An automatic approach to the
generating functions of some special
sequences

Weiping Wang!?* Tianming Wang 2
1 School of Science, Zhejiang Sci-Tech University
Hangzhou 310018, P. R. China
2 School of Mathematical Sciences, Dalian University of Technology
Dalian 116024, P. R. China

Abstract

In this paper, we give explicit algorithms to compute generating functions of
some special sequences, based on the operations of differential operators and shift
operators in the non-commutative context and Zeilberger’s holonomic algorithm.
It can be found that not only ordinary generating functions and exponential gener-
ating functions but also generating functions of the general form )", an(z)w(y,n)
can now be computed automatically. Moreover, we generalize this approach and
present explicit algorithms to compute 2-variable ordinary power series gener-
ating functions and mixed-type generating functions. As applications, various
examples are given in the paper.

Keywords: Computer proofs; Generating functions; Holonomic functions; Zeil-
berger’s holonomic algorithm

1. Introduction

Generating function (GF) is a very important tool for the study of
sequences [18], and a lot of works have been devoted to this subject with
the help of computers. For instance, Bergeron and Plouffe [3] outlined an
approach to compute the generating function of a series given its first few
terms. Salvy and Zimmermann [14] also studied the same problem and
developed a package GFun to guess the generating functions.

*Corresponding author.
B-mail addresses : wpingwang@yahoo.com (Weiping Wang), wangtm@dlut.edu.cn
(Tianming Wang).

ARS COMBINATORIA 116(2014), pp. 263-278



In [20], Zeilberger studied Weyl algebra and showed that a large set
of combinatorial identities can be proved by using properties of the class
of holonomic functions. Furthermore, an algorithmic treatment of these
identities was initiated by him, relying on a non-commutative version of
Sylvester’s dialytic elimination method. Zeilberger and his colleagues also
gave a few examples concerning generating functions [2,19], based on the
holonomic theory. To deal with these examples, they made use of Cauchy’s
coefficient formula and the properties satisfied by the sequences or func-
tions, rather than an elimination way. Some other works based on holon-
omy can be found in [14], where Salvy and Zimmermann used the GFun
package to manipulate the generating functions of holonomic sequences.
Chyzak and Salvy introduced in {5, 6] a more general framework for opera-
tors, i.e., Ore algebra, in order to deal with holonomic systems in general,
and gave a modified Zeilberger’s holonomic algorithm to compute the gen-
erating functions of some special sequences (holonomic functions), based
on a generalization of the theory of Grobner basis. Particularly, Chyzak
developed the MgFun project, which is a collection of Maple packages in-
tended for calculations with multivariate generating functions. The reader
is referred to (8] for some further details on this subject.

We have also studied in [9,12,16] the eliminations in non-commutative
operator algebras and modified Zeilberger’s holonomic algorithm, so that
terminating hypergeometric identities, g-proper-hypergeometric identities
as well as identities with the integral sign can be proved automatically.
Furthermore, we find that using similar methods developed in [9,12,16], we
can deal with differential operators and shift operators at the same time,
and perform eliminations ainong them. In this way, we establish a unified
automatic approach to the computation of generating functions.

In the sequel, we will give the explicit algorithms to compute gener-
ating functions of some special sequences, with a Maple implementation
gfsolver to perform this computation. Readers who need the program may
correspond with us via electronic mail.

The article is organized as follows. Some definitions are introduced be-
low. In Section 2, we study formal ordinary power series generating func-
tions (OPSGF). In Section 3, we give the algorithm to compute generating
functions of the general forin:

> an(@)wly, ),

where (w(y, n))nen is a fixed given sequence. Thus, we can deal with or-
dinary generating functions, exponential generating functions (EGF) and
some unusual generating functions at the same time. As applications, we
show some examples in Section 4, and finally, in Sections 5, we discuss the
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algorithms for 2-variable ordinary power series generating functions and
mixed-type generating functions.
Now, we briefly introduce some definitions.

Let K be a field of characteristic zero. This field K will usually be
Q, R, C in practice, or be a finitely generated extension of Q.

Definition 1.1 ([11, Definition 2.1 and Theorem 3.7]). Let
f(xla ot ’xn) = Za(ila o 17:71):l:li1 * "x'r‘lirl (S K[[xla e 13:11]]

be a formal power series in the indeterminates @ = (zj,-:+,Zn) over
K. f is called D-finite if all the derivatives (8/8z,)* ---(8/0zn)*" f, for
oy, ,0n 2 0, lie in a finite dimensional vector space over K(z1,: -+ ,2y),

the field of rational functions in zj,- -+ ,z,. The sequence a(%y, -+ ,%,) is
P-recursive if and only if the formal power series f(zi,:--,2z,) is D-finite.

Especially, we have the next definition.

Definition 1.2 ({5, Proposition 1.3 and Definition 1.8]). A function f(z)
is called D-finite if and only if it satisfies a linear differential equation with
polynomial coefficients. A sequence a(n) is called P-recursive if and only if
it satisfies a linear recurrence equation with polynomial coefficients.

D-finite functions and P-recursive sequences have many closure proper-
ties, and these two concepts are closely related by the equivalence between
P-recursiveness of a sequence and D-finiteness of the associated power se-
ries. Moreover, D-finiteness and P-recursiveness can also coexist on the
same system. For example, Chehyshev Polynomials of the second kind,
which will be discussed in the sequel, as well as many other orthogonal
polynomials are in the case. Further details concerning these two concepts
can be found in [5,11,15].

For convenience, we call holonomic functions the functions, sequences
and formal power series whenever we want to denote any of these. Partic-
ularly, we call holonomic functions those special sequences which will be
studied in this paper.

Next, let us introduce the definition of Ore algebra (cf., [5,6]).

Definition 1.3 ([5, Definition 2.5]). Given two d-tuples of indeterminates
z = (1, - ,zq) and & = (0,,--- ,0q) along with a field K, we define
the associated Ore algebra as the non-commutative ring of polynomials
K(z, 8) =K(z1,:-- ,24,01, - , ), with the commutation rules

aixj = ai(zj)a,' + (Si(lij) s 6,0,- = 3,-3.- y TiT; =TT,
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where the o;’s are endomorphisins of K[z;] (as an algebra) extended to
K[z] by the identity, and the d;’s are endomorphisms of K[z;] (as a K-
vector space) extended to Kfz] by the identity, with the o;’s and the §;’s
commuting two by two.

Definition 1.4 ([5, Definition 3.6]). An Ore algebra K(z, 8) is admissible
when it satisfies

0i(zi) = pizi + qi,  0i(zi) = rizi + 8,
where all coefficients are in K and no p; is zero.

For instance, take o(z) = = and d(z) = 1, then 0z = 20 + 1 and the
Ore algebra is the Weyl algebra in a single variable [4]. Now, & can be
viewed as the differential operator D, and K(z,8) = K(z, D;). Similarly,
take o(z) = z+1 and §(z) = 0, then 8z = (z+1)8, which implies that 8 is
the shift operator and K(z, 8) = K(n, S,,). We can also find that K(z, D)
and K(n, S,) are admissible.

In the sequel, Sk, Sm,S. denote the shift operators with respect to
k,m,n, respectively, and D, D, D, denote the differential operators with
respect to z,y, z, respectively.

Moreover, the set of operators of the Ore algebra that vanish on a
given holonomic function has a prominent role in this article, and for any
given holonomic function f, we use Annf to denote it, i.e., Annf := {w €
K(Zl,"' ,$d,31,"’ 9ad)a w - f = 0}

2. Algorithm for OPSGF

The algorithms below follow the way suggested by Chyzak in [5]. But
instead of Grobner basis method, we choose a process of elimination similar
to that of [16], which is the essential difference from Chyzak’s method.

Let (an)nen be a P-recursive sequence. As mentioned above, (an)nen
is a holonomic function. The generating function of (a,)nen is

F(z) = Z a,z™,

neN

which is the sum of the sequence of functions f,(z) = a,z™. Then, we can
handle the generating function as a discrete-continuous identity.

Let P(n,S,) be a generic operator in K(n, S,) that vanishes on a,, i.e.,
P(n, S;)a, =0. Rewrite P as a polynomial in Sp:

P =S, 4+ b1 857 + -+ bo,
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where b; can be considered as a polynomial in n for i =0,.-- , k. Since
(x_lsn)(anxn) = x_l(an+lxn+1) = (Snaﬂ)xn ’
then

be(2715,)5(anz™) = bkGnirz™ = ((bkSn*)an) - 27,
P(n,z7180) fu(z) = (be(z180)F + bre1(z7180)* 1 + - -+ + bo) (anz™)
= (P(n,Sp)ay,) -z" =0.

We can see that P(n,z~1S,,) € K(z){n, S»), so multiplying P(n,z~1S,) by
an adequate power of z yields a polynomial P’ € K(z,n, D, S,) vanishing
on fn(z). These steps are suininarized into the following theorem.

Theorem 2.1. Let P(n,S,) be a generic operator in K(n, S,,) that vanishes
on an, where a 1= (@n)neN 15 a P-recursive sequence, then there is some
operator P' € K(z,n, D,, S,) vanishing on fn(z) := a,z", where P' can be
obtained by multiplying P(n,x~'S,) a power of .

Besides P’, we have (zD, — n) fo(z) = (xDz — n)anz™ = znapz™! —

napz™ = 0. In other words, zD, — n also vanishes on f,(z).

Now, let G be a subset of Ann a in K(n,S,). Put G’ = {g'}gec U
{zD, — n}, where ¢’ is obtained from g by Theorem 2.1. Then G’ is a
subset of K(z,n, D;, S,) with each element of G’ annihilating f,.(z).

For each element g € G’, rewrite it as a polynomial in n:
g= bn® +bp_yn* 4 4 bo ,

where b; € K(z,D.,S,), i = 0,---,k. Since S, commutes with  and
D, we can regard S, as a constant so that b; can be viewed as elements
of K(z, D;). Recall that for any given polynomials p,q € K(z, D;), two
polynomials u,v € K(z, D;) can be obtained such that up = vgq (see [12,
16] for details). Thus, following a similar way suggested in [16], we can
eliminate n between every two elements of G’, which eventually leads us to
a non-empty set G” C K{z, D, S,) such that gf,(z) =0 for all g in G".

Next, we proceed as in the algorithmn for definite sums by creative tele-
scoping (cf., [5, Section 5.2.2], (17, Theorem 3.2] and [20, Theorem 5.1]).

Each element g(z, D, S,) of G” can be considered as a polynomial in
Sn. Write '

g(.’l?, Dz‘v Sn) = (Sn - 1)1.6(:3' Da:, Sn) ’

where 1 is maximal, that is, §(z, Dz, Sn) is not divisible by S, — 1 and
§(zy Dz, 1) # 0. If i > 0, then we multiply g with (n); from the left, where
(n)i == n(n—1)---(n — 1+ 1) is the i-th falling factorial of n (see [7, p.
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6)). According to the rules of non-commutative multiplication and the
abbreviation g for (S, — 1)~1§, we have

(n)ig = (n)i(Sn — 1)'§ = (n);Snd — (n):g
=Sa(n—1)g—(n—1)g+ (n—1):g - (n):g
=(Sn—1)(n—1)g—i(n —1)i-13.

The last term can be reduced by the same scheme, and finally we obtain

(n)ig = (Sn "1) Z (_l)m_l(i)m—l(n_m)i—(m—l) (Sn—l)i—mg'i'(_l)ii!g:

m=1

which includes the case i = 0. Since g is not divisible by S,, — 1, we can
write

(-1)'i'§(z, Dz, S») = (Sn — 1)§'(z, Dz, Sn) + S(z, Dz),
where S(z, D;) = (—1)*!g(x, D, 1) # 0. Thus, we have the recurrence
(n),-g(:c, Dx: Sn)

= (82— 1) (@' + 3 () (@ s (n = )iy (S — 1)"-"*.6) +8

m=1

= (Sn — 1)§(z,n, Dz, Sn) + S(z, Dy)

which annihilates f,,(x), and then
0 =) (n)ig(e, Dz, Sn) fa(x)
=Y (Sn— 1)§(z, 1, Dz, Sn) fa(z) + Y _ S(z, Da) fn(z).

Since the first term vanishes by telescoping, we have

S(,D2) Y falz) =Y _ S(z, D) fn(z) =0.

Hence, for given P-recursive sequence (@, )neN, We can compute its formal
ordinary power series generating function as follows.
Algorithm 2.2. (Algorithin for comnputing OPSGF)

INPUT: a set G of operators vanishing on a,,.

OUTPUT: a set of operators vanishing on ZnEN anz™.

1. Substitute 715, for S, in each element of G; multiply each by an
adequate power of z to make them all polynomials.
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2. Add zD, — n to the set.

3. Eliminate n by using the modified Euclidean algorithm in the non-
commutative context.

4. For each operator g(z, D, S,) obtained, find §(z, Dz, S,) such that
9(z, Dz, ) = (Sn — 1)'4(x, Dy, Sn), where i is as big as possible.

5. Substitute S, = 1 in g(z, D., Sn) and obtain the resulting operator

S(z, D). Then S(z, D;) vanishes on 3 .y anz™. Solve the corresponding
differential equation of S(x, D) with the initial conditions.

3. Algorithm for general GF

For the sequence (a,(Z))nen, let us consider the generating function of
the general form:
Zan(w)w(y,n) . (3.1)
n

In this way we treat at the same time ordinary GF (& w(y,n) = y*),
exponential GF (& w(y,n) = y™/n!), and GF according to Q,, (& w(y,n) =
Q,y"), where (2,)nen is a fixed given sequence (see [7, Section 1.13]).

Suppose a,(x) is annihilated by P(z,n,8,S,) € K(z,n,8,S,). Simi-
larly to Theorem 2.1, we find that

P=pP|znd (ﬂ(_y’_'l"'_ll)_ls
3 ’ b w(y’ n) n
vanishes on a,(x)w(y,n). It also holds that Q' = —D,(w(y,n))/w(y,n) +

D, annihilates an(z)w(y,n). Thus, multiplying P’, Q' by some adequate
factors yields two polynomials

Pl’a Q” € K(a’,y, n, a, Dy, Sn)
that vanish on a,(z)w(y,n).
Therefore, we have the following theorem.

Theorem 3.1. Let P(z,n,8,5,) be a generic operator in K(z,n, 8, S,)
that vanishes on an(x), where a(x) := (an(T))neN 8 & holonomic function,
then there is some

P" € K(z,y,n,8,D,, S,)
vanishing on fo(x) := an(z)w(y,n). Moreover, we can always find another
operator

Q" e K(z,y,n,8,D,,S,)

vanishing on f(x).
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Now, we can modify Algorithm 2.2 so that it can be used to compute
general generating function (3.1) as well. In fact, nothing is changed in
Steps 3 to 5. What we should do is determining in Step 1 the sequence

-1
(w(y,n))nen and substituting ( “’—S’z—}:)—l)) Sy, for Sy, in each element of G
and adding @” in Step 2. As an example, for exponential GF, we should
replace S, by y~1(n+1)S, in Step 1 and add yDy —n in Step 2. It should

be noticed that

(R +1)Sn)* = (n+1)Sa(n+1)Sn - (n+1)Sn = (n+ k) - (n + 1)S,*.
k

4. Applications

With the algorithm and the corresponding Maple program, we can com-
pute the generating functions of some special combinatorial sequences.

Example 4.1. Let N be a finite set and |N| = n. Let d(n) be the number
of derangements of N. Then d(n) satisfies the following recurrence relation
(see [7, Section 4.2)):

d{n +1) = nd(n) + nd(n —1).

We now use gfsolver to find the differential equation satisfied by the EGF
of d(n):
> GL:=[Sn"2-(n+1)*Sn-(n+1)]:
EQ:=gfgeteq(GL,x,Dx,expogf) ;
EQ :=[(1-z)Dz -z

Then, by appealing to the ODE solver provided by Maple, we have
> dsolve({(1-x)*diff (f(x),x)-x*f(x),£(0)=1});

-z

f@)=-333

which suggests that
o0 .’En
D(z)=>)_ d(n)_7 =e™*(1 - e
n=0 :

In fact, following the algorithin, we can obtain the result even by hand.
The readers may have a try.
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Remark. In the case of computing OPSGF with a single recurrence, our
algorithm is essentially the same as the rectodiffeq procedure in GFun pack-
age [14], which makes the conversion between recurrence and differential

equation by translating each n*u, ; into

(+&) e,

While in the case of computing EGF, our algorithm is different from the
usual one. For instance, if we want to compute the EGF of d(n) with
the GFun package, we should first turn the recurrence of d(n) to that of
d(n)/n!, and then translate the recurrence to differential equation satisfied

by the generating function, as follows:

> RE:=d(n+1)-n*d(n)-n*d(n-1):
> RE:={subs(n=n+1,RE),d(0)=1};

RE:={d(n+2)-(n+1)d(n+1)—(n+1)d(n),d(0) =1}
> RE2:=‘rec*rec‘ (RE,{(n+1)*d(n+1)-d(n) ,d(0)=1},d(n));
RE2 := {~d(n) + (—n—1)d(n+1) + (n+2)d(n+2),d (0) = 1}

> DE:=rectodiffeq(RE2,d(n),F(x));
DE := {—F (x)z+(1—1x) (%F(z)) - .Co,F(0)= 1}

> dsolve(subs(_C[0]=0,DE),F(x));
e
z—1

Comparing with Example 4.1, it can be seen that our algorithm is more
convenient. In fact, it provides a unified approach to OPSGF and EGF.

F(z)=-—

Example 4.2. Compute the EGF of the number g, of clouds with n points
(see [7, Section 7.3]). g(n) is also named as the number of undirected 2-
regular labeled graphs and satisfies the following recurrence relation:

n—1
g,,=(n-1)gn_1+( 5 )gn_s, n23;90=1, g=g2=0.

> GL:=[2#Sn"3-2*(n+2) *Sn~2-(n+2)*(n+1)]:
EQ:=gfgeteq(GL,x,Dx,expogf) ;

EQ :=[(-2z +2) Dz - z%

271



> simplify(dsolve({(-2xx+2)*diff (g(x),x)-x"2*g(x),g(0)=1}));

() je— ¥ z(z+2)
I vz -1
Then the generating function is
z? + 2z
g9(z) = z o7 = \/——_—x exp (-—4—)

n=0

The algorithm also holds for some generic holonomic functions, includ-
ing some orthogonal polynomials. In the following example, let us compute
the OPSGF of the orthogonal Chebyshev Polynomials of the second kind.

Example 4.3. We recall the definition of these polynomials as well as some
equations that they satisfy (see [1, formulae(22.3.7, 22.6.12, 22.8.4)]):

[’:l

Q- xz)U,,"(:z:) —3zU, (z) + n(n + 2)Un(z) =0,
(1 = 2*)Un1'(2) + (n + 1)zUns1(z) — (n +2)Un () = 0
Input these equations and call gfgeteg function to find the relations satisfied

by the derivatives of the generating function:
> GL:=[(1-x"2) *Dx~2-3*x*Dx+n*(n+2),
(1-x"2) *Dx*Sn+ (n+1) *x*Sn-(n+2)] :
EQ:=gfgeteq(GL,y,Dy);
EQ :=[Dz? — Dz%2% — 3zDz + 3yDy + y*>Dy?,
(-y* + yz) Dy — 2y + Dz — Dz 2?
It should be noticed that the output will be given in the standard form in

which the indeterminates are in front of the differential operators. If it is
not, it is still meant that way. Now, eliminate D, from the result:

> LEQdy:=gfeliminate(EQ[1] ,EQ[2],Dx);
LEQdy :=y(~2yz +y*+1) Dy* + (—8yz + 632 +2) Dy + 6y — 4z

Thus, using ODE solver again gives us the desired generating function:

> dsolve({y*(-2*y*x+y~2+1) *diff (£(y),y,y) +(-8*y*x+6xy~2+2)
*diff (£(y) ,y)+(6xy-4xx)*£(y) ,£(0)=1});

1
T = maryeT
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Besides Example 4.3, we have verified the generating functions of many
other orthogonal polynomials, such as Hermite polynomials, Ultraspherical
polynomials, Legendre polynornials as well as generalized Laguerre polyno-

mials.
Finally, let us consider a special type of generating function. It can be
found that the sequence (w(y,n))nen is now defined by (y™/(n!)?)nen.

Example 4.4. Let P, be the number of bipermutations, then P, satisfies
the following recurrence relation (see (7, Section 6.3]):

P = (72‘) (2Pn_1 + (n = 1)Pa_y).

By means of the algorithin, we can compute the GF of P,, as mentioned

above, which has the forin f(z) = 3.o0 o Paz™/(n!)2. The following are the

input and output in Maple.

> GL:=[2%Sn"2-2*(n+2) *(n+1) *Sn-(n+2) *(n+1)~2] :
EQ:=gfgeteq(GL,x,Dx,x"n/(n!*n!) ,other);

EQ=[(-2z+2)Dz — 1]
> dsolve({(2-2*x)*diff (£(x),x)-x*£(x),£(0)=1});
=1
f@)= 7=

Thus, we obtain the final result:

R n —z/2
T [
= E Pn"_ =
f(z) = nl? l—-z

Analogously, let a, := 4= 3,(2n — 2)1i!(7) 2", then a, satisfies the recur-
rence an = n?an_1—(n—1)(})an—_2 (see (7, Exercise 25, p. 125]). According
to the algorithm, we can obtain the following generating function:

[ ] xn
Za — =e*/(1-2)"V2,
" nl2
=0
The readers may verify it themselves.

5. Algorithms in 2-variable case

By far, what we have discussed are all in single-variable case. In fact,
we can extend those studied above to 2-variable case and give algorithms to
compute 2-variable ordinary power series generating functions and mixed

type generating functions.
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Theorem 5.1. Let

P(KL‘, n,m,8,S,, Sm)
be a generic operator in K(z,n,m,8, Sy, Sy) that vanishes on Cn,m(T),
where a(x) := (an.m(T))}n,men s a holonomic function, then

Pi(z,n,m,8,y'S,,271S,) and Py(x,n,m,8, y“l(n +1)S,, z‘ISm)

vanish on @n m(T)Y"2™ and an m(T)y™2™ /1!, respectively. Multiplying P,
and Py by some yP29, where p and g are some adequate non-negative inte-
gers, we can obtain two polynomials

Pll1 P2I € K(w,ya zZ,n,m, 8: Dy1 Dz, Sﬂ’ Sm)
that vanish on a, m(x)y"z™ and a, n(x)y"z™/nl.

We omit the proof here, because it is similar to that of Theorem 2.1.
Once we have found the operators that annihilate the summand of the
generating function, what we should do next is eliminating n and m among
them. To do this, we may follow the way suggested by (16, Algorithm 4].
Let us recall the algorithin and modify it to our context at the same time.

Algorithm 5.2. (Algorithm for eliminating two variables)

INPUT: a set of operators AS in K(z,y, z,n,m, 8, Dy, D, Sn, Sm).

OUTPUT: a set of operators which are free of n and m.

1. Set AS := {A;,A,,---,Ai}. Divide AS into two subsets B and C
so that each element b; of B satisfies deg,b; = 0 and each element ¢; of C
satisfies deg,,c; > 0.

2. If |C| = 1, set AS := B; else, let |C| = k, choose ¢; such that
deg,c; = min{deg,c;, ¢; € C}, construct k — 1 pairs {ci,c;}, ¢ € C, i # j,
and obtain k — 1 polynomials r; by eliminating n respectively. Append r;
into B and set AS := B.

3. Now, each element a; of AS satisfies deg,a; = 0. Similarly, choose
a; which has the smallest non-zero degree on m, and construct pairs to
eliminate m. Thus, a set of operators free of n and m can be obtained.

We now propose the algorithm to compute the 2-variable generating
functions.
Algorithm 5.3. (Algorithn for computing 2-variable GF)

INPUT: a set G of operators vanishing on an ().

OUTPUT: a set of operators vanishing on }, ..y anm(z)y"z™.

1. Substitute y~!S,, 27! S,, for Sp, S, in each element of G; multiply
each by an adequate power to make them all polynomials.
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2. Add yDy —n and 2D, —m to the set.
3. Eliminate n and m by Algorithm 5.2.
4. For each g(z,y,2,8, Dy, D,, Sn, Sm) obtained, find

g(mayvzy 87 Dy, Dz’SnsSm)

such that §(z,y, z, 8, Dy, D,, 1,1) # 0. Then we can see that the operator
§(z,y,2,8, Dy, D;,1,1) vanishes on 3, . o anm(z)y™z™.

For generating functions of mixed type, i.e., it is an OPSGF with respect
to z and an EGF with respect to y, we can modify Step 1 of Algorithm 5.3
by substituting y~!(n + 1)S,, 2~ 1S for Sy, Sm, respectively.

Example 5.4. Verify

G(‘T’y) = Z f(Tl, k)%yk = Z (:)fl_? k =ez(1+!l)'

n,k>0 n,k>0

Since f(n, k) is annihilated by P(n,k, Sp,Sk) = (n+1—-k)S, —(n+1) and
Q(n, k, Sn, Si) = (k+1)Sx — (n— k), we can obtain the following operators
vanishing on f(n, k)z"y* /n!:

(n+1-k)(n+1)S, —z(n+1), (k+1)Sx—y(n—k), zDy—n, yDy—k.
By eliminating n, we have
—SpkzD, —2*D, —z+ S,22D.* 4+ SpzDy , (Sk+y)k—yzDy, —k+yD,,
and by eliminating k, we have
—22Dy — z + Sp22D,? + SpzDy — SazyD. Dy, —yzD, + (S +y)yD, .
Then setting S, = Sk = 1 yields the operators annihilating f(n, k)z"y*/n!:
z2D2 — 22D, + 2D, —zyD. Dy — =, —zyD; + (1 +y)yD, .
Eliminating D,, we have
v?(1 +y) D2 — y*(z + zy — 1)Dy — 72,

Based on G(z,0) = e® and G(x,1) = e?*, Maple gives the result:

> simplify(dsolve({y 2+ (1+y)*diff (£(y),y,y) -y 2*(x+x*y-1)
*diff (£ (y),y) -x*xy~2*f (y),£(0)=exp(x),f(1)=exp(2*x)}));

f(y) = e+
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Remark. This example can also be done by using Koepf’s algorithm given
in [10] twice. In this way the generating function is used to find the double
sum representing it.

> fps:=FPS(exp(x*(1+y)),x,n);
o0 n
1+ z"
n=0 )
> standardsum(FPS(fps,y,k));

st O n (—1)k pochhammer (—n, k) yk
2> P

n=0 \k=0

Or one can compute the generating function iteratively by first summing
with respect to k and afterwards with respect to n by using the GFun
package.

Example 5.5. Let s(n, k) and S(n, k) be the Stirling numbers of the first
and second kinds (e.g., see |7, Chapter 5]). The numbers s(n, k) satisfy the
recurrence s(n, k) = s(n—1,k—1)—(n—1)s(n—1, k), from which we can find
that the operator g = S,, Sk +nS,—1 annihilates s(n, k). Then the operators
Py = (8xSp + xSk)n — zy, P, = —n+ zD; and P3 = —k + yD,, vanish on
s(n, k)z™y* /n!. Because P, 4 (SkSn+zSk) P2 = —zy+(SkS, +z8,)zD, is
free of n and k, then the operator (1 + z)D, — y vanishes on the generating
function ¥(z,y) = 3., >0 $(n, k)2"y* /n!. Let

f(z)=v(,y) =) (Zs(n, k)y") %

n=0 \k=0

then f(0) = s(0,0) =1, and we have
> dsolve({(1+x)*diff (£(x),x)-y*£(x),£(0)=1});

f@)=Q0+2)*

In the above, we obtain the ordinary differential equation of the asso-
ciated mixed-type GF from just one recurrence relation. In fact, it can
not be expected that we are so lucky each time. For example, when we
compute the generating function ¢(z,y) = 3 ;50 S(n, k)z™y* /n! of Stir-
ling numbers of the second kind, based on the recurrence relation S(n, k) =
S(n-1,k—1)+kS(n—1, k), we only obtain the following partial differential
equation:

(Dz —yDy - y)o(z,y) =0.
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> simplify(pdsolve(diff (f(x,y),x)
-yxdiff (£(x,y),y)-y*£(x,y)));

f(z,y) = -F1 (ye*)e™?

Let g(z) := ¢(z,y), then g(0) = S(0,0) = 1, which means _F1 (ye®) e™¥ =
1. Then _F1(y) = €Y, from which we obtain

¢($, y) - ey(e=_1) .

Theorem 3.1 can be adapted to the 2-variable case easily. For instance,
let us compute the generating function of Lah numbers (see [7, Exercise 2,

p. 156)).

Example 5.6. The generating function of Lah numbers L, x is
- (=z)" &

f(x’y)=1+kZ;Ln,k ol v,

where L, ; = (—1)" Z:})n! Jk!. According to the algorithm, we can finally

find the operators which annihilate f(z,y) by eliminating n and k:
(1-=z)zD, —yD,, —xD; +yD, + yDy2 , (1—=z)D; —yD, —y.

Thus, from the first and the third operators, we obtain (1 — z)2D, — y.
Using dsolve, we have

> simplify(dsolve({(1-x) "2*diff (f(x),x)-y*f(x),£(0)=1}));
f@) ==

which means

f(x)y) =1+ Z Lok (_1:)71

k=1

yk - exy(l—:r)" )
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