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ABSTRACT. The graphs we consider are all countable. A graph U is universal
in a given set P of graphs if every graph in P is an induced subgraph of U and
U € P. In this paper we show the existence of a universal graph in the set of all
countable graphs with block order bounded by a fixed positive integer. We also
investigate some classes of interval graphs and work towards finding universal
graphs for them. The sets of graphs we consider are all examples of induced-

hereditary graph properties.

1 Introduction

All graphs considered are simple, undirected, unlabelled, and have count-
able vertex sets. The symbol Z denotes the set of all such graphs. A (graph)
property is a class of graphs, closed under isomorphisms.

We follow the notation of (3] on graphs in general. The order of a graph
is the number (or cardinality) of its vertex set and a block of a graph is
a maximal non-separable subgraph, i.e., a maximal non-trivial connected
subgraph containing no cut-vertices. We further follow [1] on graph prop-
erties in particular. Hence a property P is called an (induced-)hereditary
graph property if, whenever G € P and H is an (induced) subgraph of G,
then H € P too.

If P is a set of graphs, then (following [6]) we define a graph U to be
a universal graph for P if every graph in P is an induced subgraph of U;
it is a universal graph in P if U € P too. The Rado graph [12] is the
best known example of a universal graph, it is universal in the set of all
countable graphs.

Universal graphs do not exist in every property — in [2] it is shown that,
in fact, the overwhelming majority of induced-hereditary properties do not
contain universal graphs. Concrete examples of specific induced-hereditary
properties of this kind can be found for example in [4], [5], [8] and [10].

Let ¢ be any fixed positive integer. Then we define the property B, of
graphs by

B, := {G € T | every block of G has order at most c}
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and will refer to it as the property of graphs with block order bounded by c.
It is easy to see that B, is an induced-hereditary property of graphs.

Hajés introduced (finite) interval graphs in [9] and they were charac-
terised by Lekkerkerker and Boland in [11]. This concept finds interesting
applications in, amongst others, biology and computer science [7]. For our
purposes, the interval graph Gp of a countable set D of intervals on the
real line R is the intersection graph of D, i.e., the vertex set of Gp is D
while two vertices I and J of Gp are adjacent if and only if INJ # 0. It
is (again) easy to see that the set

Int := {Gp | D is a countable set of intervals}

is an induced-hereditary property of graphs.

In this paper we show that, for each positive integer c, there exists a
universal graph in the set B.,. We also investigate some subclasses of Int
and work towards finding universal graphs for them.

2 Graphs with bounded block order

In order to prove that there is a universal graph U in the property B,
of countable graphs with block order bounded by ¢, we need the following
construction: Let G be a graph with a prescribed vertex v and let H be
any set of graphs with X a set of prescribed vertices, one from each graph
H € H, and suppose that all these graphs are pairwise vertex disjoint.
Then the graph formed from all these graphs by identifying v with every
vertex from X will be called the fused graph of the given situation, and the
process will be called fusing.

Theorem 1. For every positive integer ¢ there is a universal graph U in
the property B. of countable graphs with block order bounded by c.

Proof. The result is clear if ¢ = 1 since the graph with Rg vertices and
no edges satisfies the requirements of U in this case. Hence we assume
henceforth that ¢ > 2.

We construct the required graph U in a recursive manner using repeated
fusing and then prove that it has the required properties, i.e., we then prove
that G < U for every countable graph G with block order bounded by c
and that U € B,.

Let, for an integer b € {2,3,...,c}, H; denote the set of all the differ-
ent, i.e., pairwise non-isomorphic, connected graphs of order b: We assume
that the vertices of each graph in each H; are labelled using a single sym-
bol with subscripts taken from {1,2,...,b}. (By this we mean that the
vertices could be v;,v2,...,vp Or wy,wy,...,wp etc.) Using this conven-
tion to name the vertices, we can consider the graphs in H, to be labelled
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graphs, i.e., two graphs in H, on the vertex sets X := {z1,%2,...,Zs} and
Y := {y1,¥2,-..,ys} are considered to be the same if and only if the bijec-
tion f: X — Y defined by f(z;) = y; for each % is an isomorphism. We are
now ready to construct a sequence of graphs, Uy, Uy, ... of which the limit
will be taken to form the required graph U.

Let U; be the graph consisting of a single vertex u. Let Uy be the graph
obtained from U; by fusing » with the vertex with subscript 1 (e.g. 1,1
etc.). from each of denumerably many copies of every graph H taken from
the finite set H; U Ha U ... U H, of graphs. Note that U; is a countable
graph.

For i = 2,3,... we now construct the graph U;y; from U; in a similar
fashion: Fuse every vertex of U; with the vertex with subscript 1 from each
of denumerably many copies of every graph H taken from the finite set
HiUHaU...UH, of graphs.

Finally, let U be the graph obtained as the limit of this process, i.e.,

V({U) = |JV(U:) and E(U) = | E(Us).

i>1 i>1

Again, it follows that U is countable since the above recursive construction
has denumerably many steps, each involving a denumerable graph.

Note that U is vertex-transitive since every vertex of U can play the role
of the vertex u we started with. Furthermore, every vertex of U is a vertex
of denumerably many copies of every conceivable non-separable graph of
order at most c.

Now let G be any countable graph such that every block of G has at
most ¢ vertices. We have to show that G is isomorphic to some induced
subgraph of U. In order to do so, we are going to build, through a recursive
process, an isomorphism g from G to a suitable induced subgraph of U.

Note first that, since G is countable, it has countably many (connected)
components; suppose G, Ga, ... are the components of G. Then we first
choose any vertex from each component G;; suppose we choose v; € V(G;).
The initial step of building 8 is then to map the v;’s to vertices of U which
are adjacent to u but are in different blocks of U containing w; this is
possible since ¢ > 2.

The next step in this recursive process is now to remark that 8 can map
all the blocks of each G; containing v; to suitable blocks of U: such blocks,
and enough of them, exist by the recursive construction of U.

This process can of course be repeated to determine, for each i and each
vertex v € V(G;) of which 8(v) has been determined, an image in V(U)
under 3 for each vertex in all the blocks of G; containing v for which the
image under # has not been determined before — there are enough blocks
fused to every vertex in the construction of U to make these choices possible.
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This recursive process, which allocates images in U to vertices of G
in a block-by-block fashion, is clearly sufficient to prove that G is indeed
isomorphic to an induced subgraph of U.

Finally, it is immediately clear that U € B,, i.e., each block of U has
order at most ¢, since where the fusion process creates new blocks, each
such block is of order at most c. O

3 Interval graphs

In the sequel, a real number a will be called an endpoint of an interval
I, if I is any interval of any of the forms [a,b], (a,b), [a,b), (a,b), [b,q],
(b,a], [b,a) or (b,a). We will now show that many of the countable interval
graphs Gp are induced subgraphs of the interval graph G¢ determined by
the set £ of all closed and bounded intervals with rational endpoints. We
start with a lemma.

Lemma 1. G¢ € Int.

Proof. Let Q denote the set of rational numbers. Then, for any two rational
numbers e and b with a < b, there are at most four intervals with endpoints
a and b. Therefore, since Q is countable, the set £ is countable and hence
G¢ € Int. (]

Theorem 2. Let D be a countable set of bounded intervals such that for
every a € R there erists an ¢ > 0 in R such that there is only a finite
number of endpoints of intervals of D in [a,a +¢€]. Then Gp is an induced
subgraph of Gg.

Proof. Let D be any fixed countable set of bounded intervals satisfying
the given condition on every a € R. Note that endpoints of the intervals
in D can be rational or irrational numbers and that these intervals are
allowed to be closed, half-closed as well as open intervals. Then we show
that Gp is isomorphic to an induced subgraph of G¢ by replacing, where
applicable, the intervals in D by closed intervals with rational endpoints
while preserving the structure of the graph Gp.

Hence suppose that a is an endpoint of some interval in D and suppose
that a is irrational or some interval is open at a. If no interval in D has
an endpoint greater that a, let b be any real number such that b > a.
Otherwise, let b be the least real number which is an endpoint of an interval
in D such that b > a. Since there exists an € > 0 in R such that there is
only a finite number of endpoints of intervals from D in [a, a + €], there is
such a real number. Clearly there exist three rational numbers a1, ay, a3
such that a < a; < as <az < b.
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Now we create a new set of intervals D’ by changing some endpoints of
intervals with a as an endpoint. Indeed, for each interval I of D of positive
length with a as an endpoint, we replace
o the right endpoint of I, if it is right-open in @, by a; and we make such

an interval right-closed in a;,

e the left endpoint of I, if it is left-open in @, by a3 and we make such an
interval left-closed in a3, and

¢ any endpoint a of I for which I is closed in a, by a2 with the new interval
also closed in as.

Also, each interval in D which consists of a single point a will be replaced
by the single-point interval containing only as.

It is not difficult to check that the intersection graph Gp- of the result-
ing set D’ of intervals is isomorphic to the given graph Gp: By denoting
arbitrary intervals in Gp by I and J, and the resulting intervals in Gp/ by
I' and J', the equivalence I N J # @ if and only if I' N J’ # @ can be seen

to be true.
Clearly, since Gp- is the intersection graph of a set of closed and bounded

intervals with rational endpoints, Gps, and hence Gp, is an induced sub-
graph of Gg. (]

The condition on a in Theorem 2 is not met by the set £ of all closed
and bounded intervals with rational endpoints. Hence this theorem does
not guarantee the existence of a universal graph which is one of the graphs
about which the theorems speaks. This condition, however, is met when any
finite set D of bounded intervals is considered; hence G¢ is a denumerable
universal graph for the set of all finite interval graphs with real endpoints.

4 Conclusion

The question whether there exists a countable universal graph for the
set of all countable interval graphs clearly has a positive answer: the Rado
graph [12], being universal in the set of all countable graphs, is an example
of such a graph. To ask whether there is a countable universal graph in
the set of all countable interval graphs remains an open problem.

References
(1] M. Borowiecki, I. Broere, M. Frick, G. Semanisin, P. Mihék, A survey

of hereditary properties of graphs, Discuss. Math. Graph Theory 17
(1997), 5-50.

261



[2] 1. Broere, J. Heidema, Universality for and in induced-hereditary graph
properties, Discuss. Math. Graph Theory 33 (2013), 33-47.

[3] G. Chartrand, L. Lesniak, P. Zhang, Graphs and digraphs, Fifth edi-
tion, CRC Press, Boca Raton, 2011.

[4] G. Cherlin, P. Komjéth, There is no universal countable pentagon-free
graph, J. Graph Theory 18 (1994), 337-341.

[5] G. Cherlin, N. Shi, Graphs omitting a finite set of cycles, J. Graph
Theory 21 (1996), 351-355.

[6] R. Diestel, Graph theory, Fourth edition, Graduate Texts in Mathe-
matics 173, Springer, Heidelberg, 2010.

[7) J.L. Gross, J.Yellen, Handbook of graph theory, Discrete Mathematics
and its Applications, CRC Press, Boca Raton, 2004.

(8] A. Hajnal, J. Pach, Monochromatic paths in infinite coloured graphs,
Collog. Math. Soc. Jinos Bolya: 37, Finite and infinite sets, Eger
(1981), 359-369.

[9] G. Hajés, Uber eine Art von Graphen, Internat. Math. Nachr. 11
(1957), Problem 65.

[10] P. Komjéth, J. Pach, Universal graphs without large bipartite sub-
graphs, Mathematika 31 (1984), 282-290.

[11] C. G. Lekkerkerker, J. C. Boland, Representation of a finite graph by
_a set of intervals on the real line, Fund. Math. 51 (1962), 45-64.

[12] R. Rado, Universal graphs and universal functions, Acta Arith. 9
(1964), 331-340.

262



