Characterizations and Structure of Sequential Graphs

Zhenguang Zhu¹

Chunfeng Liu²

1.2 DEPARTMENT OF MATHEMATICS AND PHYSICS LIAONING UNIVERSITY OF TECHNOLOGY JINZHOU 121001, P. R. CHINA ¹ E-mail: zhenguangzhu@163.com

Abstract A sequential labeling of a simple graph G (non-tree) with m edges is an injective labeling f such that the vertex labels f(x) are from $\{0,1,\ldots,m-1\}$ and the edge labels induced by f(x)+f(y) for each edge xy are distinct consecutive positive integers. A graph is sequential if it has a sequential labeling. We give some properties of sequential labeling and the criterion to verify sequential labeling. Necessary and sufficient conditions are obtained for every case of sequential graphs. A complete characterization of non-tree sequential graphs is obtained by vertex closure. Also, characterizations of sequential trees are given. The structure of sequential graphs is revealed.

Keywords sequential graph; sequential matrix; edge label matrix; vertex closure

1 INTRODUCTION

Sequential graphs relate directly to additive bases problems stemming from error-correcting code [1]. Chang, Hsu, Rogers [2] and Grace [3] have investigated the sequential graphs. The study of sequential graphs has been focusing on special classes of graphs (See [4]). The systematic theory of sequential graphs has not been founded up to the present [5]. In this paper, we will give some properties and characterizations of sequential graphs.

Throughout this article, all our graphs are simple, non-empty ([6]) and finite. V(G) and E(G) are the vertex set and the edge set of a graph G, respectively. The order of graph G is denoted by n(G) and the size of G is denoted by $\varepsilon(G)$. [x] is the greatest integer $\leq x$. The undefined symbols and terminologies from graph theory can be found in [6] and [7].

Definition 1 ([3]). A sequential labeling of a simple graph G with ε edges is an injection $f: V(G) \to \{0, 1, ..., \varepsilon - 1\}$ (ε is also allowed if G is a tree) such that

$${f(u) + f(v)|uv \in E(G)} = {c, c+1, ..., c+\varepsilon-1}$$

where c is a positive integer. A graph is sequential if it has a sequential labeling.

The bijection $f': E(G) \to \{c, c+1, \dots, c+\varepsilon-1\}, f'(uv) = f(u) + f(v), uv \in E(G)$, is called the *induced edge labeling* of G by f. f(u) + f(v) is the *induced label* of edge uv.

Definition 2. A base matrix E_{ij} $(i, j \in \{1, 2, ..., n\})$ is an $n \times n$ matrix in which both of the entries a_{ij} , a_{ji} are 1 and the other entries are all zero.

An $n \times n$ symmetric matrix A is called a *sequential matrix* if there are two positive integers d and m $(d+m \le 2n-1)$ such that

$$A = \sum_{t=1}^{m} E_{i_t j_t}, \ i_t < j_t, \ i_t + j_t = d + t, \ t = 1, 2, \dots, m,$$

where each $E_{i_t j_t}$ is a base matrix.

Note that a sequential matrix can be decomposed into m base matrices in which the sums $i_t + j_t$ are distinct consecutive positive integers. Obviously, given a sequential matrix the decomposition consisting of base matrices is unique.

On the other hand, to construct a sequential matrix we must present the choices of (i_t, j_t) 's, furthermore, given t and d, the base matrix $E_{i_t j_t}$ which satisfies $i_t + j_t = d + t$ can be selected in $\left[\frac{d+t-1}{2}\right]$ ways, if $2 < d+t \le n+1$.

For example, $A_{4\times4}=E_{12}+E_{13}+E_{23}$ is a sequential matrix. Replacing E_{23} with E_{14} we also obtain a sequential matrix. If A(G) is the adjacency matrix of a simple graph G and $V(G)=\{v_1,v_2,\ldots,v_n\}$, then

$$A(G) = \sum_{v_i v_j \in E(G), i < j} E_{ij}.$$

2 PROPERTIES OF SEQUENTIAL LABELING

In the following sections we use the symbol $\langle n \rangle$ to denote the set $\{0, 1, ..., n\}$, where n is a nonnegative integer. c denotes the minimum edge label induced by a vertex labeling f of graph G. A(G) is always the adjacency matrix of a simple graph G, and let a_{ij} denote the entries of A(G).

2.1 Sequential Labeling of Non-Tree Graphs

Theorem 1. If $f: V(G) \to \langle \varepsilon - 1 \rangle$ is an injection, $m = \max\{f(u) | u \in V(G)\}$, let g(u) = (m - f)(u) = m - f(u), whenever $u \in V(G)$, then we have:

(i) f is a sequential labeling of G if and only if g = m - f is a sequential labeling of G.

(ii)
$$m = f(u_m), u_m \in V(G)$$
 if, and only if, $g(u_m) = (m - f)(u_m) = 0$.

Proof. (i) For the vertex labeling, it is easy to see that $f: V(G) \to \langle \varepsilon - 1 \rangle$ is an injection if and only if $g: V(G) \to \langle \varepsilon - 1 \rangle$ is an injection.

On the other hand, if f is a sequential labeling of G, then the edge labels f'(uv) = f(u) + f(v), $uv \in E(G)$, and g'(uv) = g(u) + g(v) = 2m - [f(u) + f(v)], thus, the range of f' is $\{c, c+1, \ldots, c+\varepsilon-1\}$ if and only if the range of g' is

$${2m-c, 2m-(c+1), \ldots, 2m-(c+\varepsilon-1)}.$$

It is easy to check that $2m - (c + \varepsilon - 1) > 0$. So g is a sequential labeling of G.

Using the same method, we can prove that if g is a sequential labeling of G, then so is f. Conclusion (ii) is clear.

Given two vectors $\alpha = (a_1, a_2, \dots, a_n)$ and $\beta = (b_1, b_2, \dots, b_n)$, let $\alpha \cdot *\beta = (a_1b_1, a_2b_2, \dots, a_nb_n)$, $\alpha \cdot *\beta$ is called the *product vector* of α and β . The product vector of column vectors is defined similarly.

Suppose that G is a simple graph with vertices v_1, v_2, \ldots, v_n , and an injection f assigns the vertex labels $f(v_1), f(v_2), \ldots, f(v_n), v_i \in V(G)$. Let A(G) denote the adjacency matrix of G corresponding to the vertex ordering v_1, v_2, \ldots, v_n , write $L = (f(v_1), f(v_2), \ldots, f(v_n))$, and α_i and β_j denote the ith row vector and the jth column vector of A(G), respectively. Using product vectors $\alpha_i \cdot *L$ and $\beta_j \cdot *L^T$, we define a matrix B_L as follows:

$$B_r = \begin{pmatrix} \alpha_1 \cdot *L \\ \alpha_2 \cdot *L \\ \vdots \\ \alpha_n \cdot *L \end{pmatrix}, B_c = (\beta_1 \cdot *L^T, \beta_2 \cdot *L^T, \dots, \beta_n \cdot *L^T), B_L = B_r + B_c. \quad (1)$$

 B_L is called the *edge label matrix* of G corresponding to the vertex labels vector L. The induced edge labels of G by f can be obtained from B_L . The concept of edge label matrix can be used to give a description of sequential labeling.

Theorem 2. If G is a non-tree simple graph with ε edges and $f:V(G) \to \langle \varepsilon - 1 \rangle$ is an injection, then we have the conclusions:

- (i) The edge label matrix B_L induced by f and A(G) is a symmetric matrix.
- (ii) The entry b_{ij} of B_L has the expression $b_{ij} = a_{ij}[f(v_i) + f(v_j)], 1 \le i, j \le n$.
- (iii) f is a sequential labeling of G if, and only if, the entries of B_L satisfy

$${b_{ij} \in B_L | i < j, a_{ij} = 1} = {c, c+1, \dots, c+\varepsilon - 1},$$

where c is a positive integer.

Proof. Let $A(G)(=(a_{ij}))$ be the adjacency matrix of G corresponding to the vertex ordering v_1, v_2, \ldots, v_n , the *i*th row vector of B_r and the *j*th column vector of B_c are respectively

$$\alpha_i \cdot *L = (a_{i1}f(\nu_1), \ldots, a_{ij}f(\nu_j), \ldots, a_{in}f(\nu_n)),$$

$$\beta_i \cdot *L^T = (a_{1i}f(v_1), \ldots, a_{ii}f(v_i), \ldots, a_{ni}f(v_n))^T.$$

By the method constructing B_L , we obtain

$$b_{ij} = a_{ij} f(v_i) + a_{ij} f(v_i) = a_{ij} [f(v_i) + f(v_i)]$$
 (2)

Since A(G) is an adjacency matrix, we have $a_{ij} = a_{ji}$, hence $b_{ij} = b_{ji}$ by (2). Parts (i) and (ii) are completed.

Finally, since $v_i v_j \in E(G) \Leftrightarrow a_{ij} = 1$, applying formula (2) we obtain the expression of entry b_{ij} :

$$b_{ij} = \begin{cases} f(v_j) + f(v_i), & a_{ij} = 1, \\ 0, & a_{ij} = 0. \end{cases}$$
 (3)

By (3), it is clear that every edge of G corresponds to a unique positive integer in

$${b_{ij} \in B_L | i < j, a_{ij} = 1}.$$

If f is a sequential labeling of G, let $c, c+1, \ldots, c+\varepsilon-1$ be the induced edge labels by f, then

$${c,c+1,\ldots,c+\varepsilon-1} = {f(v_i)+f(v_j)|i< j,a_{ij}=1} = {b_{ij}\in B_L|i< j,a_{ij}=1}.$$

Conversely, now assume that the edge label matrix B_L induced by the injection f satisfies $\{b_{ij} \in B_L | i < j, a_{ij} = 1\} = \{c, c+1, \dots, c+\varepsilon-1\}, c > 0$. By (3) again, we have the following equations

$${f(v_i) + f(v_i)|v_i \in E(G)} = {b_{ij} \in B_L|i < j, a_{ij} = 1} = {c, c + 1, ..., c + \varepsilon - 1}.$$

Thus f is a sequential labeling of G.

2.2 Sequential Labeling of Tree

Theorem 3. Given a tree T with ε edges, and $f:V(T)\to \langle \varepsilon \rangle$ is an injection, let $g(u)=(\varepsilon-f)(u)=\varepsilon-f(u)$, whenever $u\in V(T)$, then

(i) f is a sequential labeling of T if and only if g (= $\varepsilon - f$) is a sequential labeling of T.

(ii)
$$\varepsilon = f(u_{\varepsilon})$$
 if, and only if, $g(u_{\varepsilon}) = (\varepsilon - f)(u_{\varepsilon}) = 0, u_{\varepsilon} \in V(T)$.

Proof. Note that the injection $f:V(T)\to \langle \varepsilon \rangle$ is also a bijection. Therefore, $\varepsilon=\max\{f(u)|u\in V(T)\}$. Using the method of proving Theorem 1, we can obtain Theorem 3.

The following corollary is the immediate result of Theorem 1 and 3. It can be used to decrease the cases which must be discussed to confirm a non-sequential graph.

Corollary 4. If graph G has a sequential labeling, then G has a sequential labeling which uses vertex label 0.

Theorem 5. Given a tree T with ε edges, and $f:V(T)\to \langle \varepsilon \rangle$ is an injection, then we have

- (i) The edge label matrix B_L induced by f and $A(T)(=(a_{ij}))$ is symmetric.
- (ii) The entry b_{ij} of B_L has the expression $b_{ij} = a_{ij}[f(v_i) + f(v_j)]$.
- (iii) f is a sequential labeling of T if and only if the entries of B_L satisfy

$${b_{ij} \in B_L | i < j, a_{ij} = 1} = {c, c+1, \dots, c+\varepsilon - 1},$$

where c is a positive integer.

Proof. The proof of Theorem 5 is almost the same as that of Theorem 2. The only difference between them is that the vertex labeling of tree can use ε .

3 SEQUENTIAL GRAPHS WITH ORDER EQUAL TO SIZE

The next theorem shows a strong connection between sequential graph and sequential matrix. Let $A(\nu_1, \nu_2, \dots, \nu_n)$ denote the adjacency matrix corresponding to the vertex ordering $\nu_1, \nu_2, \dots, \nu_n$ of a graph G.

Theorem 6. Let G be a simple graph with $n(G) = \varepsilon(G)$, then G is a sequential graph if and only if there is a suitable vertex ordering v_1, v_2, \ldots, v_n of G such that the adjacency matrix $A(v_1, v_2, \ldots, v_n)$ is a sequential matrix.

Proof. Necessity. Given a simple graph G with $n(G) = \varepsilon(G)$, if G is a sequential graph, then there is a sequential labeling $f: V(G) \to \langle \varepsilon - 1 \rangle$ such that the induced edge labels are $c, c+1, \ldots, c+\varepsilon-1$. We rename the vertices in G such that $f(v_1) < f(v_2) < \ldots < f(v_n)$. A vertex ordering v_1, v_2, \ldots, v_n of G is obtained.

Because $n = \varepsilon$, f is a bijection, hence the vertex label vector

$$(f(v_1), f(v_2), \dots, f(v_n)) = (0, 1, \dots, n-1), \text{ namely, } f(v_i) = i-1.$$

For convenience, let $A_G(a_{ij})$ denote the adjacency matrix $A(v_1, \ldots, v_n)$ that result from the vertex ordering v_1, v_2, \ldots, v_n . Let $B_L(b_{ij})$ be the edge labels matrix corresponding to A_G and the vertex labels $f(v_i) = i - 1, i = 1, 2, \ldots, n$.

Because c is the minimum edge label, the entry a_{ij} must be zero whenever the subscripts i, j satisfy i + j - 2 < c. Otherwise $a_{ij} = 1$, by Theorem 2 (ii), we could obtain an induced edge label l < c.

Since $c + \varepsilon - 1$ is the maximum edge label, by the similar reason, we also obtain $a_{ij} = 0$ whenever the subscripts satisfy $i + j - 2 > c + \varepsilon - 1$. Hence, the subscripts i, j of ε pairs $(a_{ij}, a_{ji}) = (1, 1)$ in A_G satisfy $c \le i + j - 2 \le c + \varepsilon - 1$.

By Theorem 2 (iii), it is clear that there is exactly one pair of entries $(a_{ij}, a_{ji}) = (1, 1)$ in A_G satisfying i + j - 2 = l, for every induced edge label l.

Let $l_t = (c-1) + t$, $t = 1, 2, ..., \varepsilon$, the unique pair $(a_{i_t j_t}, a_{j_t i_t}) = (1, 1)$ satisfying $i_t + j_t - 2 = l_t$ determines a unique base matrix $E_{i_t j_t}$. This means that

$$A_G = \sum_{t=1}^{\varepsilon} E_{i_t, j_t}, i_t < j_t, i_t + j_t = (c+1) + t, \ t = 1, 2, \dots, \varepsilon.$$

So A_G is a sequential matrix.

Sufficiency. We now assume that there is a vertex ordering $\nu_1, \nu_2, \dots, \nu_n$ of G such that the adjacency matrix $A_G(=A(\nu_1, \dots, \nu_n))$ is a sequential matrix. Let us define the injection f as follows:

$$f(v_i) = i - 1, i = 1, 2, ..., n$$
 (4)

П

By the definition of sequential matrix, we have

$$A_G = E_{i_1,i_1} + \cdots + E_{i_t,i_t} + \cdots + E_{i_t,i_t}, i_t < j_t, i_t + j_t = d + t, t = 1, 2, \dots, \varepsilon.$$

and $i_t + j_t > 2$, it follows that d > 2.

Because $E_{i_t j_t}$ determines the unique pair $(a_{i_t j_t}, a_{j_t i_t}) = (1, 1)$, we have exactly ε pairs of nonzero entries of A_G satisfying

$$(a_{i_t,i_t}, a_{i_t,i_t}) = (1,1), i_t < j_t, i_t + j_t = d+t, t = 1,2,\ldots,\varepsilon.$$

By Theorem 2 (ii), for every t we have

$$b_{i_t,j_t} = a_{i_t,j_t}[f(v_{i_t}) + f(v_{j_t})] = (i_t - 1) + (j_t - 1) = d + t - 2, i_t < j_t.$$

It follows that

$${b_{ij} \in B_L | i < j, a_{ij} = 1} = {d + t - 2 | t = 1, 2, \dots, \varepsilon}.$$

By Theorem 2(iii), G is a sequential graph.

Corollary 7. Let G be a simple graph with $n(G) = \varepsilon(G)$, then G is a sequential graph if and only if G has a sequential adjacency matrix A(G).

Proof. It is immediate from Theorem 6.

4 SEQUENTIAL GRAPHS WITH ORDER GREATER THAN SIZE

For sequential trees we have the following results.

Theorem 8. A tree T is a sequential graph if and only if T has a sequential adjacency matrix A(T).

Proof. The proof of Theorem 8 is almost the same as that of Theorem 6. To prove the necessity, note that the sequential labeling $f: V(T) \to \{0, 1, ..., \varepsilon\}$ is a bijection as well. Conversely, if A(T) is a sequential matrix, we can get a vertex ordering $v_1, v_2, ..., v_n$ by A(T). Define the vertex labeling of T

$$f(v_i) = i - 1, t = 1, 2, \dots, n.$$

We can see that f is sequential.

Theorem 9. If G is not a tree and $n(G) > \varepsilon(G)$, then G is not a sequential graph.

Proof. If graph G is not a tree and $n(G) > \varepsilon(G)$, then every function $f: V(G) \to \{0, 1, \dots, \varepsilon - 1\}$ cannot be an injection, thus it is impossible that G was a sequential graph.

5 SEQUENTIAL GRAPHS WITH ORDER LESS THAN SIZE

Definition 3. Given a graph G with $n(G) \le \varepsilon(G)$, the vertex closure of G, written G° , is a graph obtained by appending $\varepsilon - n$ isolated vertices to G.

It is trivial that $n(G^{\circ}) = \varepsilon(G^{\circ})$, and if $n(G) = \varepsilon(G)$, then $G^{\circ} = G$.

Theorem 10. If G is a simple graph with $n(G) \le \varepsilon(G)$, then G is a sequential graph if and only if the vertex closure G° is a sequential graph.

Proof. For $n(G) = \varepsilon(G)$, the assertion follows from the fact that $G^{\circ} = G$. Now assume that $n(G) < \varepsilon(G)$, let $f: V(G) \to \langle \varepsilon - 1 \rangle$ be a sequential labeling of G, we shall construct a sequential labeling of G° by f. Using the numbers in $\langle \varepsilon - 1 \rangle - f(V(G))$, we assign different labels to $\varepsilon - n$ newly appended vertices in G° ; for the remaining vertices in G° we assign the same labels just as f does in G, then we obtain a vertex labeling g of G° . By Theorem 2 (iii) g is sequential, because

$$\{b_{ij}^g \in B_L^g | i < j, a_{ij}(G^\circ) = 1\} = \{b_{ij}^f \in B_L^f | i < j, a_{ij}(G) = 1\}.$$

Conversely, let g be a sequential labeling of G° , then the restriction of g to V(G), written $g|_{V(G)}$, is a sequential labeling of G.

Combining Theorem 10 and Corollary 7, we can get the next result.

Theorem 11. Let G be a simple graph with $n(G) \le \varepsilon(G)$, then G is a sequential graph if and only if the vertex closure G° has a sequential adjacency matrix $A(G^{\circ})$.

Lemma 12. If G is a simple graph with $n(G) \le \varepsilon(G)$, then G has a sequential labeling whose vertex label values are distinct consecutive integers if and only if G has a sequential labeling with vertex labels 0, 1, 2, ..., n-1.

Proof. The sufficiency is obvious. Conversely, let f be a sequential labeling of G with the vertex labels $a, a+1, \ldots, a+n-1$, by Theorem 1, g=m-f is a sequential labeling of G as well, where m=a+n-1. Furthermore, the values of g are $n-1, n-2, \ldots, 1, 0$.

The following theorems give the characterizations of a sequential graph which has a sequential labeling with distinct consecutive vertex labels.

Theorem 13. If G is a simple graph with $n(G) \le \varepsilon(G)$, then G has a sequential labeling with vertex labels $0, 1, \ldots, n-1$ if and only if G has a sequential adjacency matrix A(G).

Proof. In the proof of Theorem 6, we replace the bijection $f:V(G)\to \langle \varepsilon-1\rangle$ with the restriction bijection $f:V(G)\to \langle n-1\rangle$. Using the same argument we can prove Theorem 13.

Corollary 14. If G is a simple graph with $n(G) \le \varepsilon(G)$, then G has a sequential labeling whose values are a, a + 1, ..., a + n - 1 if and only if G has a sequential adjacency matrix A(G).

Proof. Combine Lemma 12 and Theorem 13.

6 STRUCTURE OF SEQUENTIAL GRAPHS

The next result describes the structure of sequential graphs, it implies that sequential graph cannot have "parallel" edges under some ordering of its vertices.

Theorem 15. Given a simple graph G with $n(G) \le \varepsilon(G)$, then G is sequential if and only if there is a vertex ordering $v_1, v_2, \ldots, v_{\varepsilon}$ of G° , and there exists a positive integer d such that the following conditions hold:

- (i) For every edge $v_i v_j$ of G° , we have always $v_{i+m} v_{j-m} \notin E(G^{\circ})$ whenever integer $m \neq 0, j-i$.
- (ii) For each vertex pair $\{v_i, v_j\}$ of G° , we have always $v_i v_j \notin E(G^{\circ})$ whenever $i + j \le d$ or $i + j > d + \varepsilon$.

Proof. Sufficiency. If there are a vertex ordering $v_1, v_2, \ldots, v_{\varepsilon}$ of G° and a positive integer d such that conditions (i) and (ii) hold, let $A(G^{\circ}) = (a_{ij})$ denote the adjacency matrix of G° corresponding to $v_1, v_2, \ldots, v_{\varepsilon}$.

It is easy to prove that $A(G^{\circ})$ is sequential, thus G is a sequential graph.

Necessity. Let G be a sequential graph. By Theorem 10, G° is also sequential. Thus G° has a sequential adjacency matrix $A(G^{\circ})$. $A(G^{\circ})$ determines a vertex ordering $v_1, v_2, \ldots, v_{\varepsilon}$ of G° and also determines a positive integer d. The ordering $v_1, v_2, \ldots, v_{\varepsilon}$ and d keep the conclusion (i) and (ii) appearing.

A result similar to Theorem 15 holds.

Theorem 16. A tree T is sequential if and only if there is a vertex ordering $v_1, v_2, \ldots, v_{\varepsilon+1}$ of V(T) and there exists a positive integer d such that the following conditions hold:

- (i) For every edge $v_i v_j$ of T, we have $v_{i+k} v_{j-k} \notin E(T)$, whenever integer $k \neq 0, j-i$;
- (ii) For each vertex pair $\{v_i, v_j\}$ of T, we have always $v_i v_j \notin E(T)$ whenever $i + j \le d$ or $i + j > d + \varepsilon$.

7 CRITERION FOR SEQUENTIAL GRAPH

Definition 4. Given an n-by-n matrix $A = (a_{ij})$, the *kth sub-diagonal* of A is the vector $D_k(A) = (a_{ij}|i+j=k)$, $(k=1,2,\ldots,2n-1)$, namely

$$D_k(A) = (a_{1,k}, a_{2,k-1}, \ldots, a_{k,1}).$$

A 1-sub-diagonal of the adjacency matrix A is a sub-diagonal $D_k(A)$ in which there is exactly one pair of entries (a_{ij}, a_{ji}) with $a_{ij} = a_{ji} = 1$ and the other entries are all zero. An adjacency matrix A is called n-continuous if there are n 1-sub-diagonals $D_l(A), D_{l+1}(A), D_{l+2}(A), \ldots, D_{l+n-1}(A)$ of A, for some l. Obviously, an adjacency matrix of a graph with ε edges can be at most ε -continuous.

The following results depict a sequential graph by the concept of *n*-continuous.

Theorem 17. Given a non-tree simple graph G, then G is sequential if and only if $n(G) \le \varepsilon(G)$ and the vertex closure G° has an ε -continuous adjacency matrix.

Proof. If a non-tree simple graph G is sequential, then G must satisfy $n(G) \le \varepsilon(G)$ by Theorem 9. And the condition that there is an ε -continuous adjacency matrix $A(G^{\circ})$ is equivalent to that the vertex closure G° has a sequential adjacency matrix; Applying Theorem 11 we obtain the desired conclusion.

Similarly we have the following result.

Theorem 18. A tree T is sequential if and only if there is an ε -continuous adjacency matrix A(T).

8 CONCLUDING REMARK

The sequential graph is defined in two cases, non-tree graphs or trees, respectively, by Grace. In fact, the characterizations of non-tree sequential graphs have been presented by Theorem 11, 15 and 17, because a non-tree graph G with $n(G) > \varepsilon(G)$ is not a sequential graph (Theorem 9). And special non-tree sequential graphs are depicted by Theorem 13 and 14.

The characterizations of sequential trees are described by Theorem 8, 16 and 18. Both non-tree sequential graphs and sequential trees are strongly connected with ε -continuous adjacency matrices. These characterizations can be used to structure sequential graphs and to verify any sequential graph.

ACKNOWLEDGMENTS

We are grateful to the referees for helpful suggestions in many places, especially on the concept n-continuous which can optimize the statement of Theorem 17 and 18.

References

- [1] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Discrete Math., 1(1980): 382-404.
- [2] G. J. Chang, D. F. Hsu and D. G. Rogers, Additive variations on a graceful theme: some results on harmonious and other related graphs, Congress. Numer, 32 (1981): 181-197.
- [3] T. Grace, On sequential labelings of graphs, J. Graph Theory,7 (1983): 195-201.
- [4] B. Liu, Sums of squares and labels of graphs, Math. Practice Theory, (1994): 25-29.
- [5] J. A. Gallian. A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, 5 (2002): 41-47.
- [6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1982, 1-21.
- [7] D. B. West, Introduction to Graph Theory, The China Machine Press, 2004.