),
E(GOH) = {((u,z), (v,¥)) |u=v,zy € E(H), or wv € E(G),z =y}.

The mappings p; : (u,z) — u and ps2 : (u,z) — =z from V(GOH) into
V(G) and V(H), respectively, are weak homomorphisms from GOH onto
G and H, respectively. We call them projections. Sometimes, we also write
pc and py instead of p; and p,. For a set S of vertices of GOH, we define
pi(S) = {pi(v) | v € S}, where i € {1,2}.

For a = (u,z) € V(GOH) (v € V(G) and z € V(H)), we define p;(a) =
u, p2(a) = z. As we noted, p; (¢ = 1,2) is a weak homomorphism. If we
restrict p; to the subgraph induced by all vertices that differ from a given
vertex b = (v,y) € GOH only in u € V(G) (or z € V(H)), it becomes an
isomorphism because

<{u€ V(G) | p2(a) =z} > (or <{z € V(H) | pr(a) = u} >)

is isomorphic to G (or H). This subgraph is called the G-layer (or the
H-layer).
Now we give some basic properties about the Cartesian product.

Proposition 2.1 ({19]). The Cartesian product of two graphs G and H is
connected if and only if both G and H are connected.

237



Lemma 2.1 ([19]). Let (u,z) and (v,y) be two arbitrary vertices of the
Cartesian product GOH. Then deay((u, ), (v,¥)) = de(u,v) + du(z,y).
Moreover, if Q is a shortest path between (u,z) and (v,y), then p1(Q) is a
shortest path in G from u to v and py(Q) is a shortest path in H from x to
Y.

From Proposition 2.1 and Lemma 2.1, we can get the following theorem.

Theorem 2.1. Let G and H be two non-trivial connected graphs, then
Wy (GOH) = Wp(G)V (H) + Wo(H)V(G) + 2Wo(G)ym(H) + 2Wo (H)m(G),
where m(G) and m(H) are the number of edges of G and H, respectively.

Proof. Since G and H are both non-trivial connected graphs, GOH is con-
nected by Proposition 2.1. Let u,v € V(G), z,y € V(H) and (v, z), (v,y) €
V(GOH). Suppose a = (u,z) and b = (v,y). By Lemma 2.1, we have
deoy(a,b) = dg(u,v) + dy(z,y). Thus, deny(a,b) = 3 if and only if
de(u,v) = 3 and dy(z,y) = 0, or dg(u,v) = 2 and dy(z,y) = 1, or
de(u,v) = 1 and dy(z,y) = 2, or dg(u,v) = 0 and dy(z,y) = 3. We
will consider the following four cases and denote by W; the values of the
Wiener polarity index in each case, respectively, i = 1,2, 3, 4.

Case 1. dg(u,v) = 3 and dy(z,y) =0.

Since the mappings p; : (u,z) — u and p3 : (u,z) — z from V(GOH)
into V(G) and V(H), respectively, are weak homomorphisms from GOH
onto G and H, respectively, we have W} (GOH) = W,(G)V(H).

Case 2. dg(u,v) =2 and dy(z,y) = 1.

Under the condition that dg(uw,v) = 2 and dy(z,y) = 1, we know
denp(a,b) = 3 if and only if there exists a u — v path P of length two
in G and vertices z, y are adjacent in H. By the mappings p; and p;, we
can get

W2(GOH) = 2W2(G)M = 2W,(G)m(H).

Case 3. dg(u,v) =1 and dy(z,y) = 2.
Similar to Case 2, we can get

Luev(e) dov)

5 = 2W,(H)m(G).

W3(GOH) = 2W,(H)
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Case 4. dg(u,v) =0 and dg(z,y) = 3.
Similar to Case 1, we have W (GOH) = W,(H)V(G).
Combining the above four cases, we have

Wo(GOH) = W,(G)V (H) + W,(H)V(G) + 2Wy(G)m(H) +2Wa(H)m(G).

The proof is then complete. O

3 The Strong Product

In this section, we first introduce the strong product and then discuss the
Wiener polarity index of the strong product of two non-trivial connected

graphs.

The strong product GRH of G and H is defined on the Cartesian product
of the vertex sets of G and H. Two distinct vertices (u,z) and (v,y) of
G K H are adjacent with respect to the strong product if

u=vandzy € E(H), oruwv € E(G)andx =y, or uv € E(G) andzy € E(H).

Now we give some basic properties about the strong product.

Proposition 3.1 ([19]). The strong product of two graphs G and H is
connected if and only if both G and H are connected.

Lemma 3.1 ([19]). Let G&® H be the strong product of connected graphs
G and H. Then dery((v,z),(v,y)) = maz{de(u,v),dy(z,y)}, where
(u,z), (v,y) e V(GR H), u,v € V(G) and z,y € V(H).

From the above properties, it is not difficult to get the following theorem.
Theorem 3.1. Let G and H be two non-trivial connected graphs, then

W,o(G B H) =W, (G)[2W,(H) + 2Wo(H) + 2m(H) + n(H)]
+ W,(H)[2W2(G) + 2m(G) + n(G)],

where m(G) and m(H) are the number of edges of G and H, respectively,
and n(G) and n(H) are the number of vertices of G and H, respectively.
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Proof. Since G and H are both non-trivial connected graphs, G X H is
connected by Proposition 3.1. Let u,v € V(G), z,y € V(H) and a =
(u,z), b = (v,y) € V(GR H). By Lemma 3.1, we have degy(a,b) =
maz{dc(u,v), du(z,y)}. Thus, degg(a,b) = 3 if and only if dg(u,v) =3
and dy(z,y) < 3, or dy(z,y) = 3 and dg(u,v) < 3. We will give the proof
of the theorem by the following two cases and denote by Wy the values of
the Wiener polarity index in each case, respectively, i = 1, 2.

Case 1. dg(u,v) = 3 and dy(z,y) < 3.

If dg(u,v) = 3 and dy(z,y) = 3, then the value of the Wiener polarity
index is 2W,(G)Wp(H). If dg(u,v) = 3 and dy(z,y) = 2, then the value of
the Wiener polarity index is 2W,(G)W,(H). If dg(u,v) = 3and dy(z,y) =
1, then the value of the Wiener polarity index is 2W2(G’)§-’-i‘ﬂ%Ldﬂ =
2Wo(G)Ym(H). If dg(u,v) = 3 and dy(z,y) = 0, then the value of the
Wiener polarity index is Wp(G)n(H). Therefore,

WG R H) = Wy(G)[2Wp(H) + 2Wa(H) + 2m(H) + n(H)).

Case 2. dy(z,y) = 3 and dg(u,v) < 3.

Similar to Case 1, we can get

W:(G H) = W,(H)[2W,(G) + 2W5(G) + 2m(G) + n(G)).
By combining the two cases and removing the duplicate part, we have

W,(GR H) =W, (GR H) + W(G R H) — 2W,,(G)W,(H)
=W,(G)[2W,(H) + 2W2(H) + 2m(H) + n(H))
+ W,o(H)[2W2(G) + 2m(G) + n(G)).

The proof is complete. O

4 The Direct Product

In this section, we introduce the direct product and then we are con-
cerned with the Wiener polarity index of the direct product of two non-
trivial connected graphs.



Again, the vertex set of the direct product G x H (G and H are called the
factors of G x H) of two graphs is V(G) x V(H). Two vertices (u, z), (v,y)
are adjacent if both uv € E(G) and zy € E(H). Note that E(GR H) =
E(GOH)U E(G x H).

The projections p; of G x H into G and H are homomorphisms, not
just weak homomorphisms as in other respects. For example, in the case of
simple graphs, the G-layer and H-layer which we define as for the Cartesian
product, are totally disconnected graphs on G and H vertices.

The connectivity properties of the direct product are also much richer
than those of the other two products previously introduced. Although all
factors of a connected direct product must be connected, as one can see by
projection into the factors, the converse is not true.

Proposition 4.1 ([19]). Let G and H be graphs with at least one edge.
Then G x H is connected if and only if both G and H are connected and
at least one of them is non-bipartite.

Lemma 4.1 ([19]). Let (u,x), (v,y) be vertices of G x H and P be a walk
in G connecting u with v. Furthermore, let Q be a walk from x to y in
H, and suppose that |[E(P)| + |E(Q)| is even. Then there exists a path in

G x H from (u,z) to (v,y).

Theorem 4.1. Let G and H be two non-trivial connected graphs and at
least one of them is non-bipartite, then

Wu(G x H) = 2W,(G)W,(H) + 2W,(H)m(G) + 2W,,(G)m(H),
where m(G) and m(H) are the number of edges of G and H, respectively.

Proof. Since G and H are both non-trivial connected graphs and at least
one of them is non-bipartite, G x H is connected by Proposition 4.1. Let
u,v € V(G), z,y € V(H) and a = (u,z), b = (v,y) € V(G x H). By
Lemma 4.1, there exists a path in G x H from (u, z) to (v,y) on condition
that there is a walk P in G connecting u with v and a walk @ in H connect-
ing z and y such that |[E(P)| + |E(Q)| is even. Therefore, dgxu(a,b) = 3
if and only if |[E(P)| = 1 and |E(Q)| = 3, or |[E(P)| = 3 and |E(Q)] =1,
or [E(P)| = 3 and |E(Q)| = 3 (i.e., dg(u,v) = 1 and dy(z,y) = 3, or
de(u,v) = 3 and dy(z,y) = 1, or de(u,v) = 3 and dy(z,y) = 3). We
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continue the proof of our theorem by the following three cases and denote
by W;,' the values of the Wiener polarity index in each case, respectively,
i=1,2,3.

respectively.

Case 1. dg(u,v) =1 and dy(z,y) = 3.

Since dgy(z,y) = 3 and u is adjacent to v in H, we get

ZuGV(G) dg(v)
2

Case 2. dg(u,v) =3 and dy(z,y) = 1.

Since dg(u,v) = 3 and z is adjacent to y in H, we get

Zaevn 44 (@)
2

Case 3. dg(u,v) =3 and dy(z,y) = 3.
In this case, we have W3(G x H) = 2W,(G)W,(H).

By combining the above three cases above, we have

WG x H) = 2W,(H) = 2W,(H)m(G).

W2(G x H) = 2W,(G) = 2W,(G)m(H).

W,(G x H) = 2W,(G)W,(H) + 2W,(H)m(G) + 2W,(G)m(H).

The proof is thus complete. 0

5 The Lexicographic Product

This section is concerned with the lexicographic product with respect to
the Wiener polarity index.

The lexicographic product G o H of two graphs G and H is defined on
V(GoH) = V(G)x V(H), two vertices (u, z), (v,y) of Go H being adjacent
whenever uv € E(G), or u = v and zy € E(H). Note that the lexicographic
product G o H can be obtained from G by substituting a copy H, of H for
every vertex v of G and by joining all vertices of H, with all vertices of H,
if wv € E(G).

Proposition 5.1 ([19]). Let G and H be two nontrivial graphs, namely,
graphs with at least two vertices. Then G o H is connected if and only if
G is connected.
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Theorem 5.1. Let G and H be two non-trivial connected graphs, then
Wp(G o H) = W,(G)(n(H))*.

Proof. Let u,v € V(G), z,y € V(H) and a = (u,z),b = (v,y) € V(Go H).
Since G is a non-trivial connected graph, then by Lemma 5.1, Go H is
connected. Note that the lexicographic product G o H can be obtained
from G by substituting a copy H, of H for each vertex v of G and by
joining all vertices of H, with all vertices of H, if uv € E(G). Therefore,
dgor(a,b) = 3 if and only if dg(u,v) = 3 and there is a path connecting z
and y in H. Since H is connected, then

2 x Wy(G)(n(H))? _

5 Wp(G)(n(H))>.

W,(Go H) =

The proof is complete. O
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