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Abstract A sequential labeling of a simple graph G (non-tree) with m edges is an
injective labeling f such that the vertex labels f(x) are from {0,1,...,m— 1} and
the edge labels induced by f(x) + f(y) for each edge xy are distinct consecutive
positive integers. A graph is sequential if it has a sequential labeling. We give
some properties of sequential labeling and the criterion to verify sequential label-
ing. Necessary and sufficient conditions are obtained for every case of sequential
graphs. A complete characterization of non-tree sequential graphs is obtained by
vertex closure. Also, characterizations of sequential trees are given. The structure
of sequential graphs is revealed.
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1 INTRODUCTION

Sequential graphs relate directly to additive bases problems stemming from error-
correcting code [1]. Chang, Hsu, Rogers [2] and Grace [3] have investigated the
sequential graphs. The study of sequential graphs has been focusing on special
classes of graphs (See [4]). The systematic theory of sequential graphs has not
been founded up to the present [5]. In this paper, we will give some properties
and characterizations of sequential graphs.

Throughout this article, all our graphs are simple, non-empty ([6]) and finite.
V(G) and E(G) are the vertex set and the edge set of a graph G, respectively. The
order of graph G is denoted by n(G) and the size of G is denoted by £(G) . [x]
is the greatest integer < x . The undefined symbols and terminologies from graph
theory can be found in [6] and [7].

Definition 1 ([3]). A sequential labeling of a simple graph G with € edges is an
injection f: V(G) — {0,1,...,& — 1} (€ is also allowed if G is a tree) such that

{f(w)+ fW)|uv € E(G)} = {c,c+1,...,c+e—1}
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where c is a positive integer. A graph is sequential if it has a sequential labeling.
The bijection f': E(G) — {c,c+1,...,c+&—1}, f'(uv) = f(u) + f(v),uv €
E(G), is called the induced edge labeling of G by f. f(u)+ f(v) is the induced
label of edge uv .
Definition 2. A base matrix E;j (i,j € {1,2,...,n}) is an n x n matrix in which
both of the entries a;j,aj; are 1 and the other entries are all zero.
An n x n symmetric matrix A is called a sequential matrix if there are two
positive integers d and m (d+m < 2n— 1) such that

m
A= ZEl',jn il <jla il+jl =d+ta t= 1,2,-..,"1,

t=1
where each E;, ;, is a base matrix.

Note that a sequential matrix can be decomposed into m base matrices in
which the sums i; + j; are distinct consecutive positive integers. Obviously, given
a sequential matrix the decomposition consisting of base matrices is unique.

On the other hand, to construct a sequential matrix we must present the
choices of (i, ji) ’s, furthermore, given ¢ and d, the base matrix E;, ;, which satis-
fies iy + j; = d +1 can be selected in [1'%] ways, if2<d+t<n+1.

For example, Aax4 = E12 + E13 + E»3 is a sequential matrix. Replacing Ex;
with Ej4 we also obtain a sequential matrix. If A(G) is the adjacency matrix of a
simple graph G and V(G) = {v,v2,...,v,} , then

AG= Y E;
viv;€E(G),i<j

2 PROPERTIES OF SEQUENTIAL LABELING

In the following sections we use the symbol (n) to denote the set {0,1,...,n},
where n is a nonnegative integer. ¢ denotes the minimum edge label induced by
a vertex labeling f of graph G. A(G) is always the adjacency matrix of a simple
graph G, and let a;; denote the entries of A(G).

2.1 Sequential Labeling of Non-Tree Graphs
Theorem 1. If f: V(G) — (e — 1) is an injection, m = max{ f(u)|u € V(G)}, let
8(u) = (m— f)(u) = m— f(u), whenever u € V(G), then we have:

() f is a sequential labeling of G if and only if g = m — f is a sequential
labeling of G.

(ii) m = f(um),um € V(G) if, and only if, g(um) = (m — f)(um) = 0.

Proof. (i) For the vertex labeling, it is easy to see that f: V(G) — (€ — 1) is an
injection if and only if g:V(G) — (€ —1) is an injection.
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On the other hand, if f is a sequential labeling of G, then the edge labels
f'(uv) = f(u) + f(v),uv € E(G), and g’ (wv) = g(u) +g(v) = 2m— [f(u) + f(¥)],
thus, the range of f’ is {c,c+1,...,c+€— 1} if and only if the range of g’ is

{2m-c,2m—(c+1),...,2m—(c+€-1)}.

It is easy to check that 2m — (c+€—1) > 0. So g is a sequential labeling of G.
Using the same method, we can prove that if g is a sequential labeling of G,
then so is f. Conclusion (ii) is clear. O

Given two vectors @ = (ay,4z,...,az) and B = (b1,b2,...,b,), let - xf =
(a1by,a2b3,. . .,anbs) , - #P is called the product vector of o and . The product
vector of column vectors is defined similarly.

Suppose that G is a simple graph with vertices vy, v,,...,v, , and an injection
f assigns the vertex labels f(v;), f(v2),...,f(Vn),vi € V(G) . Let A(G) denote the
adjacency matrix of G corresponding to the vertex ordering vi,v3,...,v, , write
L= (f(v1),f(v2),--.,f(va)), and 0; and B; denote the ith row vector and the jth
column vector of A(G), respectively. Using product vectors @; - xL and B; - +L7,
we define a matrix B as follows:

o -*L
O - *L

B, = : JBe=(By-+LT,B-+LT,...,By-*LT),B, =B, +B.. (1)
oy *L
By is called the edge label matrix of G corresponding to the vertex labels vector

L. The induced edge labels of G by f can be obtained from B;. The concept of
edge label matrix can be used to give a description of sequential labeling.

Theorem 2. If G is a non-tree simple graph with € edges and f : V(G) — (e - 1)
is an injection, then we have the conclusions:
(i) The edge label matrix By, induced by f and A(G) is a symmetric matrix.
(i) The entry b;j of BL has the expression b;j = a;;[f (vi)+ f(v;)],1 <i,j<n.
(iii) f is a sequential labeling of G if, and only if, the entries of By, satisfy
{bij €BLli < j,aij=1} ={c,c+1,...,c+e-1},
where c is a positive integer.

Proof. Let A(G)(= (aij)) be the adjacency matrix of G corresponding to the ver-
tex ordering v),vs,...,V, , the ith row vector of B, and the jth column vector of

B, are respectively

o;-xL = (aj f(n1),-..,aijf(Vj)y- . ainf(va)),
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Bj-+LT = (a1;f(v1),-.,@ijf (Vi) .-+ anjf (va))T .
By the method constructing B, we obtain
bij = aijf(vj) +ai; f(vi) = aij{f (v;) + f(vi))] ¥))

Since A(G) is an adjacency matrix, we have a;; = aj;, hence b;j = bj; by ( 2).
Parts (i) and (ii) are completed.

Finally, since v;vj € E(G) < a;; = 1, applying formula ( 2) we obtain the
expression of entry b;; :

L V) f), aij=1,
bU - {01 ajj = 0. (3)

By ( 3), it is clear that every edge of G corresponds to a unique positive integer in
{bij €EBLli< haij= l}.

If f is a sequential labeling of G, let ¢,c+1,...,c+ & — 1 be the induced
edge labels by f, then

{eet 1, c+e=1}={f(v) + f(v))li < j,aij = 1}={bij € BL|i < j,aij = 1}.

Conversely, now assume that the edge label matrix By induced by the injec-
tion f satisfies {b;; € BL|i < j,aij = 1}={c,c+1,...,c+€—1},¢ > 0. By (3)
again, we have the following equations

{f(v) +f(Vj)|V,'Vj € E(G)}={bij €BLli< Jaij= l}={C,C+ l,...,c+€- l}.
Thus f is a sequential labeling of G. O

2.2 Sequential Labeling of Tree
Theorem 3. Given a tree T with € edges, and f : V(T) — (€) is an injection, let
g(u) = (e — f)(u) = € — f(u), whenever u € V(T'), then

(i) f is a sequential labeling of T if and only if g (= € — f) is a sequential
labeling of T.

(ii) € = f(ue) if, and only if, g(us) = (€ — f)(ue) = O,ue € V(T).

Proof. Note that the injection f : V(T) — (€) is also a bijection. Therefore, € =
max{f(u)|u € V(T)}. Using the method of proving Theorem 1, we can obtain
Theorem 3. ]

The following corollary is the immediate result of Theorem 1 and 3. It can
be used to decrease the cases which must be discussed to confirm a non-sequential

graph.
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Corollary 4. If graph G has a sequential labeling, then G has a sequential label-
ing which uses vertex label 0.

Theorem 5. Given a tree T with € edges, and f : V(T) — (€) is an injection, then
we have
(i) The edge label matrix By induced by f and A(T )(= (aij)) is symmetric.
(ii) The entry bij of By has the expression b;j = ajj[f(vi) + f(vj)].
(iii) f is a sequential labeling of T if and only if the entries of By, satisfy

{bij € BLli < jaij= 1} = {C,C+ l,...,c+€e- l},
where c is a positive integer.

Proof. The proof of Theorem 5 is almost the same as that of Theoremn 2. The only
difference between them is that the vertex labeling of tree can use €. O

3 SEQUENTIAL GRAPHS WITH ORDER EQUAL TO SIZE

The next theorem shows a strong connection between sequential graph and se-
quential matrix. Let A(vy,v2,...,V,) denote the adjacency matrix corresponding
to the vertex ordering v;,v,...,v, of a graph G.

Theorem 6. Let G be a simple graph with n(G) = €(G) , then G is a sequential
graph if and only if there is a suitable vertex ordering vi,va,...,v, of G such that
the adjacency matrix A(vi,va,...,v,) is a sequential matrix.

Proof. Necessity. Given a simple graph G with n(G) = €(G) , if G is a sequential
graph, then there is a sequential labeling f : V(G) — (€ — 1) such that the induced
edge labels are c,c+1,...,c+&—1. We rename the vertices in G such that
f) < f(v2) <... < f(vn). A vertex ordering vi,vs,...,v, of G is obtained.

Because n = €, f is a bijection, hence the vertex label vector

(f(vl),f(VZ)v--)f(Vn)) = (0’ L...,n— 1)’ ﬂamely, f(vi) =i—1

For convenience, let Ag(ai;) denote the adjacency matrix A(vy,...,v,) that
result from the vertex ordering vi,v3,...,vs. Let B.(b;;) be the edge labels matrix
corresponding to Ag and the vertex labels f(v;) =i—1,i=1,2,...,n.

Because ¢ is the minimum edge label, the entry a;; must be zero whenever
the subscripts i, j satisfy i 4+ j — 2 < c. Otherwise a;; = 1, by Theorem 2 (ii), we
could obtain an induced edge label [ < c.

Since ¢+ € — 1 is the maximum edge label, by the similar reason, we also
obtain a;; = 0 whenever the subscripts satisfy i+ j—2 > c+ & — 1. Hence, the
subscripts i, j of € pairs (a;j,a;;) = (1,1) inAg satisfyc < i+ j-2<c+e-1.

By Theorem 2 (iii), it is clear that there is exactly one pair of entries (a;,a;;) =
(1,1) in Ag satisfying i + j — 2 = [, for every induced edge label /,
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Letl; = (c—1)+t,t =1,2,...,¢, the unique pair (a;,j,,aj;,) = (1,1) satis-
fying i, + j: — 2 = |; determines a unique base matrix E;, ;. This means that

£
Ag= EEipjnil <Jjnirt+jr= (C+ 1)+ts t=12,...,¢&
t=1

So Ag is a sequential matrix.

Sufficiency. We now assume that there is a vertex ordering vj,v,...,v, of G
such that the adjacency matrix Ag(= A(v1,...,v,)) is a sequential matrix. Let us
define the injection f as follows:

f(vl')=i—'lsi=1a21"'7n (4)
By the definition of sequential matrix, we have
AG=Ei|j| +"‘+Ei,j,+"'+Eizje, l.p <j1, i{‘l‘j{ =d+t, = 1,2,...,8.

and i + j; > 2, it follows thatd > 2,
Because E;, j, determines the unique pair (a; j,,aj; ) = (1, 1), we have exactly
€ pairs of nonzero entries of Ag satisfying

(@ij,aji) =(L1), 6 < jr, ik + i =d+1t,t=1,2,... &
By Theorem 2 (ii), for every ¢t we have
bijo =ai,j[f(vi) + f i)l = (i =)+ (e = D) =d +1=2,i < jp.
It follows that
{bij €BLli< j,aij=1}={d+1-2|t=1,2,...,€}.
By Theorem 2(iii), G is a sequential graph. a

Corollary 7. Let G be a simple graph with n(G) = €(G) , then G is a sequential
graph if and only if G has a sequential adjacency matrix A(G) .

Proof. 1t is immediate from Theorem 6. a
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4 SEQUENTIAL GRAPHS WITH ORDER GREATER THAN
SIZE

For sequential trees we have the following results.

Theorem 8. A tree T is a sequential graph if and only if T has a sequential
adjacency matrix A(T) .

Proof. The proof of Theorem 8 is almost the same as that of Theorem 6. To
prove the necessity, note that the sequential labeling f : V(T) — {0, 1,...,€} isa
bijection as well. Conversely, if A(T) is a sequential matrix, we can get a vertex
ordering vy, va,...,v, by A(T). Define the vertex labeling of T

fw)=i-1,tr=12,...,n
We can see that f is sequential. O

Theorem 9. If G is not a tree and n(G) > €(G), then G is not a sequential graph.

Proof. If graph G is not a tree and n(G) > €(G) , then every function f : V(G) —
{0,1,...,€— 1} cannot be an injection, thus it is impossible that G was a sequen-
tial graph. O

5 SEQUENTIAL GRAPHS WITH ORDER LESS THAN SIZE

Definition 3. Given a graph G with n(G) < €(G), the vertex closure of G, written
G°, is a graph obtained by appending € — n isolated vertices to G.

It is trivial that n(G°) = €(G®), and if n(G) = &(G), then G° = G.

Theorem 10. If G is a simple graph with n(G) < &(G), then G is a sequential
graph if and only if the vertex closure G° is a sequential graph.

Proof. For n(G) = &(G), the assertion follows from the fact that G° = G . Now
assume that n(G) < €(G), let f : V(G) — (€ — 1) be a sequential labeling of
G, we shall construct a sequential labeling of G° by f. Using the numbers in
(€ = 1) — f(V(G)), we assign different labels to € — n newly appended vertices in
G°; for the remaining vertices in G° we assign the same labels just as f does in
G, then we obtain a vertex labeling g of G°. By Theorem 2 (iii) g is sequential,
because

{v%; € Bfli < j,a;;(G°) = 1} = {b); € BfJi < j,a;;(G) = 1}.

Conversely, let g be a sequential labeling of G°, then the restriction of g to
V(G), written g|y(c), is a sequential labeling of G. O

Combining Theorem 10 and Corollary 7, we can get the next result.
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Theorem 11. Let G be a simple graph with n(G) < &(G), then G is a sequen-
tial graph if and only if the vertex closure G° has a sequential adjacency matrix
A(G°).

Lemma 12. If G is a simple graph with n(G) < &(G), then G has a sequential
labeling whose vertex label values are distinct consecutive integers if and only if
G has a sequential labeling with vertex labels 0,1,2,...,n—1.

Proof. The sufficiency is obvious. Conversely, let f be a sequential labeling of
G with the vertex labels a,a+1,...,a+n—1, by Theorem 1, g=m—fisa
sequential labeling of G as well, where m = a+ n — 1. Furthermore, the values of
garen—1,n-2,...,1,0. a

The following theorems give the characterizations of a sequential graph which
has a sequential labeling with distinct consecutive vertex labels.

Theorem 13. If G is a simple graph with n(G) < €(G), then G has a sequen-
tial labeling with vertex labels 0,1,...,n —1 if and only if G has a sequential
adjacency matrix A(G).

Proof. In the proof of Theorem 6, we replace the bijection f: V(G) — (e — 1)
with the restriction bijection f : V(G) — (n—1). Using the same argument we
can prove Theorem 13. O

Corollary 14. If G is a simple graph with n(G) < €(G), then G has a sequential
labeling whose values are a,a+1,...,a+n— 1 if and only if G has a sequential
adjacency matrix A(G).

Proof. Combine Lemma 12 and Theorem 13. a

6 STRUCTURE OF SEQUENTIAL GRAPHS

The next result describes the structure of sequential graphs, it implies that sequen-
tial graph cannot have "parallel" edges under some ordering of its vertices.

Theorem 15. Given a simple graph G with n(G) < &(G), then G is sequential if
and only if there is a vertex ordering vi,va, ... ,ve of G°, and there exists a positive
integer d such that the following conditions hold:

(i) For every edge viv;j of G°, we have always ViomVj_m € E(G°) whenever
integer m# 0, j—i.

(ii) For each vertex pair {vi,v;} of G°, we have always v;v; & E(G°) when-
everi+j<dori+j>d+e
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Proof. Sufficiency. If there are a vertex ordering vy,va,...,ve of G° and a posi-
tive integer d such that conditions (i) and (ii) hold, let A(G°) = (a;;) denote the
adjacency matrix of G° corresponding to vi,v2,...,ve.

It is easy to prove that A(G®) is sequential, thus G is a sequential graph.

Necessity. Let G be a sequential graph. By Theorem 10, G° is also sequential.
Thus G° has a sequential adjacency matrix A(G°). A(G°) determines a vertex
ordering v;,vy,..., Ve of G° and also determines a positive integer d. The ordering
V1,V2,...,ve and d keep the conclusion (i) and (ii) appearing. (]

A result similar to Theorem 15 holds.

Theorem 16. A tree T is sequential if and only if there is a vertex ordering
V1,V2y...,Ve+1 Of V(T') and there exists a positive integer d such that the fol-
lowing conditions hold:

(i) For every edge vivj of T, we have vy vj-x & E(T), whenever integer
k#0,j—i;

(ii) For each vertex pair {v;,v;} of T, we have always viv; & E(T) whenever
i+j<dori+j>d+e.

7 CRITERION FOR SEQUENTIAL GRAPH
Definition 4. Given an n-by-n matrix A = (a;;), the kth sub-diagonal of A is the
vector Di(A) = (aijli+ j=k), (k=1,2,...,2n— 1), namely

Dy(A) = (a1, 3241, - ,8k,1)-

A 1-sub-diagonal of the adjacency matrix A is a sub-diagonal Dy (A) in which
there is exactly one pair of entries (a;;,a i) with a;; = aj; = 1 and the other entries
are all zero. An adjacency matrix A is called n-continuous if there are n 1-sub-
diagonals D;(A),Dy+1(A),Di42(A),-..,Di4n—1(A) of A, for some I. Obviously,
an adjacency matrix of a graph with € edges can be at most e-continuous.

The following results depict a sequential graph by the concept of n-continuous.
Theorem 17. Given a non-tree simple graph G, then G is sequential if and only
if n(G) < €(G) and the vertex closure G° has an g-continuous adjacency matrix.

Proof. If a non-tree simple graph G is sequential, then G must satisfy n(G) <
€(G) by Theorem 9. And the condition that there is an £-continuous adjacency
matrix A(G°) is equivalent to that the vertex closure G° has a sequential adjacency
matrix; Applying Theorem 11 we obtain the desired conclusion. 0

Similarly we have the following result.

Theorem 18. A tree T is sequential if and only if there is an €-continuous adja-
cency matrix A(T).

287



8 CONCLUDING REMARK

The sequential graph is defined in two cases, non-tree graphs or trees, respec-
tively, by Grace. In fact, the characterizations of non-tree sequential graphs have
been presented by Theorem 11, 15 and 17, because a non-tree graph G with
n(G) > &(G) is not a sequential graph (Theorem 9). And special non-tree se-
quential graphs are depicted by Theorem 13 and 14.

The characterizations of sequential trees are described by Theorem 8, 16 and
18. Both non-tree sequential graphs and sequential trees are strongly connected
with &-continuous adjacency matrices. These characterizations can be used to
structure sequential graphs and to verify any sequential graph.
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